Learning Opportunities in Biology Teacher Education Contribute to Understanding of Nature of Science
Abstract
:1. Introduction
1.1. Understanding of NOS: Conceptualisation
1.2. Teachers’ Understanding of NOS and the Role of Teacher Education
1.3. Aim of the Study and Research Questions
- How are NOS learning opportunities distributed in different degree programmes (Bachelor and Master) of teacher education at university?
- How are NOS learning opportunities (number and ECTS credit points) related to pre-service teachers’ understanding of NOS (NOS score)?
- 3.
- How are (1) the semester; (2) the type of teacher education programme (academic vs. non-academic track); and (3) the study of a second school subject (science vs. other subjects) related to pre-service biology teachers’ NOS?
2. Materials and Methods
2.1. Research Design
2.2. Sample
2.3. Instruments
2.3.1. Understanding of NOS
2.3.2. Content Knowledge
2.3.3. Institutional Determinants
2.4. Data Analysis
2.4.1. Validity Check
2.4.2. Qualitative Content Analysis
- (1)
- A corpus of text documents (called module manuals) from 20 universities’ biology teacher education programmes forms the basis for the identification of learning opportunities. For strands of teacher education (e.g., secondary level), module manuals define the respective modules that pre-service teachers have to take. The minimum requirements of a module description include: content and qualification goals of a module, teaching methods, requirements for awarding credit points, credit points and grades, frequency of methods offered, workload, and duration of modules. N = 649 modules were analysed. We payed attention to considering the module manuals valid at the point in time when teacher students participated in the survey.
- (2)
- A priori specified categories for QCA were deduced from literature on NOS aspects [20,21] and aligned with the instrument for measuring the understanding of NOS [26]. Table S2 in the Supplementary Material gives an overview of the categories we used, their definition, and typical examples from the analysis of module manuals.
- (3)
- Reliability of category application is assured by discussing and revising the categories after piloting them. Furthermore, the reliability of category application is quantified by different raters in a coefficient of agreement, Krippendorff’s α. In total, 25% randomly chosen modules of the total number of modules (n = 163) were coded by two trained raters. Coding the frequency of learning opportunities revealed a substantial agreement (α = 0.75) and coding the credit points for learning opportunities revealed a perfect agreement (α = 1; interpretation according to [61]).
2.4.3. Quantitative Approach—Regression Analyses
3. Results
3.1. Distribution of NOS Learning Opportunities in Science Teacher Education Programmes
3.2. Institutional Determinants of Preservice Biology Teachers’ Understanding of NOS
3.3. Learning Opportunities’ Relation to Understanding of NOS
4. Discussion
4.1. Distribution and Characterisation of Learning Opportunities in Biology Teacher Education
4.2. The Meaning of Institutional Determinants and Learning Opportunities for Pre-Service Biology Teachers’ Understanding of NOS
4.3. Strengths and Limitations
4.4. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allchin, D. Toward clarity on Whole Science and KNOWS. Sci. Educ. 2012, 96, 693–700. [Google Scholar] [CrossRef]
- Bybee, R.W. Scientific Literacy—Mythos oder Realität? [Scientific Literacy—Myth or Reality?]. In Scientific Literacy. Der Beitrag der Naturwissenschaften zur Allgemeinen Bildung [Scientific Literacy. The Contribution of Science to General Education]; Gräber, W., Nentwig, P., Koballa, T., Evans, R., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2002; pp. 21–43. [Google Scholar] [CrossRef]
- DeBoer, G.E. Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. J. Res. Sci. Teach. 2000, 37, 582–601. [Google Scholar] [CrossRef]
- Roberts, D.A. Scientific literacy/science literacy. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 2007; pp. 729–780. [Google Scholar]
- European Commission. Science Education in Europe: National Policies, Practices and Research; Eurydice: Brussels, Belgium, 2011. [Google Scholar] [CrossRef]
- National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas; Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- NGSS Lead States. Next Generation Science Standards: For States, By States; The National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Lederman, N.G.; Lederman, J.S. Research on teaching and learning of nature of science. In Handbook of Research on Science Education, Volume II; Abell, S.K., Lederman, N.G., Eds.; Routledge: New York, NY, USA, 2014; pp. 600–620. [Google Scholar]
- Capps, D.K.; Crawford, B.A. Inquiry-Based Professional Development: What does it take to support teachers in learning about inquiry and nature of science? Int. J. Sci. Educ. 2013, 35, 1947–1978. [Google Scholar] [CrossRef]
- Loucks-Horsley, S.; Love, N.; Stiles, K.; Mundry, S.; Hewson, P.W. Designing Professional Development for Teachers of Science and Mathematics, 2nd ed.; Corwin Press: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Capps, D.K.; Crawford, B.A. Inquiry-Based Instruction and Teaching About Nature of Science: Are They Happening? J. Sci. Teach. Educ. 2013, 24, 497–526. [Google Scholar] [CrossRef]
- Glaze, A. Teaching and Learning Science in the 21st Century: Challenging Critical Assumptions in Post-Secondary Science. Educ. Sci. 2018, 8, 12. [Google Scholar] [CrossRef]
- Krell, M.; Reinisch, B.; Krüger, D. Analyzing students’ understanding of models and modeling referring to the disciplines biology, chemistry, and physics. Res. Sci. Educ. 2015, 45, 367–393. [Google Scholar] [CrossRef]
- McComas, W.F.; Olson, J.K. The nature of science in international science education standard documents. In The Nature of Science in Science Education: Rationales and Strategies; McComas, W.F., Ed.; Kluwer: Dordrecht, The Netherlands, 1998; pp. 41–52. [Google Scholar]
- Osborne, J.; Collins, S.; Ratcliffe, M.; Millar, R.; Duschl, R. What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. J. Res. Sci. Teach. 2003, 40, 692–720. [Google Scholar] [CrossRef]
- Lederman, N.G. Nature of Science: Past, Present, and Future. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 2007; pp. 831–880. [Google Scholar]
- McComas, W.F. Seeking historical examples to illustrate key aspects of the nature of science. Sci. Educ. 2008, 17, 249–263. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Lederman, N.G.; Lederman, J.S. An Instrument to Assess Views of Scientific Inquiry: The VOSI Questionnaire. In Proceedings of the Annual Meeting of the National Association for Research in Science Teaching, Baltimore, MD, USA, 30 March–2 April 2008. [Google Scholar]
- Niaz, M. Progressive transitions in chemistry teachers’ understanding of nature of science based on historical controversies. Sci. Educ. 2009, 18, 43–65. [Google Scholar] [CrossRef]
- Neumann, I.; Kremer, K. Nature of Science und epistemologische Überzeugungen: Ähnlichkeiten und Unterschiede [Nature of science and epistemological beliefs: Similarities and differences]. Z. Didaktik Naturwiss. 2013, 19, 209–232. [Google Scholar]
- Kampourakis, K. The “general aspects” conceptualization as a pragmatic and effective means to introducing students to nature of science. J. Res. Sci. Teach. 2016, 53, 667–682. [Google Scholar] [CrossRef]
- Kötter, M.; Hammann, M. Controversy as a Blind Spot in Teaching Nature of Science. Sci. Educ. 2017, 26, 451–482. [Google Scholar] [CrossRef]
- Abd-El-Khalick, F.; Waters, M.; Le, A.-P. Representations of nature of science in high school chemistry textbooks over the past four decades. J. Res. Sci. Teach. 2008, 45, 835–855. [Google Scholar] [CrossRef] [Green Version]
- Hofer, B.K.; Pintrich, P.R. The Development of Epistemological Theories: Beliefs about Knowledge and Knowing and Their Relation to Learning. Rev. Educ. Res. 1997, 67, 88–140. [Google Scholar] [CrossRef]
- Lederman, N.G.; Abd-El-Khalick, F.; Bell, R.L.; Schwartz, R.S. Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. J. Res. Sci. Teach. 2002, 39, 497–521. [Google Scholar] [CrossRef]
- Liang, L.L.; Chen, S.; Chen, X.; Kaya, O.N.; Adams, A.D.; Macklin, M.; Ebenezer, J. Preservice Teachers’ Views about Nature of Scientific Knowledge Development: An International Collaborative Study. Int. J. Sci. Math. Educ. 2009, 7, 987–1012. [Google Scholar] [CrossRef]
- Neumann, I.; Neumann, K.; Nehm, R.H. Evaluating Instrument Quality in Science Education: Rasch-Based Analyses of a Nature of Science Test. Int. J. Sci. Educ. 2011, 33, 1373–1405. [Google Scholar] [CrossRef]
- Irzik, G.; Nola, R. A Family Resemblance Approach to the Nature of Science for Science Education. Sci. Educ. 2011, 20, 591–607. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.R. Changing the Focus: From Nature of Science [NOS] to Features of Science [FOS]. In Advances in Nature of Science Research: Concepts and Methodologies; Khine, M.S., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 3–26. [Google Scholar] [CrossRef]
- Priemer, B. Deutschsprachige Verfahren der Erfassung von epistemologischen Überzeugungen [Test instruments for measuring epistemological beliefs in German-speaking countries]. Z. Didaktik Naturwiss. 2006, 12, 159–175. [Google Scholar]
- Van Dijk, E.M. Understanding the Heterogeneous Nature of Science: A Comprehensive Notion of PCK for Scientific Literacy. Sci. Educ. 2014, 98, 397–411. [Google Scholar] [CrossRef]
- Reinisch, B.; Krüger, D. Preservice Biology Teachers’ Conceptions about the Tentative Nature of Theories and Models in Biology. Res. Sci. Educ. 2018, 48, 71–103. [Google Scholar] [CrossRef]
- Shulman, L.S. Those who understand: Knowledge growth in teaching. Educ. Res. 1986, 15, 4–14. [Google Scholar] [CrossRef]
- Lee, E.; Luft, J.A. Experienced secondary science teachers’ representation of pedagogical content knowledge. Int. J. Sci. Educ. 2008, 30, 1343–1363. [Google Scholar] [CrossRef]
- Park, S.; Oliver, J.S. Revisiting the conceptualisation of pedagogical content knowledge [PCK]: PCK as a conceptual tool to understand teachers as professionals. Res. Sci. Educ. 2008, 38, 261–284. [Google Scholar] [CrossRef]
- Schmelzing, S.; van Driel, J.H.; Jüttner, M.; Brandenbusch, S.; Sandmann, A.; Neuhaus, B.J. Development, evaluation, and validation of a paper-and-pencil test for measuring two components of biology teachers’ pedagogical content knowledge concerning the “cardiovascular system”. Int. J. Sci. Math. Educ. 2013, 11, 1369–1390. [Google Scholar] [CrossRef]
- Bartos, S.A.; Lederman, N.G. Teachers’ knowledge structures for nature of science and scientific inquiry: Conceptions and classroom practice. J. Res. Sci. Teach. 2014, 51, 1150–1184. [Google Scholar] [CrossRef]
- Herman, B.C.; Clough, M.P.; Olson, J.K. Teachers’ Nature of Science Implementation Practices 2–5 Years after Having Completed an Intensive Science Education Program. Sci. Educ. 2013, 97, 271–309. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M.; Blum, W.; Brunner, M.; Voss, T.; Jordan, A.; Klusmann, U.; Krauss, S.; Neubrand, M.; Tsai, Y.-M. Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. Am. Educ. Res. J. 2010, 47, 133–180. [Google Scholar] [CrossRef]
- Großschedl, J.; Mahler, D.; Kleickmann, T.; Harms, U. Content-related knowledge of biology teachers from secondary schools: Structure and learning opportunities. Int. J. Sci. Educ. 2014, 36, 2335–2366. [Google Scholar] [CrossRef]
- Krauss, S.; Baumert, J.; Blum, W. Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: Validation of the COACTIV constructs. Int. J. Math. Educ. 2008, 40, 873–892. [Google Scholar] [CrossRef]
- Nehm, R.H.; Schonfeld, I.S. Does Increasing Biology Teacher Knowledge of Evolution and the Nature of Science Lead to Greater Preference for the Teaching of Evolution in Schools? J. Sci. Teach. Educ. 2007, 18, 699–723. [Google Scholar] [CrossRef] [Green Version]
- Dogan, N.; Abd-El-Khalick, F. Turkish grade 10 students’ and science teachers’ conceptions of nature of science: A national study. J. Res. Sci. Teach. 2008, 45, 1083–1112. [Google Scholar] [CrossRef]
- Duschl, R.A.; Grandy, R. Two Views about Explicitly Teaching Nature of Science. Sci. Educ. 2013, 22, 2109–2139. [Google Scholar] [CrossRef]
- Golabek, C.; Amrane-Cooper, L. Trainee Teachers’ Perceptions of the Nature of Science and Implications for Pre-service Teacher Training in England. Res. Second. Teach. Educ. 2011, 1, 9–13. [Google Scholar]
- Mesci, G.; Schwartz, R.S. Changing Preservice Science Teachers’ Views of Nature of Science: Why Some Conceptions May be More Easily Altered than Others. Res. Sci. Educ. 2017, 47, 329–351. [Google Scholar] [CrossRef]
- Krell, M.; Koska, J.; Penning, F.; Krüger, D. Fostering pre-service teachers’ views about nature of science: Evaluation of a new STEM curriculum. Res. Sci. Technol. Educ. 2015, 33, 344–365. [Google Scholar] [CrossRef]
- Windschitl, M. Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Sci. Educ. 2002, 87, 112–143. [Google Scholar] [CrossRef] [Green Version]
- Kunter, M.; Frenzel, A.; Nagy, G.; Baumert, J.; Pekrun, R. Teacher enthusiasm: Dimensionality and context specificity. Contemp. Educ. Psychol. 2011, 36, 289–301. [Google Scholar] [CrossRef]
- Großschedl, J.; Mahler, D.; Harms, U. Construction and evaluation of an instrument to measure content knowledge in biology. Unpublished Work. 2018. [Google Scholar]
- Kleickmann, T.; Großschedl, J.; Harms, U.; Heinze, A.; Herzog, S.; Hohenstein, F.; Köller, O.; Kröger, J.; Lindmeier, A.; Loch, C.; et al. Professionswissen angehender Lehrkräfte mit mathematisch-naturwissenschaftlichen Fächern—Testentwicklung im Rahmen des Projekts KiL [Professional knowledge of prospective science and mathematics teachers—Development of in instrument in the framework of the KiL project]. Unterrichtswiss 2014, 42, 280–288. [Google Scholar]
- Mayring, P. Qualitative Content Analysis. Forum Qual. Soc. Res. 2000, 1, 20. [Google Scholar] [CrossRef]
- Wu, M.L.; Adams, R.J.; Wilson, M.R.; Haldane, S.A. ACER ConQuest Version 2: Generalised Item Response Modelling Software [Software]; Australian Council for Educational Research: Camberwell, Australia, 2007. [Google Scholar]
- Bond, T.G.; Fox, C.M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences; Lawrence Erlbaum: Mahawa, NJ, USA, 2001. [Google Scholar]
- Smith, E.V. Metric development and score reporting in Rasch measurement. J. Appl. Meas. 2000, 1, 303–326. [Google Scholar] [PubMed]
- Bentler, P.M. Comparative fit indexes in structural models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Likelihood of a model and information criteria. J. Econom. 1981, 16, 3–14. [Google Scholar] [CrossRef]
- Wilson, M.; De Boeck, P.; Carstensen, C. Explanatory item response models: A brief introduction. In Assessment of Competencies in Educational Contexts: State of the Art and Future Prospects; Hartig, J., Klieme, E., Leutner, D., Eds.; Hogrefe & Huber: Göttingen, Germany, 2008; pp. 91–120. [Google Scholar]
- Marton, F.; Tsui, A.B.M. Classroom Discourse and the Space of Learning; Lawrence Erlbaum: Mahwah, NJ, USA, 2004. [Google Scholar]
- Neumann, K.; Härtig, H.; Harms, U.; Parchmann, I. Science teacher preparation in Germany. In Model Science Teacher Preparation Programs: An International Comparison of What Works Best; Pedersen, J., Isozaki, T., Hirano, T., Eds.; Information Age Publishing: Charlotte, NC, USA, 2017; pp. 29–52. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Warm, T.A. Weighted likelihood estimation of ability in item response theory. Psychometrika 1989, 54, 427–450. [Google Scholar] [CrossRef]
- Koller, I.; Alexandrowicz, R.; Hatzinger, R. Das Rasch-Modell in der Praxis. Eine Einführung mit eRm. [Practical Application of the Rasch-Model: An Introduction with eRm]; Facultas Verlags-und Buchhandels AG: Wien, Austria, 2012. [Google Scholar]
- Hartmann, S.; Upmeier zu Belzen, A.; Krüger, D.; Pant, H.A. Scientific Reasoning in Higher Education. Z. Psychol. 2015, 223, 47–53. [Google Scholar] [CrossRef]
- Wong, S.L.; Hodson, D. From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Sci. Educ. 2009, 93, 109–130. [Google Scholar] [CrossRef]
- Marniok, K.; Reiners, C.S. Representations of Nature of Science in German School Chemistry Textbooks. In Teaching and Learning in Science Series. Representations of Nature of Science in School Science Textbooks. A Global Perspective; McDonald, C.V., Abd-El-Khalick, F., Eds.; Taylor and Francis: London, UK, 2017; pp. 201–214. [Google Scholar] [CrossRef]
- Hodson, D. Learning Science, Learning about Science, Doing Science: Different goals demand different learning methods. Int. J. Sci. Educ. 2014, 36, 2534–2553. [Google Scholar] [CrossRef]
- Kunina-Habenicht, O.; Schulze-Stocker, F.; Kunter, M.; Baumert, J.; Leutner, D.; Förster, D.; Terhart, E. Die Bedeutung der Lerngelegenheiten im Lehramtsstudium und deren individuelle Nutzung für den Aufbau des bildungswissenschaftlichen Wissens [The significance of learning opportunities in teacher training courses and their individual use for the development of educational-scientific knowledge]. Z. Päd. 2013, 59, 1–23. [Google Scholar]
- Schmidt, W.H.; Cogan, L.; Houang, R. The Role of Opportunity to Learn in Teacher Preparation: An International Context. J. Teach. Educ. 2011, 62, 138–153. [Google Scholar] [CrossRef]
- Helmke, A. Unterrichtsqualität und Lehrerprofessionalität: Diagnose, Evaluation und Verbesserung des Unterrichts [Instructional Quality and Teacher Professionality: Diagnosis, Evaluation, and Enhancement of Instruction]; Klett-Kallmeyer: Seelze, Germany, 2009. [Google Scholar]
- McDonald, C.V. The influence of explicit nature of science and argumentation instruction on preservice primary teachers’ views of nature of science. J. Res. Sci. Teach. 2010, 47, 1137–1164. [Google Scholar] [CrossRef]
- Hodson, D. Re-thinking Old Ways: Towards A More Critical Approach to Practical Work In School Science. Stud. Sci. Educ. 1993, 22, 85–142. [Google Scholar] [CrossRef]
- Bell, R.L.; Blair, L.M.; Crawford, B.A.; Lederman, N.G. Just do it?: Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. J. Res. Sci. Teach. 2003, 40, 487–509. [Google Scholar] [CrossRef]
- Khishfe, R.; Abd-El-Khalick, F. Influence of Explicit and Reflective versus Implicit Inquiry-oriented Instruction on Sixth Graders’ Views of Nature of Science. J. Res. Sci. Teach. 2002, 39, 551–578. [Google Scholar] [CrossRef]
- Moss, D.M. Examining student conceptions of the nature of science. Int. J. Sci. Educ. 2001, 23, 771–790. [Google Scholar] [CrossRef]
- Bruckermann, T.; Arnold, J.; Kremer, K.; Schlüter, K. Forschendes Lernen in der Biologie [Inquiry-based learning in biology]. In Forschendes Lernen im Experimentalpraktikum Biologie: Eine praktische Anleitung für die Lehramtsausbildung [Inquiry-Based Learning in Laboratory Courses in Biology: A Practical Guide for Teacher Education], 1st ed.; Bruckermann, T., Schlüter, K., Eds.; Springer Spektrum: Berlin, Germany, 2017; pp. 11–26. [Google Scholar] [CrossRef]
Component | Model 1 | Model 2 | |
---|---|---|---|
Allocation to dimension | Understanding of NOS | A | A |
CK | A | B | |
Deviance | 27,514.86024 | 27,296.90412 | |
AIC | 27,820.8602 | 27,606.9041 | |
BIC | 28,348.2111 | 28,141.1484 |
Degree Programme | Learning Opportunities | ||
---|---|---|---|
total | Mdn | Min.; Max. | |
Bachelor | 386 | 14.0 | 0; 74 |
1.–3. semester | 242 | 7.5 | 0; 55 |
4.–6. semester | 144 | 6.5 | 0; 24 |
Master | 132 | 6.0 | 0; 23 |
NOS Aspect | Learning Opportunities | |
---|---|---|
Total | % | |
(1) scientific methods | 860 | 69.92 |
(2) tentativeness | 8 | 0.65 |
(3) observations and inferences | 23 | 1.87 |
(4) scientific theories and laws | 0 | 0 |
(5) subjectivity and objectivity | 1 | 0.08 |
(6) social and cultural embeddedness | 77 | 6.26 |
(7) creativity and imagination | 8 | 0.65 |
(8) nature of knowledge | 48 | 3.90 |
(9) nature of knowing | 205 | 16.67 |
Parameter | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
Semester | 0.19 ** (0.02) | 0.18 ** (0.02) | ||
Second science subject | 0.19 ** (0.07) | 0.17 * (0.08) | ||
Type of teacher education programme | 0.19 ** (0.08) | 0.13 * (0.07) | ||
R2 | 0.04 | 0.03 | 0.04 | 0.09 |
Parameter | Model 1 | Model 2 |
---|---|---|
Frequency of learning opportunities | 0.17 * (0.004) | 0.14 * (0.004) |
Second science subject | 0.15 * (0.08) | |
Type of teacher education programme | 0.13 * (0.07) | |
R2 | 0.03 | 0.08 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruckermann, T.; Ochsen, F.; Mahler, D. Learning Opportunities in Biology Teacher Education Contribute to Understanding of Nature of Science. Educ. Sci. 2018, 8, 103. https://doi.org/10.3390/educsci8030103
Bruckermann T, Ochsen F, Mahler D. Learning Opportunities in Biology Teacher Education Contribute to Understanding of Nature of Science. Education Sciences. 2018; 8(3):103. https://doi.org/10.3390/educsci8030103
Chicago/Turabian StyleBruckermann, Till, Fridtjof Ochsen, and Daniela Mahler. 2018. "Learning Opportunities in Biology Teacher Education Contribute to Understanding of Nature of Science" Education Sciences 8, no. 3: 103. https://doi.org/10.3390/educsci8030103
APA StyleBruckermann, T., Ochsen, F., & Mahler, D. (2018). Learning Opportunities in Biology Teacher Education Contribute to Understanding of Nature of Science. Education Sciences, 8(3), 103. https://doi.org/10.3390/educsci8030103