Augmented Reality 3D Multibase Blocks at the Future Classroom Lab Through Active Methodology: Analyzing Pre-Service Teachers’ Disposition in Mathematics Course
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Course Context
2.3. Pedagogical Intervention
2.4. Instrument
2.5. Data Statistical Analysis
3. Results
3.1. Quantitative Results
3.2. Qualitative Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented reality |
FCL | Future classroom lab |
PST | Pre-service teacher |
References
- Akbari, O., & Sahibzada, J. (2020). Students’ self-confidence and its impacts on their learning process. American International Journal of Social Science Research, 5(1), 1–15. [Google Scholar] [CrossRef]
- Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11. [Google Scholar] [CrossRef]
- Alamäki, A., Dirin, A., & Suomala, J. (2021). Students’ expectations and social media sharing in adopting augmented reality. The International Journal of Information and Learning Technology, 38(2), 196–208. [Google Scholar] [CrossRef]
- Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied Sciences, 10(16), 5660. [Google Scholar] [CrossRef]
- Andreasen, J. K., Tømte, C. E., Bergan, I., & Kovac, V. B. (2022). Professional digital competence in initial teacher education: An examination of differences in two cohorts of pre-service teachers. Nordic Journal of Digital Literacy, 17(1), 61–74. [Google Scholar] [CrossRef]
- Auzmendi-Escribano, E. (1992). Las actitudes hacia la matemática-estadística en las enseñanzas media y universitaria [Attitudes towards mathematics-statistics in secondary and university education]. Ediciones mensajero. [Google Scholar]
- Baek, S. G., & Choi, H. J. (2002). The relationship between students’ perceptions of classroom environment and their academic achievement in Korea. Asia Pacific Education Review, 3(1), 125–135. [Google Scholar] [CrossRef]
- Bandura, A. (1971). Social learning theory. General Learning Press. [Google Scholar]
- Barbosa, A., Vale, I., & Alvarenga, D. (2024). The use of Tinkercad and 3D printing in interdisciplinary STEAM education: A focus on engineering design. STEM Education, 4(3), 222–246. [Google Scholar] [CrossRef]
- Baroody, A. J. (1998). Fostering children’s mathematical power: An investigative approach to K-8 mathematics instruction. Routledge. [Google Scholar] [CrossRef]
- Betz, A. (2018). Der Einfuss Der Lernumgebung auf die (wahrgenommene) Authentizität Der Linguistischen Wissenschaftsvermittlung und das Situationale Interesse Von Lernenden [The influence of the learning environment on learners’ (perceived) authenticity of science communication and on their situational interest]. Unterrichtswissenschaft, 46, 261–278. [Google Scholar] [CrossRef]
- Bonnard, Q., Verma, H., Kaplan, F., & Dillenbourg, P. (2012). Paper interfaces for learning geometry. In A. Ravenscroft., S. Lindstaedt, C. D. Kloos, & D. Hernández-Leo (Eds.), Lecture notes in computer science: Vol 7563. 21st century learning for 21st century skills (pp. 37–50). Springer. [Google Scholar] [CrossRef]
- Brauchle, M. (2023). Creating a STEM school strategy with STEM scholl label, the Scientix project and the future classroom lab. Cultural and Historical Heritage: Preservation, Presentation, Digitalization (KIN Journal), 9(1), 154–167. [Google Scholar] [CrossRef]
- Bueno, D. (2021). La neurociencia como fundamento de la educación emocional [Neuroscience as a basis of emotional education]. Revista Internacional de Educación Emocional y Bienestar, 1(1), 47–61. [Google Scholar] [CrossRef]
- Bursali, H., & Yilmaz, R. M. (2019). Effect of augmented reality applications on secondary school students’ reading comprehension and learning permanency. Computers in Human Behavior, 95, 126–135. [Google Scholar] [CrossRef]
- Bursztyn, N., Shelton, B., Walker, A., & Pederson, J. (2017). Increasing undergraduate interest to learn geoscience with GPS-based augmented reality field trips on students’ own smartphones. Geological Society of America Today, 27(5), 4–11. [Google Scholar] [CrossRef]
- Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55(4), 1572–1578. [Google Scholar] [CrossRef]
- Claros-Perdomo, D. C., Millán-Rojas, E. E., & Gallego-Torres, A. P. (2020). Use of augmented reality, gamification and m-learning. Revista Facultad de Ingeniería, 29(54), e12264. [Google Scholar] [CrossRef]
- Covington, M. V., & Mueller, K. J. (2001). Intrinsic versus extrinsic motivation: An approach/avoidance reformulation. Educational Psychology Review, 13(2), 157–176. [Google Scholar] [CrossRef]
- Daemi, M. N., Tahriri, A., & Zafarghandi, A. M. (2017). The relationship between classroom environment and EFL learners’ academic self-efficacy. International Journal of Education & Literacy Studies, 5(4), 16–23. [Google Scholar] [CrossRef]
- Dawley, L., & Dede, C. J. (2014). Situated learning in virtual worlds and immersive simulations. In J. Spector, M. Merrill, J. Elen, & M. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 723–734). Springer. [Google Scholar] [CrossRef]
- De Alda, J., Marcos-Merino, J. M., Gómez, F. J. M., Jiménez, V. M., & Gallego, M. R. E. (2019). Academic emotions and the learning of biology, a long-lasting association. Enseñanza de las Ciencias, 37(2), 43–61. [Google Scholar]
- De Corte, E. (1995). Fostering cognitive growth: A perspective from research on mathematics learning and instruction. Educational Psychologist, 30(1), 37–46. [Google Scholar] [CrossRef]
- Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596. [Google Scholar] [CrossRef]
- Dogan, H. (2012). Emotion, confidence, perception, and expectation case of mathematics. International Journal of Science and Mathematics Education, 10, 49–69. [Google Scholar] [CrossRef]
- Dorman, J., & Adams, J. (2004). Associations between students’ perceptions of classroom environment and academic efficacy in Australian and British secondary schools. Westminster Studies in Education, 27(1), 69–85. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, B. (2008). School and classroom ergonomics or prioritizing people [Okul ve sınıf ergonomisi ya da insanı öncelemek]. Eğitime Bakış Dergisi, 4(11), 10–14. [Google Scholar]
- Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18, 7–22. [Google Scholar] [CrossRef]
- Dünser, A., Walker, L., Horner, H., & Bentall, D. (2012, November 26–30). Creating interactive physics education books with augmented reality [Conference session]. 24th Australian Computer-Human Interaction Conference (pp. 107–114), Melbourne, Australia. [Google Scholar]
- Dúo-Terrón, P. (2024). The Future Classroom Lab. Educational considerations from a systematic review. Review of Science, Mathematics and ICT Education, 18(2), 49–68. [Google Scholar]
- Edwards, S. (2015). Active learning in the middle grades. Middle School Journal, 46, 26–32. [Google Scholar] [CrossRef]
- Edwards, S., Kemp, A., & Page, C. (2014). The middle school philosophy: Do we practice what we preach, or do we preach something different? Current Issues in Middle Level Education, 19(1), 13–19. [Google Scholar]
- Ellis, R. A., & Goodyear, P. (2016). Models of learning space: Integrating research on space, place and learning in higher education. Review of Education, 4(2), 149–191. [Google Scholar] [CrossRef]
- Erez, A., & Isen, A. M. (2002). The influence of positive affect on the components of expectancy motivation. Journal of Applied Psychology, 87(6), 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Estapa, A., & Nadolny, L. (2015). The effect of an augmented reality enhanced mathematics lesson on student achievement and motivation. Journal of STEM Education, 16(3), 40–48. [Google Scholar]
- Fauth, B., Decristan, J., Rieser, S., Klieme, E., & Buttner, G. (2014). Student ratings of teaching quality in primary school: Dimensions and prediction of student outcomes. Learning and Instruction, 29, 1–9. [Google Scholar] [CrossRef]
- Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Perceived learning environment and students’ emotional experiences: A multilevel analysis of mathematics classrooms. Learning and Instruction, 17, 478–493. [Google Scholar] [CrossRef]
- Friedel, J. M., Cortina, K. S., Turner, J. C., & Midgley, C. (2010). Changes in efficacy beliefs in mathematics across the transition to middle school: Examining the effects of perceived teacher and parent goal emphases. Journal of Educational Psychology, 102, 101–114. [Google Scholar] [CrossRef]
- Fuchsova, M., & Korenova, L. (2019). Visualisation in basic science and engineering education of future primary school teachers in human biology education using augmented reality. European Journal of Contemporary Education, 8(1), 92–102. [Google Scholar] [CrossRef]
- Gambo, Y., & Shakir, M. Z. (2023). Evaluating students’ experiences in self-regulated smart learning environment. Education and Information Technologies, 28(1), 547–580. [Google Scholar] [CrossRef] [PubMed]
- Gamboa Araya, R. (2014). Relationship between affective dimension and math learning. Revista Electrónica Educare, 18(2), 117–139. [Google Scholar] [CrossRef]
- Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. Basic Books. [Google Scholar]
- Garzón, J., & Acevedo, J. (2019). Meta–analysis of the impact of augmented reality on students’ learning gains. Educational Research Review, 27, 244–260. [Google Scholar] [CrossRef]
- Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23(4), 447–459. [Google Scholar] [CrossRef]
- Goldin, G. A. (2000). Affective pathways and representation in mathematical problem solving. Mathematical Thinking and Learning, 2(3), 209–219. [Google Scholar] [CrossRef]
- Goldin, G. A., Hannula, M. S., Heyd-Metzuyanim, E., Jansen, A., Kaasila, R., Lutovac, S., Di Martino, P., Morselli, F., Middleton, J. A., Pantziara, M., & Zhang, Q. (2016). Attitudes, beliefs, motivation and identity in mathematics education: An overview of the field and future directions. ICME-13 Topical Surveys. Springer. [Google Scholar] [CrossRef]
- González, C. S., & Blanco, F. (2008). Emociones con videojuegos: Incrementando la motivación para el aprendizaje [Relationship between the affective dimension and the learning of mathematics]. Teoría de la Educación. Educación y Cultura en la Sociedad de la Información, 9(3), 69–92. [Google Scholar]
- González Lucas, Á. (2022). Innovación pedagógica en metodología, tecnologías del aprendizaje y el conocimiento según el Proyecto Future Classroom Lab: Creación de entornos de enseñanza aprendizaje innovadores, impacto y líneas de mejora [Pedagogical innovation in methodology, learning technologies and knowledge according to the Future Classroom Lab project: Creation of innovative teaching and learning environments, impact and lines of improvement] [Master’s thesis, Universitat Politècnica de València]. [Google Scholar]
- Gould, T. (2021). Factors influencing student confidence and their perception of learning in chemistry and biochemistry courses. The FASEB Journal, 35, S1. [Google Scholar] [CrossRef]
- Gómez-Rios, M. D., Paredes-Velasco, M., Hernández-Beleño, R. D., & Fuentes-Pinargote, J. A. (2023). Analysis of emotions in the use of augmented reality technologies in education: A systematic review. Computer Applications in Engineering Education, 31(1), 216–234. [Google Scholar] [CrossRef]
- Gutiérrez, J. M., & Fernández, M. D. M. (2014). Applying augmented reality in engineering education to improve academic performance & student motivation. The International Journal of Engineering Education, 30(3), 625–635. [Google Scholar]
- Güneş, G. (2018). The mathematics backgrounds and mathematics self-efficacy perceptions of pre-service elementary school teachers. In G. Stylianides, & K. Hino (Eds.), Research advances in the mathematical education of pre-service elementary teachers (pp. 171–186). Springer. [Google Scholar] [CrossRef]
- Hannula, M. (2001). The metalevel of emotion-cognition interaction. In M. Ahtee, O. Björkqvist, E. Pehkonen, & V. Vatanen (Eds.), Research on mathematics and science education: From beliefs to cognition. from problem solving to understanding (pp. 55–65). University of Jyväskylä, Institute for Educational Research. [Google Scholar]
- Harley, J. M., Lajoie, S. P., Tressel, T., & Jarrell, A. (2020). Fostering positive emotions and history knowledge with location-based augmented reality and tour-guide prompts. Learning and Instruction, 70, 101163. [Google Scholar] [CrossRef]
- Hoffman, B., & Schraw, G. (2010). Conceptions of efficiency: Applications in learning and problem-solving. Educational Psychologist, 45, 1–14. [Google Scholar] [CrossRef]
- Hsu, Y. S., Lin, Y. H., & Yang, B. (2017). Impact of augmented reality lessons on students’ STEM interest. Research and Practice in Technology Enhanced Learning, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. S., & González-Gómez, D. (2021a). A STEM course analysis during COVID-19: A comparison study in performance and affective domain of PSTs between F2F and F2S flipped classroom. Frontiers in Psychology, 12, 669855. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. S., & González-Gómez, D. (2021b). Flipped-OCN method in mathematics learning to analyze the attitudes of pre-service teachers. Mathematics, 9(6), 607. [Google Scholar] [CrossRef]
- Jeong, J. S., & González-Gómez, D. (2022). Mathematics self-belief comparison and examination of pre-service teacher (PST) through a flipped-open calculation based on numbers (ABN) learning method. Heliyon, 8(7), e09806. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J. S., & González-Gómez, D. (2025). Examining the impact of flipped classroom learning (FCL) and gamified-flipped classroom learning (G-FCL) on students’ attitudes and emotions toward learning in a university course. Active Learning in Higher Education, 14697874251347184. [Google Scholar] [CrossRef]
- Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545–556. [Google Scholar] [CrossRef]
- Kramarski, B., & Gutman, M. (2006). How can self-regulated learning be supported in mathematical e-learning environments? Journal of Computer Assisted Learning, 22, 24–33. [Google Scholar] [CrossRef]
- Kulakow, S., & Raufelder, D. (2020). Enjoyment benefits adolescents’ self-determined motivation in student-centered learning. International Journal of Educational Research, 103, 101635. [Google Scholar] [CrossRef]
- Lazareva, A., & Tømte, C. E. (2024). Flexible learning spaces as an arena for developing professional digital competence through small group collaboration. Teachers and Teaching, 30(4), 489–508. [Google Scholar] [CrossRef]
- Lee, J. (2009). Universals and specifics of math self-concept. math self-efficacy. and math anxiety across 41 PISA 2003 participating countries. Learning and Individual Differences, 19(3), 355–365. [Google Scholar] [CrossRef]
- Lee, K. (2012). The future of learning and training in augmented reality. InSight: A Journal of Scholarly Teaching, 7, 31–42. [Google Scholar] [CrossRef]
- Liao, T., & Humphreys, L. (2015). Layar-ed places: Using mobile augmented reality to tactically reengage, reproduce, and reappropriate public space. New Media & Society, 17(9), 1418–1435. [Google Scholar]
- Lin, H. F., & Chen, C. H. (2015). Design and application of augmented reality query-answering system in mobile phone information navigation. Expert Systems with Applications, 42(2), 810–820. [Google Scholar] [CrossRef]
- Liu, M., Horton, L., Olmanson, J., & Toprac, P. (2011). A study of learning and motivation in a new media enriched environment for middle school science. Educational Technology Research and Development, 59, 249–265. [Google Scholar] [CrossRef]
- López-Faican, L., & Jaen, J. (2020). EmoFindAR: Evaluation of a mobile multiplayer augmented reality game for primary school children. Computers & Education, 149, 103814. [Google Scholar]
- López-Martín, E., & Ardura-Martínez, D. (2023). The effect size in scientific publication. Educación XX1, 26(1), 9–17. [Google Scholar] [CrossRef]
- Mogas, J., Palau, R., Fuentes, M., & Cebrián, G. (2022). Smart schools on the way: How school principals from Catalonia approach the future of education within the fourth industrial revolution. Learning Environments Research, 25(3), 875–893. [Google Scholar] [CrossRef]
- Montero-Izquierdo, A. I., Jeong, J. S., & González-Gómez, D. (2024). A future classroom lab with active and gamified STEAM proposal for mathematics and science disciplines: Analyzing the effects on pre-service teacher’s affective domain. Heliyon, 10(16), e35911. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, G. T., & Arulsamy, S. (2014). Understanding the paradigm shift in teaching and learning. International Journal of Social Sciences, 3(4), 443–446. [Google Scholar] [CrossRef]
- Moreno-Guerrero, A. J., Alonso Garcia, S., Ramos Navas-Parejo, M., Campos-Soto, M. N., & Gomez Garcia, G. (2020). Augmented reality as a resource for improving learning in the physical education classroom. International Journal of Environmental Research and Public Health, 17(10), 3637. [Google Scholar] [CrossRef] [PubMed]
- National Association for the Education of Young Children. (2009). Developmentally appropriate practice in early childhood programs: Serving children from birth through age 8. National Association for the Education of Young Children. [Google Scholar]
- Nesin, G. (2012). Active learning. In AMLE (Ed.), This we believe in action: Implementing successful middle level schools (pp. 17–27). Association for Middle Level Education. [Google Scholar]
- Oleksy, T., & Wnuk, A. (2017). Catch them all and increase your place attachment! The role of location-based augmented reality games in changing people-place relations. Computers in Human Behavior, 76, 3–8. [Google Scholar] [CrossRef]
- Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36–48. [Google Scholar] [CrossRef]
- Pietsch, J., Walker, R., & Chapman, E. (2003). The relationship among self-concept, self-efficacy, and performance in Mathematics during secondary school. Journal of Educational Psychology, 95(3), 589–603. [Google Scholar] [CrossRef]
- Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33–40. [Google Scholar] [CrossRef]
- Poitras, E. G., Harley, J. M., & Liu, Y. S. (2019). Achievement emotions with location-based mobile augmented reality: An examination of discourse processes in simulated guided walking tours. British Journal of Educational Technology, 50(6), 3345–3360. [Google Scholar] [CrossRef]
- Qamari, C. N., & Ridwan, M. R. (2017, October 25–26). Implementation of Android-based augmented reality as learning and teaching media of dicotyledonous plants learning materials in biology subject [Conference session]. 3rd International Conference on Science in Information Technology (ICSITech) (pp. 441–446), Bandung, Indonesia. [Google Scholar] [CrossRef]
- Rodríguez, J. P., & Montalván, D. N. T. (2018). Aplicación en formación de la realidad aumentada para el estudio de los huesos del cráneo utilizando dispositivos móviles. Revista Iberoamericana de Educación, 1(1), 94–109. [Google Scholar]
- Schez-Sobrino, S., Vallejo, D., Glez-Morcillo, C., Redondo, M. Á., & Castro-Schez, J. J. (2020). RoboTIC: A serious game based on augmented reality for learning programming. Multimedia Tools and Applications, 79, 34079–34099. [Google Scholar] [CrossRef]
- Schüttler, T., Watzka, B., Girwidz, R., & Ertl, B. (2021). Die Wirkung Der Authentizität Von Lernort Und Laborgeräten auf das situationale interesse und die Relevanzwahrnehmung Beim Besuch eines naturwissenschaftlichen Schülerlabors [Efects of an authentic location and laboratory equipment for the situational interest and the perception of content relevance when visiting an out-of-school science lab]. Zeitschrift für Didaktik Der Naturwissenschaften, 27(1), 109–125. [Google Scholar] [CrossRef]
- Serin, H. (2022). Creating interactive classrooms with augmented reality, a review. Journal for Educators, Teachers and Trainers, 13(3), 297–305. [Google Scholar]
- Shamsudin, N. M., & Talib, C. A. (2023). Revolutionizing STEM classroom through augmented reality on student learning and engagement. International Journal of Academic Research in Progressive Education and Development, 12(3), 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Smith, J. P. (1996). Efficacy and teaching mathematics by telling: A challenge for reform. Journal for Research in Mathematics Education, 27(4), 387–402. [Google Scholar] [CrossRef]
- Sollervall, H. (2012). Collaborative mathematical inquiry with augmented reality. Research and Practice in Technology Enhanced Learning, 7(3), 153–173. [Google Scholar] [CrossRef]
- Sourdot, L. A., & Smith, C. E. (2019). Breaking down the barrier with the Future Classroom Lab: Supporting teacher candidates and education professionals with relevant technological tools for the 21st century classroom. In K. Graziano (Ed.), Society for information technology & teacher education international conference (pp. 871–874). Association for the Advancement of Computing in Education. [Google Scholar]
- Sun, J. C. Y., Ye, S. L., Yu, S. J., & Chiu, T. K. F. (2023). Effects of wearable hybrid AR/VR learning material on high school students’ situational interest, engagement, and learning performance: The case of a physics laboratory learning environment. Journal of Science Education and Technology, 32, 1–12. [Google Scholar] [CrossRef]
- Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48, 1273–1296. [Google Scholar] [CrossRef]
- Talbert, R., & Mor-Avi, A. (2019). A space for learning: An analysis of research on active learning spaces. Heliyon, 5(12), e02967. [Google Scholar] [CrossRef] [PubMed]
- Tena Fernández, R., & Carrera Martínez, N. (2020). La Future Classroom Lab como marco de desarrollo del aprendizaje por competencias y el trabajo por proyectos [The Future Classroom Lab as a framework of development for competency and project-based learning]. Revista Mexicana de Investigación Educativa, 25(85), 449–468. [Google Scholar]
- Tharayil, S., Borrego, M., Prince, M., Nguyen, K. A., Shekhar, P., Finelli, C. J., & Waters, C. (2018). Strategies to mitigate student resistance to active learning. International Journal of STEM Education, 5(1), 7. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, T., Jormanainen, I., Montero, C. S., & Alessandrini, A. (2018). Innovative maker movement platform for K-12 education as a smart learning environment. In M. Chang, E. Popescu, M. Jemni, R. Huang, & J. M. Spector (Eds.), Challenges and solutions in smart learning. Lecture notes in educational technology (pp. 61–66). Springer. [Google Scholar] [CrossRef]
- Vale, I., & Barbosa, A. (2023). Active learning strategies for an effective mathematics teaching and learning. European Journal of Science and Mathematics Education, 11(3), 573–588. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, G. M., & Hogg, M. A. (2013). Social psychology. Pearson Higher Education AU. [Google Scholar]
- Volioti, C., Orovas, C., Sapounidis, T., Trachanas, G., & Keramopoulos, E. (2023). Augmented reality in primary education: An active learning approach in mathematics. Computers, 12(10), 207. [Google Scholar] [CrossRef]
- Wang, M., & Holcombe, R. (2010). Adolescents’ perceptions of school environment, engagement, and academic achievement in middle school. American Educational Research Journal, 47, 633–662. [Google Scholar] [CrossRef]
- Weidman, A. C., Tracy, J. L., & Elliot, A. J. (2016). The benefits of following your pride: Authentic pride promotes achievement. Journal of Personality, 84(5), 607–622. [Google Scholar] [CrossRef] [PubMed]
- Wong, W. H., & Chapman, E. (2023). Student satisfaction and interaction in higher education. Higher Education, 85(5), 957–978. [Google Scholar] [CrossRef] [PubMed]
- Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49. [Google Scholar] [CrossRef]
- Yeung, J. C., Fung, K., & Wilson, T. D. (2012). Prospective evaluation of a web-based three-dimensional cranial nerve simulation. Journal of Otolaryngology—Head & Neck Surgery, 41(6), 426–436. [Google Scholar]
- Yllana-Prieto, F., González-Gómez, D., & Jeong, J. S. (2023). La enseñanza de contenidos científicos mediante una metodología basada en escape room [Teaching scientific content through a methodology based on escape room]. Enseñanza de las Ciencias, 41(3), 69–88. [Google Scholar] [CrossRef]
- Zhang, G., Yue, X., Ye, Y., & Peng, M. Y. P. (2021). Understanding the impact of the psychological cognitive process on student learning satisfaction: Combination of the social cognitive career theory and SOR model. Frontiers in Psychology, 12, 712323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. P., & Chen, W. D. (2011). Study on classroom of the future. Journal of e-Education Research, 8, 18–22. [Google Scholar]
- Zheng, W., Zhou, Y., & Qin, Y. (2019, June 28–30). An empirical study of incorporation of augmented reality into civic education. International Conference on Modern Educational Technology (ICMET 2019), Nanjing, China. [Google Scholar]
- Zimmerman, H. T., Land, S. M., & Jung, Y. J. (2015). Using augmented reality to support children’s situational interest and science learning during context-sensitive informal mobile learning. In A. Peña-Ayala (Ed.), Mobile, ubiquitous, and pervasive learning, advances in intelligent systems and computing (pp. 101–119). Springer. [Google Scholar] [CrossRef]
Academic year | 2022/2023 | 2023/2024 |
Participants Number | 45 | 52 |
Age | 20.2 | 20.2 |
Entrance Grade (Max. 10) | 7.32 | 7.25 |
Background | (%) | (%) |
Social Science | 68.89 | 63.46 |
Science | 22.22 | 21.15 |
Technology | 6.67 | 11.54 |
Others | 2.22 | 0 |
Gender | (%) | (%) |
Female | 60 | 69.23 |
Male | 40 | 30.77 |
Constructs | ||
---|---|---|
1. Emotions | Mathematics AR intervention in the FCL | Positive emotions |
EM1. Joy | ||
EM2. Satisfaction | ||
EM3. Enthusiasm | ||
EM4. Fun | ||
EM5. Confidence | ||
EM6. Hope | ||
EM7. Pride | ||
Negative emotions | ||
EM8. Uncertainty | ||
EM9. Nervousness | ||
EM10. Concern | ||
EM11. Frustration | ||
EM12. Boredom | ||
EM13. Fear | ||
EM14. Anxiety | ||
2. Self-efficacy | Mathematical concepts and FCL | SE1. Understanding mathematics concepts to teach them |
SE2. Capable of answering students about mathematics content | ||
SE3. Effort to be able to succeed in teaching mathematics | ||
SE4. Believe to have the necessary skills to teach mathematics | ||
SE5. Believe that mathematics is useful for solving everyday problems | ||
SE6. Believe that mathematics is relevant to obtain a good job | ||
SE7. Know the steps necessary to effectively teach mathematics | ||
SE8. Struggle to explain mathematics concepts | ||
SE9. Believe that motivating teaching spaces achieve good learning results | ||
SE10. Know how to work in an FCL | ||
3. Attitude | FCL learning environment | AT1. Prefer FCL to a traditional class |
AT2. Prefer FCL to a traditional lab | ||
AT3. Interdisciplinarity | ||
AT4. FCL creativity | ||
AT5. FCL collaboration | ||
4. Engagement | The use of AR in mathematics | E1. Enjoy learning activities using AR application in mathematics |
E2. Engagement using AR in mathematics | ||
5. Motivation | Learning mathematics with AR | M1. Interest in learning mathematical content through AR applications. |
M2. Desire to use AR to learn topics related to mathematics. | ||
6. Confidence | Confidence about how to apply 3D design and AR in mathematics subject | Qualitative question. Reflect on whether after the activity you feel more confident about how to apply activities on 3D design and AR in the future in your elementary classes. |
α | Items | α | |
---|---|---|---|
Affective domain | 0.878 | Positive emotion | 0.919 |
Negative emotion | 0.845 | ||
Self-efficacy | 0.780 | ||
Attitude | 0.786 | ||
Interest AR | 0.888 | Engagement | 0.866 |
Motivation | 0.772 |
Descriptives | Groups | PE | NE | SE | AT | E | M |
---|---|---|---|---|---|---|---|
Median | Pre-test | 3.57 | 2.00 | 3.90 | 4.40 | 4.00 | 4.50 |
Post-test | 4.29 | 1.71 | 4.00 | 4.60 | 4.50 | 4.50 | |
Standard deviation | Pre-test | 0.754 | 0.747 | 0.483 | 0.594 | 0.801 | 0.711 |
Post-test | 0.624 | 0.644 | 0.486 | 0.601 | 0.648 | 0.591 |
Item Constructs | U | p | rrb | Effect Size |
---|---|---|---|---|
Positive emotion (PE) | 2442 | < 0.001 | 0.4527 | Medium |
Negative emotion (NE) | 2903 | < 0.001 | 0.3494 | Medium |
Self-efficacy (SE) | 3392 | 0.004 | 0.2398 | Small |
Attitude (AT) | 3578 | 0.017 | 0.1982 | Small |
Engagement AR (E) | 4120 | 0.339 | 0.0766 | Very small |
Motivation AR (M) | 3856 | 0.093 | 0.1358 | Small |
Construct | Items | U | p | rbb | Effect Size |
---|---|---|---|---|---|
PE | EM1 | 6287.500 | <0.001 | 0.27 | Small |
EM2 | 5696.000 | <0.001 | 0.40 | Medium | |
EM3 | 6104.000 | <0.001 | 0.29 | Small | |
EM4 | 2915.500 | <0.001 | 0.46 | Medium | |
EM5 | 3125.000 | <0.001 | 0.41 | Small | |
EM6 | 3143.000 | <0.001 | 0.28 | Small | |
EM7 | 4113.000 | <0.001 | 0.37 | Medium | |
NE | EM8 | 4168.500 | <0.001 | 0.35 | Medium |
EM9 | 3273.000 | <0.001 | 0.30 | Medium | |
EM10 | 3370.500 | <0.001 | 0.30 | Medium | |
EM11 | 5269.500 | 0.310 | 0.08 | Very small | |
EM12 | 5239.000 | 0.361 | 0.07 | Very small | |
EM13 | 4304.000 | <0.001 | 0.27 | Small | |
EM14 | 5138.500 | <0.001 | 0.25 | Small | |
SE | SE1 | 4335.000 | 0.023 | 0.18 | Small |
SE2 | 4697.000 | 0.027 | 0.17 | Small | |
SE3 | 6192.000 | 0.640 | 0.04 | Very small | |
SE4 | 4365.000 | 0.059 | 0.15 | Small | |
SE5 | 4095.500 | 0.713 | 0.03 | Very small | |
SE6 | 5884.500 | 0.510 | 0.05 | Very small | |
SE7 | 5084.500 | <0.001 | 0.39 | Medium | |
SE8 | 5296.500 | 0.788 | 0.02 | Very small | |
SE9 | 5300.500 | 0.269 | 0.08 | Very small | |
SE10 | 4703.000 | <0.001 | 0.32 | Medium | |
AT | AT1 | 4588.000 | 0.068 | 0.14 | Small |
AT2 | 5039.500 | 0.017 | 0.19 | Small | |
AT3 | 4955.500 | 0.016 | 0.19 | Small | |
AT4 | 4632.000 | 0.447 | 0.05 | Very small | |
AT5 | 4915.000 | 0.684 | 0.03 | Very small | |
E | E1 | 6287.500 | 0.092 | 0.13 | Small |
E2 | 5696.000 | 0.146 | 0.11 | Small | |
M | M1 | 6104.000 | 0.623 | 0.04 | Very small |
M2 | 2915.500 | 0.188 | 0.10 | Small |
Words | Repetition | Relative Frequency |
---|---|---|
Confident | 55 | 66% |
Knowledge | 8 | 10% |
Interesting | 7 | 8% |
Learning | 4 | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Izquierdo, A.I.; Jeong, J.S.; González-Gómez, D. Augmented Reality 3D Multibase Blocks at the Future Classroom Lab Through Active Methodology: Analyzing Pre-Service Teachers’ Disposition in Mathematics Course. Educ. Sci. 2025, 15, 954. https://doi.org/10.3390/educsci15080954
Montero-Izquierdo AI, Jeong JS, González-Gómez D. Augmented Reality 3D Multibase Blocks at the Future Classroom Lab Through Active Methodology: Analyzing Pre-Service Teachers’ Disposition in Mathematics Course. Education Sciences. 2025; 15(8):954. https://doi.org/10.3390/educsci15080954
Chicago/Turabian StyleMontero-Izquierdo, Ana Isabel, Jin Su Jeong, and David González-Gómez. 2025. "Augmented Reality 3D Multibase Blocks at the Future Classroom Lab Through Active Methodology: Analyzing Pre-Service Teachers’ Disposition in Mathematics Course" Education Sciences 15, no. 8: 954. https://doi.org/10.3390/educsci15080954
APA StyleMontero-Izquierdo, A. I., Jeong, J. S., & González-Gómez, D. (2025). Augmented Reality 3D Multibase Blocks at the Future Classroom Lab Through Active Methodology: Analyzing Pre-Service Teachers’ Disposition in Mathematics Course. Education Sciences, 15(8), 954. https://doi.org/10.3390/educsci15080954