Probabilistic Language in Spanish Secondary Textbooks
Abstract
1. Introduction
- What different types of language are used in textbooks, and into what categories can they be classified?
- Are there differences in the language used by different publishers?
- Are there differences in language by grade?
2. Foundations
2.1. Probabilistic Language
2.2. Algebraization Levels in the Study of Probability
- Level 0. Arithmetic reasoning. The person operates with objects of the first degree of generality, such as particular numbers, and uses verbal, numerical, or iconic languages. The symbol equal is only used in its operational meaning to express the results of the operations.
- Level 1. Emerging algebraic reasoning. The properties of the operation and the concept of equivalence are used (relational meaning of the equal sign). Functions appear without general rules because variables only represent contextual information.
- Level 2. Intermediate algebraic reasoning. Symbolic representations intervene to represent general mathematical objects; equations of the form Ax + B = C are solved. Functions appear as general rules.
- Level 3. Consolidated algebraic reasoning. Symbols are used analytically without reference to contextual information. Operations with indeterminates or variables are performed; equations of the type Ax + B = Cx + D are solved.
- Level 4. Parameters. Parameters appear to specify families of functions or equations, although no operations with parameters are carried out.
- Level 5. Operations with Parameters. Analytical operations with variables and parameters are performed.
- Level 6. Algebraic structures reasoning. This level is characterized by functional algebra and algebraic structures, which appear at the highest level of generality.
2.3. Previous Research
3. Materials and Methods
3.1. Variables and Categories
3.1.1. Verbal Language
- Everyday words used with their typical meanings for students, such as chance, depend, and occur.
- Everyday words used with a different meaning: The word facility in this context refers not to lack of difficulty but to something occurring more frequently.
- Basic mathematical terms, such as higher, smaller, and measured.
- Basic probabilistic terms, such as probability and random events.
3.1.2. Symbolic Language
3.1.3. Tabular Language
- Data tables involve the first organization of a dataset and contain the values of one or several variables (Lahanier-Reuter, 2003). Pallauta et al. (2023) assigned an algebraic reasoning level L1 (Godino et al., 2014, 2015) to the work with these tables because the idea of a variable and its values is used but not that of distribution. An example is presented in Figure 2a, which represents the average lottery expenditure per person for different Spanish countries.
- Frequency tables represent the distribution of a variable; Pallauta et al. (2023) assigned to them an algebraic reasoning level L3 (Godino et al., 2014, 2015) because they involve the ideas of frequency and distribution, in addition to the variable and values. An example is presented in Figure 2b, which represents the distribution of the absolute and relative frequencies of the results when a coin is tossed 1000 times.
- Two-way tables. They jointly represent two variables whose modalities are displayed in rows and columns. The body of the table is formed by frequencies or values that correspond to the modalities of the rows and columns. They were assigned algebraic reasoning level L4 (Pallauta et al., 2023) because different distributions joint, marginal by rows, and marginal by columns appear. In addition, we can obtain different conditional distributions by row or column in which the variable that conditions the distribution plays the role of parameter. We found two different uses for this type of table in the textbooks. In the first one (Figure 3A), they are used to list all elementary events of a compound experiment, and in the second one, they are used to classify the data of a compound random experiment (Figure 3B).
3.1.4. Graphical and Pictorial Language
- Bar graphs. These are graphic representations in which either the values of the variable or the frequencies of these values are represented by bars of the same width, whose length is proportional to the value or frequency represented. An example is presented in Figure 4a.
- Pie charts. These graphs use a circle divided into circular sectors, each of which is proportional to the relative frequency of a modality of the variable represented.
- Line graphs. In this graphical representation, a Cartesian system is used in which the values of a variable are represented on the X-axis and its frequencies on the Y-axis, using a polygonal line to join the points obtained in this way. We identified some examples to represent the convergence of the relative frequency of an event as the number of experiments increases toward the theoretical probability.
- Cartograms. Colored maps in which quantities or colors appear on different geographical areas according to the frequency of the value or modality of a variable represented. An example is presented in Figure 4b.
- Tree diagrams. In these graphs, starting from a first vertex or trunk, different paths or branches are born representing all possibilities and branch out if necessary. Its use in the study of probability was promoted by Fischbein (1975), who indicated that it allows the representation of the mathematical structure of many probability problems and is therefore a productive resource for their resolution. We found two different uses in the textbooks: First, the tree diagram is employed as an aid to the enumeration of all the elements of the sample space in a compound experiment, as shown in Figure 5a. Second, a different application of the tree-diagram is shown in Figure 5b, where the diagram displays the steps in solving compound probability problems, including representations of the events involved in the problem.
- Venn diagrams. These diagrams represent all elements of a set in circles and are used in the text to visualize set operations. The events of the sample space are represented by inner circles and are useful for visualizing the operations of union, intersection, and complement, as well as the opposite to a given event. An example is presented in Figure 6a.
- Probability scale. In this scale, the probability of an event is represented within an interval between zero, which corresponds to an impossible event, and one, which is assigned to a certain event. It is used so that the student qualitatively assigns probabilities to the events of an experiment by placing them physically on the scale. Sometimes, as in Figure 6b, graduation marks and some values are added (in the example, the values 0, 0.5, and 1 have been added).
- Schematic representation of random devices. The textbooks include representations of random devices, such as coins, urns with balls, roulette wheels, dice, and channels (Figure 7). Their function is usually to increase students’ interest in the proposed activity.
- Other images and photographs. We found some images or photographs that serve to visually support problem situations or the theoretical exposition of the content.
4. Results
4.1. Verbal Language
4.2. Symbolic Language
.
P [A and B] = P[A]. P[B in the la 2nd/A in the 1st] = P[A]. P[B/A].
If is contrary to S, then .
) = 1 − P(S).
4.3. Tabular Language
4.4. Graphical and Pictorial Language
5. Discussion
5.1. Types and Categories of Language
5.2. Difference Between Editorials
5.3. Progression by Grade
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Apostar (Gamble), Bola (Ball), Girar (Spin), Posibilidades (Possibilities), Realización (Realization), Sacar (Draw). | 1 | 6 |
Aleatorio (Random), Aparato (Apparatus), Arrojar (Throw), As (Ace), Azar (Chance), Baraja (Deck), Bastos (Clubs), Bolsa (Bag), Bombo (Lottery drum), Cartas (Cards), Chincheta (Thumbtack), Dado (Dice), Defectuoso (Defective), Depender (Depend), Dominó (Dominoes), Embudo (Funnel, Echar (Launch), Extraer (Extract), Ganar (Win), Juego (Game), Juego de azar (Game of chance), Lanzar (Throw), Moneda (Coin), Naipes (Cards), Observar (Observe), Obtener (Obtain), Ocurrir (Occur), Posiciones (Positions), Prueba (Proof), Puntuaciones (Scores), Recipiente (Container), Resultado (Result), Rey (King) Ruleta (Roulette), Suerte (Luck), Tirar (Cast). | 2 | 36 |
Algún (Some), Averiguar (Find out), Coger (Pick), Conseguir (Get), Distintas (Different), Efectuar (Perform), Escoger (Select), Devolver (Return), Individuales (Individuals), Influir (Influence), Lotería (Lottery), Ningún (None), Partidas (Games), Posibilidades (Possibilities), Predecir (Predict), Puntuación (Score), Repartir (Distribute), Salir (Come out), Tocar (Win). | 3 | 19 |
Acontecimientos (Events), Analizar (Analyze), Esquema (Scheme), Experimentación (Experimentation). Observación (Observation), Opciones (Options), Prever (Foresee), Posible (Possible), Previsible (Foreseeable), Provocar (Provoke), Ramificación (Branching), Razonamiento (Reasoning), Simplificar (Simplify), Urna (Urn). | 4A | 14 |
Acontecimientos (Events), Analizar (Analyze), Esquema (Scheme), Experimentación (Experimentation). Observación (Observation), Opción (Option), Posible (Possible), Provoca (Provoke), Ramificación (Branching), Razonamiento (Reasoning), Simplificar (Simplify), Urna (Urn). | 4B | 12 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Asignar (Asign), Astrálago (Astralagus), Caso (Case), Cara (Head), Comprendido (Included), Cruz (Tail), Designar (Design), Equitativo (Fair), Experimento (Experiment), Favorable (Favourable), Figura (Figure), Grado de confianza (Degree of confidence), Imposible (Impossible), Probable (Probable), Regular (Regular), Reparto (Distribution), Imperfecto (Imperfect), Irregular (Irregular), Suceso (Event), Seguro (Certain), Taba (Knucklebone), Volver (Turn over). | 2 | 22 |
Condición (Condition), Conjunto (Set), Correcto (Correct), Distribuir (Distribute), Desequilibrada (Unbalanced), Elementales (Elemental), Genes (Genes), Incorrecto (Incorrect), Pertenecer (Belong), Relaciones (Relationships). | 3 | 10 |
Composición (Composition), Conjetura (Conjecture), Dependencia (Dependence), Independencia (Independence), Operaciones (Operations), Precisión (Accuracy), Vacío (Empty), Ventaja (Advantage). | 4A | 8 |
Composición (Composition), Conjetura (Conjecture), Dependiente (Dependent), Independiente (Independent), Operación (Operation), Precisión (Accuracy), Vacío (Empty). | 4B | 7 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Aproximadamente (Approximately), Frecuencia (Frequency), Impar (Odd), Mayor (Greater), Menor (Smaller), Mitad (Half), Número (Number), Par (Even), Problema (Problem), Tabla (Table), Término Medio (Mid term). | 2 | 11 |
Colectivo (Collective), Cuantitativamente (Quantitatively), Cualitativamente (Qualitatively), Diferencia (Difference), Encuestar (Survey), Frecuencia relativa (Relative frequency), Igual (Equal), Medir (Measure), Múltiplo (Multiple), Producto (Product), Proporción (Proportion). | 3 | 11 |
Contar (Count), Dodecaedro (Dodecahedron), Frecuente (Frequent), Idéntico (Identical), Intersección (Intersection), Numerado (Numbered), Número primo (Prime number), Subconjunto (Subset), Suma (Sum), Soluciones (Solutions). | 4A | 10 |
Conteo (Count), Dodecaedro (Dodecahedron), Idéntico (Identical), Intersección (Intersection), Numerada (Numbered), Número primo (Prime number), Suma (Sum), Soluciones (Solutions). | 4B | 8 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Estimar (Estimate) | 1 | 1 |
Cálculo de probabilidades (Probability calculus), Diagrama en árbol (Tree-diagram), Espacio muestral (Sample space), Experiencia aleatoria (Random experience), Experiencia regular (Regular experience), Experimentos aleatorios (Random experiments), Instrumento regular (Regular instrument), Ley de Laplace (Laplace’s law), Probabilidad (Probability), Simular (Simulate), Suceso aleatorio (Random event), Sucesos individuales (Individual event), Tabla de contingencia (Contingency table), Teoría de las probabilidades (Probability theory). | 2 | 14 |
A priori (A priori), Experiencia compuesta (Compound experience), Experiencia irregular (Irregular experience), Ley de los grandes números (Law of large numbers), Suceso elemental (Elementary event), Tabla de doble entrada (Two-way table). | 3 | 6 |
Cálculo combinatorio (Combinatorial calculus), Composición de experiencias (Composition of experiences), Experiencias compuestas dependientes (Dependent compound experiences), Experiencias compuestas independientes (Independent compound experiences), Experiencias dependientes (Dependent experiences), Experiencias independientes (Independent experiences), Ley fundamental del azar (Fundamental law of chance), Probabilidad condicionada (Conditional probability), Regla del producto (Product rule), Situaciones probabilísticas (Probabilistic situations), Sucesos dependientes (Dependent events), Sucesos incompatibles (Incompatible events), Sucesos independientes (Independent events), Suceso universal (Universal event). | 4A | 14 |
Composición de experiencias (Composition of experiences), Experiencias dependientes (Dependent experiences), Experiencias independientes (Independent experiences), Probabilidad condicionada (Conditional probability), Situaciones probabilísticas (Probabilistic situations), Sucesos dependientes (Dependent events), Sucesos incompatibles (Incompatible events), Sucesos independientes (Independent events), Suceso universal (Universal event). | 4B | 9 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Acertar (Hit), Adivinar (Guess), Aleatorio (Random), As (Ace), Asegurar (Secure), Azar (Chance), Baraja (Deck), Bola (Ball), Bolsa (Bag), Bombo (Lottery drum), Caer (Fall), Carta (Card), Coger (Pick), Dado (Dice), Determinar (Determine), Elegir (Select), Escoger (Choose), Estrategia (Strategy), Extraer (Extract), Ficha (Card), Ganar (Win), Juego (Game), Lanzar (Throw), Lotería (Lottery), Moneda (Coin), Observar (Observe), Obtener (Obtain), Ocurrir (Happen), Parchís (Parcheesi), Predecir (Predict), Premio (Prize), Posibilidad (Possibility), Posible (Possible), Resultado (Result), Repetir (Repeat), Sacar (Draw), Tarjetas (Cards), Tocar (Win), Tirar (Cast), Urna (Urn). | 1 | 40 |
Averiguar (Find out), Bingo (Bingo), Chincheta (Thumbtack), Devolver (Return), Dominó (Dominoes), Pronosticar (Forecast), Puntuaciones (Scores), Rifa (Raffle), Ruleta (Roulette), Salir (Come out), Sorteo (Raffle), Tómbola (Tombola). | 2 | 12 |
Apuesta (Bet), Clasificar (Classify), Decidir (Decide), Oportunidad (Opportunity), Secuencia (Sequence), Suerte (Luck). | 3 | 6 |
Factibilidad (Feasibility), Reemplazar (Replace). | 4AB | 2 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Cara (Head), Casos (Cases), Casos posibles (Possible cases), Comprendido (Included), Copas (Cups), Datos (Data), Experimento (Experiment), Favorable (Favourable), Figura (Figure), Serie (Series), Suceso (Event), Oro (Gold), Ordenar (Order), Probable (Probable), Trucado (Tricked). | 1 | 15 |
Cruz (Cross), Palo (Card suit). | 2 | 2 |
Basto (Clubs), Ramas (Branches). | 3 | 2 |
Asociar (Associate), Equilibrada (Fair), Propiedades (Properties), Unión (Union), Vacío (Empty), Valor (Value). | 4AB | 6 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Calcular (Compute), Cifras (Figures), Cociente (Quotient), Frecuencia relativa (Relative frequency), Igualdad (Equality), Mayor (Greater), Menor (Smaller), Múltiplo (Multiple), Número (Number), Par (Even), Impar (Odd), Negativo (Negative), Número primo (Prime number), Porcentaje (Percentage), Subconjunto (Subset), Tabla (Table), Total (Total). | 1 | 17 |
Divisor (Divider), Frecuencia (Frequency), Producto (Product), Resta (Difference), Suma (Sum). | 2 | 5 |
Conjunto (Set), Contar (Count), Factorial (Factorial), Gráfico (Graph), Medir (Measure), Número consecutive (Consecutive number), Divisible (Divisible), Número Natural (Natural number), Paralelogramo (Parallelogram), Permutación (Permutation), Producto (Product), Punto medio (Mid point). | 3 | 12 |
Aproximar (Approach), Intersección (Intersection), Multiplicar (Multiply), Positivo (Positive), Resto (Remainder), Rectángulo (Rectangle), Triángulo (Triangle), Vértices (Vertices). | 4AB | 8 |
Spanish Words and Translations | Grade | Number of Words |
---|---|---|
Determinista (Determinist), Equiprobable (Equiprobable), Espacio muestral (Sample space), Experimento aleatorio (Random experiment), Experimento determinista (Deterministic experiment), Suceso aleatorio (Random event), Suceso determinista (Deterministic event), Suceso elemental (Elemental event), Regla de Laplace (Laplace’s rule), Resultados favorables (Favourable results), Resultados posibles (Possible results), Probabilidad (Probability). | 1 | 12 |
Experimento regular (Regular experiment), Suceso compuesto (Compound event), Suceso equiprobable (Equiprobable event), Suceso imposible (Impossible event), Suceso Seguro (Certain event). | 2 | 5 |
Diagrama de árbol (Tree-diagram), Grado de posibilidad (Degree of possibility), Probabilísticamente (Probabilistically), Suceso contrario (Contrary event), Suceso total (Total event), Suceso Seguro (Certain event), Suceso complementario (Complementary event). | 3 | 7 |
Experimento compuesto (Compound experiment), Ley de los grandes números (Law of large numbers), Probabilidad condicionada (Conditional probability), Regla del producto (Product rule), Suceso compatible (Compatible event), Suceso dependiente (Dependent event), Suceso independiente (Independent event), Suceso incompatible (Incompatible event). | 4AB | 8 |
References
- Abedi, J., & Lord, C. (2001). The language factor in mathematics tests. Applied Measurement in Education, 14(3), 219–234. [Google Scholar] [CrossRef]
- Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 786–795. [Google Scholar]
- Alejo, S., Almodóvar, J. A., Lavado, C., Marín, S., Pérez, L., Pérez, C., Rodríguez, F., & Sánchez, D. (2023a). Matemáticas, 2 ESO. Santillana. [Google Scholar]
- Alejo, S., Almodóvar, J. A., Pérez, M., Lavado, C., Marín, S., Pérez, L., Pérez, C., Rodríguez, F., & Sánchez, D. (2023b). Matemáticas, 3 ESO. Santillana. [Google Scholar]
- Alejo, S., Almodóvar, J. A., Pérez, M., Lavado, C., Marín, S., Pérez, L., Pérez, C., Rodríguez, F., & Sánchez, D. (2023c). Matemáticas, 4 ESO. Santillana. [Google Scholar]
- Almécija, M. E., Barbero, A., Bascuñana, J., Bascuñana, M. I., Gámez, J., Gaztelu, A., Gonfaus, Q., Marín, S., Moyano, M. M., Pérez, C., Ribera, J., Rodríguez, F., Sánchez, D., & Vázquez, J. M. (2022). Matemáticas, 1 ESO. Santillana. [Google Scholar]
- Barbero, A., Bascuñana, J., Bascuñana, M. I., Gámez, J., Gaztelu, A., Gonfaus, Q., Marín, S., Pérez, C., Ribera, J., Rodríguez, F., Sánchez, D., & Vázquez, J. M. (2023). Matemáticas, 4 ESO. Opción B. Santillana. [Google Scholar]
- Batanero, C., & Borovcnik, M. (2016). Statistics and probability in high school. Sense Publishers. [Google Scholar]
- Burgos, M., Batanero, C., & Godino, J. D. (2021). Algebraization levels in the study of probability. Mathematics, 10(1), 91. [Google Scholar] [CrossRef]
- Colera, J., Gaztelu, I., & Colera, R. (2023a). Matemáticas, 1 ESO. Anaya. [Google Scholar]
- Colera, J., Gaztelu, I., & Colera, R. (2023b). Matemáticas, 2 ESO. Anaya. [Google Scholar]
- Colera, J., Oliveira, M. J., Gaztelu, I., Colera, R., & Aicardo, A. (2023c). Matemáticas, 3 ESO. Anaya. [Google Scholar]
- Colera, J., Oliveira, M. J., Gaztelu, I., Colera, R., & Aicardo, A. (2023d). Matemáticas A, 4 ESO. Anaya. [Google Scholar]
- Colera, J., Oliveira, M. J., Gaztelu, I., Colera, R., Garcia, R., & Aicardo, A. (2023e). Matemáticas B, 4 ESO. Anaya. [Google Scholar]
- De Cruz, H., & De Smedt, J. (2013). Mathematical symbols as epistemic actions. Synthese, 190, 3–19. [Google Scholar] [CrossRef]
- Distéfano, M. L., Aznar, M. A., & Pochulu, M. D. (2019). Caracterización de procesos de significación de símbolos matemáticos en estudiantes universitarios. Educación Matemática, 31(1), 144–175. [Google Scholar] [CrossRef]
- Díaz-Levicoy, D., Ferrada, C., Salgado-Orellana, N., & Vásquez, C. (2019). Análisis de las actividades evaluativas sobre estadística y probabilidad en libros de texto chilenos de Educación Primaria. Premisa, 21(80), 5–21. [Google Scholar]
- Drisko, J. W., & Maschi, T. (2016). Content analysis. Oxford University Press. [Google Scholar]
- Dunn, P. K., Carey, M. D., Richardson, A. M., & McDonald, C. (2016). Learning the language of statistics: Challenges and teaching approaches. Statistics Education Research Journal, 15(1), 8–27. [Google Scholar] [CrossRef]
- Eichler, A., Böcherer-Linder, K., & Vogel, M. (2020). Different visualizations cause different strategies when dealing with Bayesian situations. Frontiers in Psychology, 11, 1897. [Google Scholar] [CrossRef]
- Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: Development status and directions. ZDM Mathematics Education, 45, 633–646. [Google Scholar] [CrossRef]
- Fischbein, E. (1975). The intuitive source of probability thinking in children. Reidel. [Google Scholar]
- Gal, I. (2005). Towards “probability literacy” for all citizens: Building blocks and instructional dilemmas. In G. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 39–63). Springer. [Google Scholar] [CrossRef]
- Gea, M. M. (2014). La correlación y regresión en bachillerato: Análisis de libros de texto y del conocimiento de los futuros profesores [Doctoral dissertation, Universidad de Granada]. [Google Scholar]
- Gea, M. M., Pallauta, J. D., Batanero, C., & Valenzuela-Ruiz, S. M. (2022). Statistical tables in Spanish primary school textbooks. Mathematics, 10, 2809. [Google Scholar] [CrossRef]
- Godino, J. D. (2024). Ontosemiotic approach in mathematics education. Foundations, tools, and applications. DIGIBUG. Author Edition. [Google Scholar]
- Godino, J. D., Aké, L. P., Gonzato, M., & Wilhelmi, M. R. (2014). Niveles de algebrización de la actividad matemática escolar. Implicaciones para la formación de maestros. Enseñanza de las Ciencias, 32(1), 199–219. [Google Scholar] [CrossRef]
- Godino, J. D., Neto, T., Wilhelmi, M. R., Aké, L., Etchegaray, S., & Lasa, A. (2015). Algebraic reasoning levels in primary and secondary education. In K. Krainer, & N. Vondrová (Eds.), Proceedings of the ninth congress of the European society for research in mathematics education (pp. 426–432). Charles University in Prague. ERME. [Google Scholar]
- Gómez-Torres, E., Ortiz, J. J., Batanero, C., & Contreras, J. M. (2013). El lenguaje de probabilidad en los libros de texto de Educación Primaria. UNIÓN, 9(35). Available online: https://www.revistaunion.org.fespm.es/index.php/UNION/article/view/774 (accessed on 1 July 2025).
- Green, D. R. (1983). A survey of probability concepts in 3000 pupils aged 11–16 years. In D. Grey, P. Holmes, V. Barnett, & G. Constable (Eds.), Proceedings of the first international conference on teaching statistics (pp. 766–783). Teaching Statistics Trust. [Google Scholar]
- Groth, R. E., Bergner, J. A., & Austin, J. W. (2020). Dimensions of learning probability vocabulary. Journal for Research in Mathematics Education, 51(1), 75–104. [Google Scholar] [CrossRef]
- Han, S. Y., Rosli, R., Capraro, R. M., & Capraro, M. M. (2011). The textbook analysis on probability: The case of Korea, Malaysia and US textbooks. Research in Mathematical Education, 15(2), 127–140. [Google Scholar] [CrossRef]
- Herbel, B. A. (2007). From intended curriculum to written curriculum: Examining the voice of a mathematics textbook. Journal for Research in Mathematics Education, 38(4), 344–369. [Google Scholar] [CrossRef]
- Hiebert, J. (1998). A theory of developing competence with written mathematical symbols. Educational Studies in Mathematics 19, 333–355. [Google Scholar] [CrossRef]
- Hokor, E. K. (2023). Probabilistic thinking for life: The decision-making ability of professionals in uncertain situations. International Journal of Studies in Education and Science, 4(1), 31–54. [Google Scholar] [CrossRef]
- Huerta, M. P. (2009). On conditional probability problem solving research—Structures and context. International Electronic Journal of Mathematics Education, 4(3), 163–194. [Google Scholar] [CrossRef]
- Jones, D. L., & Tarr, J. E. (2007). An examination of the levels of cognitive demand required by probability tasks in middle grades mathematics textbooks. Statistics Education Research Journal, 6(2), 4–27. [Google Scholar] [CrossRef]
- Jones, G. A., Langrall, C. W., & Mooney, E. S. (2007). Research in probability: Responding to classroom realities. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 909–955). NCTM & IAP. [Google Scholar]
- Lahanier-Reuter, D. (2003). Différents types de tableaux dans l’enseignement des statistiques. Spirale-Revue de Recherches en Éducation, 32(32), 143–154. [Google Scholar] [CrossRef]
- Lin, X., Peng, P., & Zeng, J. (2021). Understanding the relation between mathematics vocabulary and mathematics performance: A meta-analysis. The Elementary School Journal, 121(3), 504–540. [Google Scholar] [CrossRef]
- Lonjedo, M., Huerta, P., & Fariña, C. (2012). Conditional probability problems in textbooks an example from Spain. Revista Latinoamericana de Investigación en Matemática Educativa, 15(3), 319–337. [Google Scholar]
- Ministerio de Educación y Formación Profesional (MEFP). (2022). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. MEFP. [Google Scholar]
- Morgan, C., Craig, T., Schuette, M., & Wagner, D. (2014). Language and communication in mathematics education: An overview of research in the field. ZDM Mathematics Education, 46, 843–853. [Google Scholar] [CrossRef]
- Nacarato, A. M., & Grando, R. C. (2014). The role of language in building probabilistic thinking. Statistics Education Research Journal, 13(2), 93–103. [Google Scholar] [CrossRef]
- Ortiz, J. J. (2002). La probabilidad en los libros de texto. Grupo de Investigación en Educación Estadística, Unversidad de Granada. [Google Scholar]
- Ortiz, J. J., Cañizares, M. J., Batanero, C., & Serrano, L. (2002, July 7–12). An experimental study of probabilistic language in secondary school textbooks. The Sixth International Conference on Teaching Statistics, Cape Town, South Africa. Available online: https://www.stat.auckland.ac.nz/~iase/publications/1/10_25_ca.pdf (accessed on 1 January 2025).
- Pallauta, J., Gea, M., Batanero, C., & Arteaga, P. (2023). Algebraization levels of activities linked to statistical tables in Spanish secondary textbooks. In G. Burrill, L. de Oliveria, & E. Reston (Eds.), Research on reasoning with data and statistical thinking: International perspectives (pp. 17–340). Springer. [Google Scholar] [CrossRef]
- Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. Routlege. [Google Scholar]
- Post, M., & Prediger, S. (2022). Teaching practices for unfolding information and connecting multiple representations: The case of conditional probability information. Mathematics Education Research Journal, 36, 97–129. [Google Scholar] [CrossRef]
- Rezat, S., Fan, L., & Pepin, B. (2021). Mathematics textbooks and curriculum resources as instruments for change. ZDM Mathematics Education, 53, 1189–1206. [Google Scholar] [CrossRef]
- Rothery, A. (1980). Children reading mathematics. Worcester College of Higher Education. [Google Scholar]
- Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & Writing Quarterly, 23(2), 139–159. [Google Scholar] [CrossRef]
- Schubring, G., & Fan, L. (2018). Recent advances in mathematics textbook research and development: An overview. ZDM Mathematics Education, 50(5), 765–771. [Google Scholar] [CrossRef]
- Sharma, S. (2015). Teaching probability: A socio-constructivist perspective. Teaching Statistics, 37(3), 78–84. [Google Scholar] [CrossRef]
- Skemp, R. R. (2012). The psychology of learning mathematics. Routledge. [Google Scholar]
- Sriraman, B., & Chernoff, E. J. (2020). Probabilistic and statistical thinking. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 675–681). Springer. [Google Scholar]
- Thatte, M., Makar, K., & Nimkar, N. (2024). How children with different dialects navigated uncertain language in a statistics investigation. Statistics Education Research Journal, 23(2), 8. [Google Scholar] [CrossRef]
- Tizón-Escamilla, N., & Burgos, M. (2023). Creation of problems by prospective teachers to develop proportional and algebraic reasonings in a probabilistic context. Education Sciences, 13(12), 1186. [Google Scholar] [CrossRef]
- Usiskin, Z. (2013). Studying textbooks in an information age—A United States perspective. ZDM Mathematics Education, 45, 713–723. [Google Scholar] [CrossRef]
- Van Den Ham, A. K., & Heinze, A. (2018). Does the textbook matter? Longitudinal effects of textbook choice on primary school students’ achievement in mathematics. Studies in Educational Evaluation, 59, 133–140. [Google Scholar] [CrossRef]
- Van Dooren, W. (2014). Probabilistic thinking: Analyses from a psychological perspective. In E. Chernoff, & B. Sriraman (Eds.), Probabilistic thinking. Presenting multiple perspectives (pp. 123–126). Springer. [Google Scholar] [CrossRef]
- Vásquez, C., & Alsina, A. (2015). Un modelo para el análisis de objetos matemáticos en libros de texto chilenos: Situaciones problemáticas, lenguaje y conceptos sobre probabilidad. Profesorado, 19(2), 441–462. Available online: http://hdl.handle.net/10481/37386 (accessed on 2 July 2025).
- Vygotsky, L. S. (2012). Thought and language. MIT Press. [Google Scholar]
Grades 1–3 (p. 149) | Grade 4A and 4B (p. 153; p. 157) |
---|---|
Deterministic and Random Phenomena: Identification. Simple Experiments Assigning Probabilities through Experimentation: The Concepts of Relative Frequency and Laplace’s Rule | Compound Experiments: Planning, Execution, and Analysis of Associated Uncertainty Probability: Calculations Using Laplace’s Rule and Counting Techniques in Simple and Compound Experiments (e.g., Tree Diagrams and Tables). Applications for Making Sound Decisions. |
Editorial Anaya | Editorial Santillana | ||||||||
---|---|---|---|---|---|---|---|---|---|
Type of Word | 1st | 2nd | 3rd | 4thA | 4thB | 1st | 2nd | 3rd | 4thAB |
Everyday language used with the same meaning | 6 | 36 | 19 | 14 | 12 | 40 | 12 | 6 | 2 |
Everyday language used with different meaning or not well known | 22 | 10 | 8 | 7 | 15 | 2 | 2 | 6 | |
Specific to mathematics | 11 | 11 | 10 | 8 | 17 | 5 | 12 | 8 | |
Specific to probability | 1 | 14 | 6 | 14 | 9 | 12 | 5 | 7 | 8 |
Concept Represented | Symbol Used | Editorial Anaya | Editorial Santillana | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4thA | 4thB | 1st | 2nd | 3rd | 4thA | 4thB | ||
Integer numbers | 1, 2, 3,… | x | x | x | x | x | x | x | x | x | x |
Arithmetic operations | + − × / () | x | x | x | x | x | x | x | x | x | |
Number Pi | x | ||||||||||
Fractions and decimals | Fraction and decimal symbols | x | x | x | x | x | x | x | x | x | |
Percentage | 10%, 30% | x | x | x | x | x | x | x | x | ||
Coin outcomes | C, + | x | x | x | x | ||||||
Absolute frequency | x | x | x | x | x | x | x | ||||
Relative frequency | fr | x | x | x | x | x | x | x | |||
Implication | x | x | x | x | x | x | x | x | x | ||
Aproximately | ≈ | x | x | x | x | ||||||
Order and equivalence | >, <, ≠, = | x | x | x | x | x | x | x | x | x | |
Sample space | E, {} | x | x | x | x | x | x | x | x | x | |
Event | S, A, B | x | x | x | x | x | x | x | x | x | |
Contrary event | x | x | x | x | x | ||||||
Event 1, Event 2, … | S1, S2, … | x | |||||||||
Impossible event | ; P[∅] = 0 | x | x | x | x | x | |||||
Events operations | x | x | x | ||||||||
{2, 4, 6} = {2}{4}{6} | x | ||||||||||
Probability | P(S), , P(accident) | x | x | x | x | ||||||
P(A), P [+] P[defective] | x | x | x | x | x | ||||||
Conditional probability | P[B/A] | x | x | x | x |
Tabular Representations | Editorial Anaya | Editorial Santillana | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Grades | 1st | 2nd | 3rd | 4thA | 4thB | 1st | 2nd | 3rd | 4thA | 4thB | |
Data table | 3 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | |||
Frequency table | 3 | 3 | 1 | 2 | 3 | 3 | |||||
Two-way table | Sample space in compound experiments | 7 | 3 | 3 | |||||||
Results in compound experiments | 10 | 3 | 7 | 9 | 1 | 1 | 7 | 7 |
Graphical Representations | Editorial Anaya | Editorial Santillana | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4thA | 4thB | 1st | 2nd | 3rd | 4thA | 4thB | ||
Bar graphs | 2 | 2 | 1 | 2 | 2 | ||||||
Pie chargs | 4 | ||||||||||
Line graphs | 1 | ||||||||||
Cartogram | 1 | ||||||||||
Pictorical Representations | |||||||||||
Diagrama en árbol | Composition of sample space | 4 | 2 | 2 | |||||||
Tool to compute probabilities | 5 | 5 | 2 | 1 | 1 | 1 | |||||
Diagramas de Venn | 1 | 4 | 4 | ||||||||
Escala de probabilidad | 1 | 1 | |||||||||
Random devices pictures | 55 | 34 | 27 | 26 | 12 | 10 | 7 | 6 | 6 | ||
Other pictures | 3 | 12 | 3 | 4 | 16 | 5 | 5 | 8 | 14 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batanero, C.; Elgueda-Ibarra, M.; Gea, M.M. Probabilistic Language in Spanish Secondary Textbooks. Educ. Sci. 2025, 15, 979. https://doi.org/10.3390/educsci15080979
Batanero C, Elgueda-Ibarra M, Gea MM. Probabilistic Language in Spanish Secondary Textbooks. Education Sciences. 2025; 15(8):979. https://doi.org/10.3390/educsci15080979
Chicago/Turabian StyleBatanero, Carmen, Macarena Elgueda-Ibarra, and María M. Gea. 2025. "Probabilistic Language in Spanish Secondary Textbooks" Education Sciences 15, no. 8: 979. https://doi.org/10.3390/educsci15080979
APA StyleBatanero, C., Elgueda-Ibarra, M., & Gea, M. M. (2025). Probabilistic Language in Spanish Secondary Textbooks. Education Sciences, 15(8), 979. https://doi.org/10.3390/educsci15080979