Evaluating the Effectiveness of GIF-Based Methodology in Enhancing Geoscience Education Among Primary Education Undergraduates
Abstract
:1. Introduction
- How does the use of traditional teaching methods compare to an approach based on the creation of GIFs in terms of fostering geological knowledge acquisition among future primary education teachers?
- Do these future teachers consider GIFs a motivating and effective tool for improving their understanding of geology and increasing their interest in the use of ICT within active learning methodologies?
2. Materials and Methods
2.1. Participants
2.2. Educational Methodologies
2.3. Procedure
2.4. Variables
2.5. Data Analysis
3. Results
3.1. Sample Description
3.2. Knowledge Level in Geology
3.3. Interest in Geology
3.4. Interest in ICT
3.5. Evaluation of GIFs as a Learning Resource
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abgao, J. M. (2023). Effectiveness of using Graphics Interchange Format (GIF) in teaching chemistry. IJCER International Journal of Chemistry Education Research, 7(2), 105–112. [Google Scholar] [CrossRef]
- Adak, S. (2017). Effectiveness of constructivist approach on academic achievement in science at secondary level. Educational Research and Reviews, 12(22), 1074–1079. [Google Scholar] [CrossRef]
- AlGerafi, M. A. M., Zhou, Y., Oubibi, M., & Wijaya, T. T. (2023). Unlocking the potential: A comprehensive evaluation of augmented reality and virtual reality in education. Electronics, 12(18), 3953. [Google Scholar] [CrossRef]
- Altintas, E., Iigun, Ş., & Kucuk, S. (2017). Evaluation of use of Graphics Interchange Format (GIF) animations in mathematics education. Educational Research and Reviews, 12(23), 1112–1119. [Google Scholar] [CrossRef]
- Angraini, E., Zubaidah, S., & Susanto, H. (2023). TPACK-based active learning to promote digital and scientific literacy in genetics. Pegem Journal of Education and Instruction, 13(2), 50–61. [Google Scholar] [CrossRef]
- Ash, J. (2015). Sensation, networks, and the GIF: Toward an allotropic account of affect. In Networked affect (pp. 119–134). The MIT Press. [Google Scholar] [CrossRef]
- Audette, L. M., Hammond, M. S., & Rochester, N. K. (2020). Methodological issues with coding participants in anonymous psychological longitudinal studies. Educational and Psychological Measurement, 80(1), 163–185. [Google Scholar] [CrossRef]
- Álvarez, R. M., & García de la Torre, E. (1996). Modelos analógicos en geología: Implicaciones didácticas. Ejemplos relacionados con el origen de materiales terrestres. Enseñanza Ciencias de La Tierra, 2(4), 133–139. [Google Scholar]
- Baig, M. I., & Yadegaridehkordi, E. (2023). Flipped classroom in higher education: A systematic literature review and research challenges. International Journal of Educational Technology in Higher Education, 20(1), 61–87. [Google Scholar] [CrossRef]
- Bakhshi, S., Shamma, D. A., Kennedy, L., Song, Y., de Juan, P., & Kaye, J. J. (2016). Fast, cheap, and good. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 575–586). ACM. [Google Scholar] [CrossRef]
- Barriga, F. D. (2008). Educación y nuevas tecnologías de la información:¿ hacia un paradigma educativo innovador? Sinéctica, 30, 1–15. [Google Scholar]
- Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: The classification of educational goals, by a committee of college and university examiners. Longmans. [Google Scholar]
- Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. ASHE-ERIC Higher Education Reports. ERIC Clearinghouse on Higher Education, The George Washington University. [Google Scholar]
- Buenaño-Barreno, P. N., González-Villavicencio, J. L., Mayorga-Orozco, E. G., & Espinoza-Tinoco, L. M. (2021). Metodologías activas aplicadas en la educación en línea. Dominio Ciencias, 7(4), 763–780. [Google Scholar] [CrossRef]
- Bulbul, M. S. (2007). Using gif (graphics interchange format) images in physics education. In S. A. Cetin, & I. Hikmet (Eds.), Six international conference of the balkan physical union (Vol. 899, pp. 481–482). American Institute of Physics. [Google Scholar]
- Caeiro Rodríguez, M., & Torres Pérez, A. (2019). Experiencias visuales y cognitivas a través de GIFS en Educación Primaria. Reidocrea, 8, 35–42. [Google Scholar] [CrossRef]
- Calonge, A., Fermeli, G., Meléndez, G., & Martínez, J. A. (2014). Proyecto GEOschools: Reflexiones sobre la geología en la Enseñanza Secundaria Obligatoria GEOschools project: Teaching Geology in the Lower Secondary School level (ESO) in Spain. Geogaceta, 55, 99–102. Available online: www.geogaceta.com (accessed on 10 February 2025).
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [Google Scholar] [CrossRef]
- Dawson, V., & Carson, K. (2013). Science teachers’ and senior secondary schools students’ perceptions of earth and environmental science topics. Australian Journal of Environmental Education, 29(2), 202–220. [Google Scholar] [CrossRef]
- Dodick, J., & Orion, N. (2003). Geology as an historical science: Its perception within science and the educational system. Science and Education, 12(2), 197–211. [Google Scholar] [CrossRef]
- Dogani, B. (2023). Active learning and effective teaching strategies. International Journal of Advanced Natural Sciences and Engineering Researches, 7(4), 136–142. [Google Scholar] [CrossRef]
- Dolphin, G., & Benoit, W. (2016). Students’ mental model development during historically contextualized inquiry: How the ‘Tectonic Plate’ metaphor impeded the process. International Journal of Science Education, 38(2), 276–297. [Google Scholar] [CrossRef]
- Dorji, T., Subba, S., & Zangmo, T. (2024). De-mystifying the influence of PhET simulation on engagement, satisfaction, and academic achievement of bhutanese students in the physics classroom. Journal of Science Education and Technology, 33, 892–909. [Google Scholar] [CrossRef]
- Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How knowledge, confidence, beliefs, and culture intersect. Journal Research Technology Education, 42(3), 255–284. [Google Scholar] [CrossRef]
- Fernando Santos, L. (2017). The role of critical thinking in science education. Journal of Education and Practice, 8(20), 160–173. [Google Scholar]
- Fernández-Rovira, C. (2022). Motivaciones y tiempo de uso de las redes sociales por parte de los jóvenes españoles: Señales de adicción. Anuario Electrónico de Estudios En Comunicación Social “Disertaciones”, 15(2), 1–19. [Google Scholar] [CrossRef]
- Fornós, J. J. (2018). La enseñanza de la geología en la educación secundaria: Una cuestión problemática. Algunas observaciones en baleares. In J. Duque-Macías, & A. Paula Bernal (Eds.), XX simposio sobre enseñanza de la geología (pp. 83–94). Estudios Gráficos Europeos. [Google Scholar]
- Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8410–8415. [Google Scholar] [CrossRef]
- Frøyland, M., Remmen, K. B., & Sørvik, G. O. (2016). Name-dropping or understanding?: Teaching to observe geologically. Science Education, 100(5), 923–951. [Google Scholar] [CrossRef]
- Garbin, M. C., de Oliveira, E. T., & Telles, S. (2021). Active methodologies supported by interaction and communication technologies in higher education. Global Journal of Information Technology: Emerging Technologies, 11(2), 47–54. [Google Scholar] [CrossRef]
- Gargallo-López, B., Almerich-Cerveró, G., García-García, F.-J., López-Francés, I., & Sahuquillo-Mateo, P.-M. (2023). University student profiles in the learning to learn competence and their relationship with academic achievement. Revista Española de Pedagogía, 81(286), 457–487. [Google Scholar] [CrossRef]
- Grabinger, R. S., & Dunlap, J. C. (1995). Rich environments for active learning: A definition. ALT-J, 3(2), 5–34. [Google Scholar] [CrossRef]
- Guerrero Chinome, E. J., & Genet Verney, R. (2020). Palimpsesto urbano .gif _ Un instrumento de investigación creación. Index, Revista de Arte Contemporáneo, 10, 212–230. [Google Scholar] [CrossRef]
- Gygli, M., Song, Y., & Cao, L. (2016, June 27–30). Video2gif: Automatic generation of animated gifs from video. IEEE Conference on Computer Vision and Pattern Recognition (pp. 1001–1009), Las Vegas, NV, USA. [Google Scholar]
- Henderson, C., Beach, A., & Finkelstein, N. (2011). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48(8), 952–984. [Google Scholar] [CrossRef]
- Henderson, C., & Dancy, M. H. (2007). Barriers to the use of research-based instructional strategies: The influence of both individual and situational characteristics. Physical Review Special Topics-Physics Education Research, 3(2), 020102. [Google Scholar] [CrossRef]
- Henthorn, J. (2023). Using GIFs to position students as scholars. Prompt: A Journal of Academic Writing Assignments, 7(1), 11–21. [Google Scholar] [CrossRef]
- Huguet, C., Pearse, J., Noè, L. F., Valencia, D. M., Ruiz, N. C., Heredia, A. J., & Avedaño, M. A. P. (2020). Improving the motivation of students in a large introductory geoscience course through active learning. Journal of Geoscience Education, 68(1), 20–32. [Google Scholar] [CrossRef]
- Jameson, M. M., Sexton, J., London, D., & Wenner, J. M. (2024). Relationships and gender differences in math anxiety, math self-efficacy, geoscience self-efficacy, and geoscience interest in introductory geoscience students. Education Sciences, 14(4), 426. [Google Scholar] [CrossRef]
- Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259–1269. [Google Scholar] [CrossRef]
- King, C. (2008). Geoscience education: An overview. Studies in Science Education, 44(2), 187–222. [Google Scholar] [CrossRef]
- Kober, N. (2015). Reaching students. National Academies Press. [Google Scholar] [CrossRef]
- Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. Pearson Education Inc. [Google Scholar]
- Lacreu, H. L. (2018). The Social Sense of Geological Literacy. Annals of Geophysics, 60, 1–6. [Google Scholar] [CrossRef]
- Laurillard, D., Kennedy, E., Charlton, P., Wild, J., & Dimakopoulos, D. (2018). Using technology to develop teachers as designers of TEL: Evaluating the learning designer. British Journal of Educational Technology, 49(6), 1044–1058. [Google Scholar] [CrossRef]
- Lewis, E. B., & Baker, D. R. (2010). A call for a new geoscience education research agenda. Journal of Research in Science Teaching, 47(2), 121–129. [Google Scholar] [CrossRef]
- Lloyd, K., & Devine, P. (2012). Psychometric properties of the Warwick–Edinburgh Mental Well-being Scale (WEMWBS) in Northern Ireland. Journal of Mental Health, 21(3), 257–263. [Google Scholar] [CrossRef]
- López Núñez, J. A., López Belmonte, J., Moreno Guerrero, A. J., & Pozo Sánchez, S. (2020). Effectiveness of innovate educational practices with flipped learning and remote sensing in earth and environmental sciences—An exploratory case study. Remote Sensing, 12(5), 897. [Google Scholar] [CrossRef]
- Mampel Laboira, L., Cortés Gracia, Á. L., & Alcalá Martínez, L. (2015). Imágenes sobre dinosaurios en libros de texto de Enseñanza Secundaria Obligatoria. Didáctica de Las Ciencias Experimentales y Sociales, 29, 173–193. [Google Scholar] [CrossRef]
- Manduca, C. A., Iverson, E. R., Luxenberg, M., Macdonald, R. H., McConnell, D. A., Mogk, D. W., & Tewksbury, B. J. (2017). Improving undergraduate STEM education: The efficacy of discipline-based professional development. Science Advances, 3(2), 1–15. [Google Scholar] [CrossRef]
- Marín, T. (2011). Experiencia de innovación docente GOUMH: Aprendizaje colaborativo en Bellas Artes con APPS de Google. In Actas del congreso internacional de innovación docente (pp. 1845–1859). Universidad Politécnica de Cartagena. [Google Scholar]
- Martinez, M. E., & Gomez, V. (2025). Active learning strategies: A mini review of evidence-based approaches. Acta Pedagogia Asiana, 4(1), 43–54. [Google Scholar] [CrossRef]
- Mayer, R. E. (2009). Multimedia learning. Cambridge University Press. [Google Scholar] [CrossRef]
- Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychology, 38(1), 43–52. [Google Scholar] [CrossRef]
- McConnell, D. A., Chapman, L., Czajka, C. D., Jones, J. P., Ryker, K. D., & Wiggen, J. (2017). Instructional utility and learning efficacy of common active learning strategies. Journal of Geoscience Education, 65(4), 604–625. [Google Scholar] [CrossRef]
- Meng, N., Dong, Y., Roehrs, D., & Luan, L. (2023). Tackle implementation challenges in project-based learning: A survey study of PBL e-learning platforms. Educational Technology Research and Development, 71(3), 1179–1207. [Google Scholar] [CrossRef]
- Metze, T. (2020). Visualization in environmental policy and planning: A systematic review and research agenda. Journal of Environmental Policy & Planning, 22(5), 745–760. [Google Scholar] [CrossRef]
- Mills, R., Tomas, L., Whiteford, C., & Lewthwaite, B. (2020). Developing middle school students’ interest in learning science and geology through slowmation. Research in Science Education, 50(4), 1501–1520. [Google Scholar] [CrossRef]
- Mosher, S., Bralower, T., Huntoon, J., Lea, P., McConnell, D., Miller, K., Ryan, J. G., Summa, L., Villalobos, J., & White, L. (2014). Future of undergraduate geoscience education: Summary report for summit on future of undergraduate geoscience education. School of Geosciences Faculty and Staff Publications. Available online: https://digitalcommons.usf.edu/geo_facpub/1127 (accessed on 10 February 2025).
- Msafiri, M. M., Kangwa, D., & Cai, L. (2023). A systematic literature review of ICT integration in secondary education: What works, what does not, and what next? Discover Education, 2(1), 44. [Google Scholar] [CrossRef]
- Navarro, J., Piña, J. U., Mas, F. M., & Lahoz-Beltra, R. (2023). Press media impact of the Cumbre Vieja volcano activity in the island of La Palma (Canary Islands): A machine learning and sentiment analysis of the news published during the volcanic eruption of 2021. International Journal of Disaster Risk Reduction, 91, 103694. [Google Scholar] [CrossRef]
- Occhipinti, S. (2025). Motivation for learning geosciences: The teaching-learning process—Analysis, evaluations, and proposals. In Motivation in learning. IntechOpen. [Google Scholar] [CrossRef]
- Orion, N. (2019). The future challenge of Earth science education research. Disciplinary and Interdisciplinary Science Education Research, 1(1), 3. [Google Scholar] [CrossRef]
- Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. The Nuffield Foundation. [Google Scholar]
- Pedrinaci, E. (2012). Por una alfabetización científica. Enseñanza de Las Ciencias de La Tierra, 20(1), 105–106. [Google Scholar]
- Pellas, N., Dengel, A., & Christopoulos, A. (2020). A scoping review of immersive virtual reality in STEM education. IEEE Transactions on Learning Technologies, 13(4), 748–761. [Google Scholar] [CrossRef]
- Perales Palacios, F. J. (2007). Uso (y abuso) de la imagen en la enseñanza de las ciencias. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 24(1), 13–30. [Google Scholar] [CrossRef]
- Pineda, B. C. B., & Vergara, J. L. B. (2016). La península de Paraguaná: Un paisaje natural para la enseñanza de la morfología litoral en Ciencias de la Tierra. Investigacióny Formación Pedagógica Revista del CIEGC, 2(4), 30–50. [Google Scholar]
- Pinto, T., Dias, A. G., & Vasconcelos, C. (2021). Geology and environment: A problem-based learning study in higher education. Geosciences, 11(4), 173. [Google Scholar] [CrossRef]
- Pirrie, A., & Thoutenhoofd, E. D. (2013). Learning to learn in the European Reference Framework for lifelong learning. Oxford Review of Education, 39(5), 609–626. [Google Scholar] [CrossRef]
- Pratiwi, E. D., Masykuri, M., & Ramli, M. (2021). Active learning strategy on higher education biology learning: A systematic review. Tadris: Jurnal Keguruan Dan Ilmu Tarbiyah, 6(1), 75–86. [Google Scholar] [CrossRef]
- Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223–231. [Google Scholar] [CrossRef]
- Roca, N., & Garcia-Valles, M. (2020). Trainee teacher experience in geoscience education: Can we do better? Geoheritage, 12(4), 92. [Google Scholar] [CrossRef]
- Schijf, J. E., van der Werf, G. P., & Jansen, E. P. (2023). Measuring interdisciplinary understanding in higher education. European Journal of Higher Education, 13(4), 429–447. [Google Scholar] [CrossRef]
- Serrano Amarilla, N., Cuetos Revuelta, M. J., & Manzanal Martínez, A. I. (2022). Systematic review: Flipped classrooms in the performance of undergraduate science students. Journal of Science Education and Technology, 31(5), 594–604. [Google Scholar] [CrossRef]
- Shafie, H., Majid, F. A., & Ismail, I. S. (2019). Technological pedagogical content knowledge (TPACK) in teaching 21st century skills in the 21st century classroom. Asian Journal of University Education, 15(3), 24–33. [Google Scholar] [CrossRef]
- Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 13. [Google Scholar] [CrossRef]
- Snyder, J. S., Schwiedrzik, C. M., Vitela, A. D., & Melloni, L. (2015). How previous experience shapes perception in different sensory modalities. Frontiers in Human Neuroscience, 9, 594. [Google Scholar] [CrossRef]
- Spearman, J., & Watt, H. M. G. (2013). Perception shapes experience: The influence of actual and perceived classroom environment dimensions on girls’ motivations for science. Learning Environments Research, 16(2), 217–238. [Google Scholar] [CrossRef]
- Stern, R., Ryan, J., Wang, N., Ricchezza, V., & Willis, S. (2020). Geoscience videos and animations: How to make them with your students, and how to use them in the classroom. GSA Today, 30(6), 42–43. [Google Scholar] [CrossRef]
- Taculod, N. J., & Arcilla, F., Jr. (2020). Enhancing the academic performance and learning interest in biology of grade 10 students using expanded powerpoint instruction. SMCC Higher Education Research Journal, 2(1), 57–81. [Google Scholar] [CrossRef]
- Teasdale, R., Viskupic, K., Bartley, J. K., McConnell, D., Manduca, C., Bruckner, M., Farthing, D., & Iverson, E. (2017). A multidimensional assessment of reformed teaching practice in geoscience classrooms. Geosphere, 13(2), 608–627. [Google Scholar] [CrossRef]
- Theobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., Chambwe, N., Cintrón, D. L., Cooper, J. D., Dunster, G., Grummer, J. A., Hennessey, K., Hsiao, J., Iranon, N., Jones, L., Jordt, H., Keller, M., Lacey, M. E., Littlefield, C. E., … Freeman, S. (2020). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proceedings of the National Academy of Sciences, 117(12), 6476–6483. [Google Scholar] [CrossRef]
- Thomas, M. (2011). Deconstructing digital natives: Young people, technology, and the new literacies. Routledge. [Google Scholar]
- Urhahne, D., & Wijnia, L. (2023). Theories of motivation in education: An integrative framework. Educational Psychology Review, 35(2), 45–80. [Google Scholar] [CrossRef]
- Yang, Y.-T. C. (2008). A catalyst for teaching critical thinking in a large university class in Taiwan: Asynchronous online discussions with the facilitation of teaching assistants. Educational Technology Research and Development, 56(3), 241–264. [Google Scholar] [CrossRef]
- Zamalloa, T., & Sanz, J. (2023). Attitudes of secondary school students towards geology in Spain. Research in Science & Technological Education, 41(1), 123–146. [Google Scholar] [CrossRef]
Characteristics | Total (n = 79) | GIF (n = 44) | Traditional (n = 35) | Statistical Test (df) | p-Value | Effect Size |
---|---|---|---|---|---|---|
Age (years) a | 31.0 ± 6.7 | 33.0 ± 7.0 | 28.5 ± 5.4 | t76 = −3.213 | 0.002 | 0.737 |
Gender (% women) | 87.3 | 81.8 | 94.3 | χ2(1) = 2.741 | 0.098 | 0.186 |
Educational Level (%) | χ2(2) = 1.833 | 0.400 | 0.152 | |||
Undergraduate | 1.3 | 2.3 | 0.0 | |||
Bachelor’s | 64.6 | 59.1 | 71.4 | |||
Postgraduate | 34.2 | 38.6 | 28.6 | |||
Grades in Biology and Geology (%) | χ2(2) = 3.249 | 0.197 | 0.203 | |||
Pass | 21.5 | 15.9 | 28.6 | |||
Good | 67.1 | 68.2 | 65.7 | |||
Excellent | 11.4 | 15.9 | 5.7 | |||
Self-assessed Knowledge in Geology a | 5.7 ± 1.6 | 6.0 ± 1.5 | 5.3 ± 1.6 | t77 = −1.729 | 0.088 | 0.394 |
Motivation to Learn a | 9.0 ± 1.1 | 8.9 ± 1.2 | 9.0 ± 1.0 | t77 = 0.570 | 0.570 | 0.130 |
Interest in Geology a | 7.0 ± 1.6 | 7.3 ± 1.8 | 6.8 ± 1.2 | t77 = −1.365 | 0.176 | 0.311 |
Interest in ICT a | 8.0 ± 1.6 | 8.1 ± 1.7 | 8.0 ± 1.6 | t77 = −0.322 | 0.748 | 0.073 |
Importance of ICT in T-L a | 8.4 ± 1.5 | 8.3 ± 1.6 | 8.5 ± 1.3 | t77 = 0.744 | 0.459 | 0.170 |
Level of Digital Skills a | 7.8 ± 1.4 | 7.8 ± 1.4 | 7.7 ± 1.4 | t77 = −0.096 | 0.924 | 0.022 |
Fixed Effect | dfN | dfD | F | p | Effect Size |
---|---|---|---|---|---|
Time (β1) | 1 | 77 | 43.149 | <0.001 | 0.354 |
Group (β2) | 1 | 76 | 8.769 | 0.004 | 0.103 |
Group × Time (β3) | 1 | 76 | 9.196 | 0.003 | 0.108 |
Interest in geology (β4) | 1 | 110 | 4.247 | 0.042 | 0.037 |
Age (β5) | 1 | 75 | 0.045 | 0.832 | 0.001 |
Fixed Effect | dfN | dfD | F | p | Effect Size |
---|---|---|---|---|---|
Time (β1) | 1 | 81 | 1.763 | 0.188 | 0.021 |
Group (β2) | 1 | 181 | 0.000 | 0.993 | 0.000 |
Group × Time (β3) | 1 | 81 | 0.246 | 0.621 | 0.003 |
Motivation to learn (β4) | 1 | 263 | 71.016 | <0.001 | 0.213 |
Age (β5) | 1 | 254 | 4.940 | 0.027 | 0.019 |
Fixed Effect | dfN | dfD | F | p | Effect Size |
---|---|---|---|---|---|
Time (β1) | 1 | 77 | 0.371 | 0.544 | 0.005 |
Group (β2) | 1 | 136 | 0.592 | 0.443 | 0.004 |
Group × Time (β3) | 1 | 77 | 0.013 | 0.911 | 0.000 |
Skills in ICT (β4) | 1 | 257 | 190.945 | <0.001 | 0.426 |
Importance of ICT (β5) | 1 | 255 | 54.364 | <0.001 | 0.172 |
Age (β6) | 1 | 255 | 0.003 | 0.957 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campa-Bousoño, C.; García-Pérez, Á. Evaluating the Effectiveness of GIF-Based Methodology in Enhancing Geoscience Education Among Primary Education Undergraduates. Educ. Sci. 2025, 15, 570. https://doi.org/10.3390/educsci15050570
Campa-Bousoño C, García-Pérez Á. Evaluating the Effectiveness of GIF-Based Methodology in Enhancing Geoscience Education Among Primary Education Undergraduates. Education Sciences. 2025; 15(5):570. https://doi.org/10.3390/educsci15050570
Chicago/Turabian StyleCampa-Bousoño, Celia, and Ángel García-Pérez. 2025. "Evaluating the Effectiveness of GIF-Based Methodology in Enhancing Geoscience Education Among Primary Education Undergraduates" Education Sciences 15, no. 5: 570. https://doi.org/10.3390/educsci15050570
APA StyleCampa-Bousoño, C., & García-Pérez, Á. (2025). Evaluating the Effectiveness of GIF-Based Methodology in Enhancing Geoscience Education Among Primary Education Undergraduates. Education Sciences, 15(5), 570. https://doi.org/10.3390/educsci15050570