Implementing Augmented Reality Models in the Classroom Environment Using Merge Cubes: A Quantitative Study of the Effects on Students’ Cognitive Load and Motivation
Abstract
:1. Introduction
2. Theoretical Background
2.1. Augmented Reality—A Definition
“Augmented reality (AR) is a (direct and interactive) perception of the real environment enriched with virtual content (for any senses) in real time, which is oriented as far as possible towards reality in its characteristics and appearance, so that in extreme cases (if this is desired) a distinction between real and virtual (sensory) impressions is no longer possible”.
2.2. AR in the Classroom
2.2.1. Potential and Challenges
2.2.2. AR and Its Influence on the Cognitive Load in Learning Processes
2.2.3. AR and Its Influence on Motivation in Learning Processes
2.2.4. The Merge Cube as a Learning Medium
2.2.5. Effects of Using the Merge Cube on Learning
3. Empirical Study: Psychological Effects on Learning Based on the Use of the Merge Cube in Construction Technology Lessons
3.1. Research Question and Aim of This Study
3.2. Design and Methodology
3.3. Survey Implementation and Sample
3.4. Intervention and Learning Materials
3.5. Data Entry and Evaluation
4. Presentation of Selected Results
4.1. Results for the First Point of Measurement
4.2. Results for the Second Point of Measurement
4.3. Results of the Changes Between the First and Second Points of Measurement
5. Discussion and Outlook
5.1. Classification of Central Results in the Discourse
5.2. Limitations of the Study
5.3. Research Desiderata and Practical Teaching Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | augmented reality |
EC | experimental group |
CG | control group |
GCL | Germane Cognitive Load |
ECL | Extraneous Cognitive Load |
IM | intrinsic motivation |
References
- Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11. [Google Scholar] [CrossRef]
- Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385. Available online: https://www.cs.unc.edu/~azuma/ARpresence.pdf (accessed on 1 January 2025). [CrossRef]
- Barta, S., Gurrea, R., & Flavián, C. (2024). Augmented reality experiences: Consumer-centered augmented reality framework and research agenda. Psychology and Marketing, 42(2), 634–650. [Google Scholar] [CrossRef]
- Bitkom/Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e. V. (2023). Die Zukunft der Consumer Technology–2023. Marktentwicklung|Metaverse|AR und VR|streaming und TV|gaming. Available online: https://www.bitkom.org/sites/main/files/2023-08/bitkom-studie-die-zukunft-der-consumer-technology-2023.pdf (accessed on 1 January 2025).
- Buchner, J., & Kerres, M. (2022). Media comparison studies dominate comparative research on augmented reality in education. Computers and Education, 195, 104711. [Google Scholar] [CrossRef]
- Buehler, K., & Kohne, A. (2020). Besser Lernen mit VR/AR Anwendungen. In H. Orsolits, & M. Lackner (Eds.), Virtual Reality und Augmented Reality in der Digitalen Produktion (pp. 75–97). Springer Gabler. [Google Scholar] [CrossRef]
- Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293–332. [Google Scholar] [CrossRef]
- Chiang, T., Yang, S. J. H., & Hwang, G. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology and Society, 17, 352–365. Available online: https://www.researchgate.net/publication/287529242 (accessed on 1 January 2025).
- Christou, C. (2010). Virtual Reality in Education. In A. Tzanavari, & N. Tsapatsoulis (Eds.), Affective, interactive and cognitive methods for e-learning design: Creating an optimal education experience (pp. 228–243). IGI Global Scientific Publishing. [Google Scholar] [CrossRef]
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). L. Erlbaum Associates. [Google Scholar]
- Dietze, N. (2020). Virtuelle und Erweiterte Realität in der beruflichen Bildung. Nur ein Trend oder ein Schlüssel für neue Lernerfahrungen? In A. Beinsteiner, L. Blasch, T. Hug, P. Missomelius, & M. Rizzolli (Eds.), Augmentierte und virtuelle Wirklichkeiten (pp. 205–220). Innsbruck University Press. [Google Scholar] [CrossRef]
- Döring, N., & Bortz, J. (2016). Forschungsmethoden und Evaluation in den Sozial-und Humanwissenschaften (5th ed.). Springer. [Google Scholar] [CrossRef]
- Dörner, R., Broll, W., Jung, B., Grimm, P., & Göbel, M. (2019). Einführung in Virtual und Augmented Reality. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Eds.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der virtuellen und augmentierten Realität (pp. 1–42). Springer. [Google Scholar] [CrossRef]
- Dresel, M., & Lämmle, L. (2017). Motivation. In T. Götz (Ed.), Emotion, Motivation und selbstreguliertes lernen (pp. 80–142). Brill Schöningh. [Google Scholar] [CrossRef]
- Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 735–745). Springer. [Google Scholar] [CrossRef]
- Edelmann, W., & Wittmann, S. (2012). Lernpsychologie (7th ed.). Beltz. [Google Scholar]
- Fehling, D. (2017). Erweiterte Lernwelten für die berufliche Bildung. Augmented Reality als Perspektive. In F. Thissen (Ed.), Lernen in virtuellen Räumen. Perspektiven des mobilen Lernens (pp. 125–142). De Gruyter Saur. [Google Scholar] [CrossRef]
- Fehrmann, R. (2022). Digitale Kompetenz für das Leben in einer digitalisierten Welt—Eine begriffstheoretische Fundierung und multidimensionale Konzeptualisierung, konkretisiert an der unterrichtspraktischen Produktion von Erklärvideos. In J. Hugo, R. Fehrmann, S. Ud-Din, & J. Scharfenberg (Eds.), Digitalisierungen in Schule und Bildung als gesamtgesellschaftliche Herausforderung—Perspektiven zwischen Wissenschaft, Praxis und Recht (pp. 115–130). Waxmann. [Google Scholar]
- Fehrmann, R. (2024). Professionelle digitale Kompetenz bei Lehramtsstudierenden fördern! Wie kann Computational Thinking durch den Einsatz von Bildungsrobotik in der Hochschullehre vermittelt werden? Wissenschaftliche Schriften der Universität Münster VI, Band 26. tredition. [Google Scholar] [CrossRef]
- Hamann, K., Kannewurf, A., Link, M., Münzinger, A., & Schnalzer, K. (2020). Lernen mit Virtual und Augmented Reality. Available online: https://www.transwork.de/wp-content/uploads/2021/03/Hamann-et-al_2020_Arbeitspapier_LernenmitVRAR-1.pdf (accessed on 1 January 2025).
- Hasselhorn, M., & Gold, A. (2013). Pädagogische Psychologie. Erfolgreiches Lehren und Lernen (3rd. ed.). Kohlhammer. [Google Scholar]
- Hellriegel, J., & Čubela, D. (2018). Das Potenzial von Virtual Reality für den schulischen Unterricht. Eine konstruktivistische Sicht. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 58–80. [Google Scholar] [CrossRef]
- Hoffmann, C. (2023). Die potenziale von augmented reality im biologieunterricht. Entwicklung und evaluation tablet-basierter augmented-reality-apps in authentischen biologischen unterrichtsszenarien. Available online: https://kluedo.ub.rptu.de/frontdoor/deliver/index/docId/7361/file/Dissertation_Carsten+Hoffmann_Potentiale_von_AR_final.pdf (accessed on 1 January 2025).
- Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1997. [Google Scholar] [CrossRef]
- Knoll, M., & Stieglitz, S. (2022). Augmented Reality und Virtual Reality—Einsatz im Kontext von Arbeit, Forschung und Lehre. HMD Praxis der Wirtschaftsinformatik, 59(6), 6–22. [Google Scholar] [CrossRef]
- Knutzen, S., & Howe, F. (2021). Ansätze zur Digitalisierung des beruflichen Lernens. In P. Dehnbostel, G. Richter, T. Schröder, & A. Tisch (Eds.), Kompetenzentwicklung in der digitalen arbeitswelt. Zukünftige anforderungen und berufliche lernchancen (pp. 207–219). Schäffer-Poeschel. [Google Scholar]
- Lampropoulos, G. (2025). Intelligent virtual reality and augmented reality technologies: An overview. Future Internet, 17(2), 58. [Google Scholar] [CrossRef]
- Lampropoulos, G., Fernández-Arias, P., Antón-Sancho, Á., & Vergara, D. (2024). Affective computing in augmented reality, virtual reality, and immersive learning environments. Electronics, 13(15), 2917. [Google Scholar] [CrossRef]
- Lin, G. (2021). The application of augmented reality using merge cube in glycoscience dissemination. International Journal of Digital Media Design, 13(1), 1–13. Available online: https://www.researchgate.net/publication/368816409 (accessed on 1 January 2025).
- Maresch, G. (2006). Die cognitive load theory—Kriterien für multimediale lernmaterialien. Available online: https://www.researchgate.net/publication/282662418 (accessed on 1 January 2025).
- Matteson, A. (2018). AR/VR toys with potential: MERGE cube and goggles offer an array of experiences to kids 10 and up. School Library Journal, 64(10), 20–21. Available online: https://www.slj.com/story/MERGE-cube-and-goggles-slj-tech-review (accessed on 1 January 2025).
- Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. Mayer (Ed.), The cambridge handbook of multimedia learning (pp. 31–48). Cambridge University Press. [Google Scholar] [CrossRef]
- Meyer, R. E. (2022). Cognitive theory of multimedia learning. In R. Meyer, & L. Fiorella (Eds.), The cambridge handbook of multimedia learning (pp. 57–72). Cambridge University Press. [Google Scholar] [CrossRef]
- Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and telepresence technologies (Vol. 2351, pp. 282–292). SPIE. Available online: https://www.researchgate.net/publication/228537162 (accessed on 1 January 2025).
- Niegemann, H. M., Domagk, S., Hessel, S., Hein, A., Hupfer, M., & Zobel, A. (2008). Kompendium Multimediales Lernen. Springer. [Google Scholar]
- Nijholt, A. (2023). Toward a new definition of augmented reality. In T. Ahram, & W. Karwowski (Eds.), Augmented, virtual and mixed reality simulation AHFE International (Vol. 118, pp. 30–39). AHFE Open Access. AHFE International. [Google Scholar] [CrossRef]
- Probst, C., Fetzer, D., Lukas, S., & Huwer, J. (2022). Effekte von Augmented Reality (AR) zur Visualisierung eines dynamischen Teilchenmodells–virtuelle Modelle zum Anfassen. Chemkon, 29(4), 164–170. [Google Scholar] [CrossRef]
- Probst, C., Wendt, D., Lukas, S., & Huwer, J. (2021). Mit Hilfe von Augmented Reality das Schalenmodell einführen und erarbeiten. In N. Graulich, J. Huwer, & A. Banerji (Eds.), Digitalisation in chemistry education: Digitales Lehren und Lernen an Hochschule und Schule im Fach Chemie (pp. 109–120). Waxmann. [Google Scholar] [CrossRef]
- Radu, I. (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533–1543. [Google Scholar] [CrossRef]
- Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67. [Google Scholar] [CrossRef]
- Sakti, A. T., & Sejati, H. (2024). Aplikasi pengenalan anatomi manusia berbasis augmented reality. Jurnal Indonesia: Manajemen Informatika Dan Komunikasi, 5(1), 700–707. [Google Scholar] [CrossRef]
- Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2014). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on Learning Technologies, 7(1), 38–56. Available online: https://ieeexplore.ieee.org/document/6681863 (accessed on 1 January 2025).
- Schäfer, C., Rohse, D., Gittinger, M., & Wiesche, D. (2023). Virtual Reality in der Schule: Bedenken und Potenziale aus Sicht der Akteur*innen in interdisziplinären Ratingkonferenzen. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 51(AR/VR-Part 2), 1–24. [Google Scholar] [CrossRef]
- Schweiger, M., Wimmer, J., Chaudhry, M., Alves Siegle, B., & Xie, D. (2022). Lernerfolg in der Schule durch Augmented und Virtual Reality? Eine quantitative Synopse von Wirkungsstudien zum Einsatz virtueller Realitäten in Grund-und weiterführenden Schulen. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 47(AR/VR-Part 1), 1–25. [Google Scholar] [CrossRef]
- Sperlich, E. (2022). Merge Cube–Lehre mit erweiterter Realität. Available online: https://www.uni-potsdam.de/de/kristallographie/lehre/merge-cube-lehre-mit-erweiterter-realtitaet (accessed on 1 January 2025).
- Spörer, N., & Glaser, C. (2010). Förderung selbstregulierten Lernens im schulischen Kontext. Zeitschrift für Pädagogische Psychologie, 24(3–4), 171–175. [Google Scholar] [CrossRef]
- Taufiq, M., Nuswowati, M., & Widiyatmoko, A. (2021). Feasibility study of a solar system learning media based on merge cube augmented reality to embedding problem solving skills. Journal of Physics Conference Series, 1918(5), 052064. [Google Scholar] [CrossRef]
- Thissen, F. (2017). Einleitung. In F. Thissen (Ed.), Lernen in virtuellen Räumen: Perspektiven des mobilen Lernens (pp. 1–7). De Gruyter Saur. [Google Scholar] [CrossRef]
- Voštinár, P., & Ferianc, P. (2023). Merge Cube as a new teaching tool for augmented reality. IEEE Access, 11, 81092–81100. [Google Scholar] [CrossRef]
- Wilde, M., Bätz, K., Kovaleva, A., & Urhane, D. (2009). Überprüfung einer Kurzskala intrinsischer Motivation (KIM). Testing a short scale of intrinsic motivation. Zeitschrift für Didaktik der Naturwissenschaften, 15, 31–45. Available online: https://www.researchgate.net/publication/275015583 (accessed on 1 January 2025).
- Zender, R., Buchner, J., Schäfer, C., Wiesche, D., Kelly, K., & Tüshaus, L. (2022). Virtual Reality für Schüler*innen: Ein «Beipackzettel» für die Durchführung immersiver Lernszenarien im schulischen Kontext. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 47(AR/VR-Part 1), 26–52. [Google Scholar] [CrossRef]
EC | CG | |||||||
M | SD | M | SD | t | FG | p | d | |
GCL_Pre | 5.28 | 0.60 | 5.33 | 1.17 | −0.16 | 22.85 | 0.875 | 0.91 |
ECL_Pre | 3.72 | 0.93 | 3.59 | 1.15 | 0.38 | 35 | 0.710 | 1.04 |
IM_Pre | 4.22 | 0.62 | 4.48 | 1.02 | −0.95 | 35 | 0.349 | 0.83 |
EC | CG | |||||||
M | SD | M | SD | t | FG | p | d | |
GCL_Post | 5.37 | 1.01 | 4.92 | 0.84 | 1.43 | 34 | 0.163 | 0.94 |
ECL_Post | 3.10 | 0.69 | 3.98 | 1.09 | −2.94 | 34 | 0.006 * | 0.89 |
IM_Post | 4.68 | 1.02 | 4.53 | 0.74 | 0.51 | 34 | 0.614 | 0.91 |
EC | CG | |||||||
M | SD | M | SD | t | FG | p | d | |
GCL_Diff | 0.08 | 1.13 | −0.52 | 0.76 | 1.83 | 34 | 0.076 | 0.98 |
ECL_Diff | −0.62 | 1.13 | 0.52 | 0.73 | −3.48 | 34 | 0.001 * | 0.97 |
IM_Diff | 0.46 | 1.20 | 0.10 | 0.83 | 1.04 | 34 | 0.308 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fehrmann, R. Implementing Augmented Reality Models in the Classroom Environment Using Merge Cubes: A Quantitative Study of the Effects on Students’ Cognitive Load and Motivation. Educ. Sci. 2025, 15, 414. https://doi.org/10.3390/educsci15040414
Fehrmann R. Implementing Augmented Reality Models in the Classroom Environment Using Merge Cubes: A Quantitative Study of the Effects on Students’ Cognitive Load and Motivation. Education Sciences. 2025; 15(4):414. https://doi.org/10.3390/educsci15040414
Chicago/Turabian StyleFehrmann, Raphael. 2025. "Implementing Augmented Reality Models in the Classroom Environment Using Merge Cubes: A Quantitative Study of the Effects on Students’ Cognitive Load and Motivation" Education Sciences 15, no. 4: 414. https://doi.org/10.3390/educsci15040414
APA StyleFehrmann, R. (2025). Implementing Augmented Reality Models in the Classroom Environment Using Merge Cubes: A Quantitative Study of the Effects on Students’ Cognitive Load and Motivation. Education Sciences, 15(4), 414. https://doi.org/10.3390/educsci15040414