Procedural Learning in Mixed Reality: Assessing Cognitive Load and Performance
Abstract
:1. Introduction
1.1. Design of Learning Scenarios: The Case of the Split-Attention Principle
1.2. Cognitive Load Theory (CLT)
1.3. Cognitive Theory of Multimedia Learning (CTML)
1.4. Learning Surgical Procedures in Medical Education
1.5. Current Study
2. Materials and Methods
2.1. Participants, Sampling, and Measures
2.2. Materials and Experimental Design
3. Results
3.1. Cognitive Load
3.2. Overall Performance Related to Knot Quality During Recall Phase
3.3. Performance Related to Knot Execution Time During Recall Phase
3.4. Learning Time for Knot-Tying
3.5. User Satisfaction with the Use of HoloLens 2
4. Discussion
4.1. Empirical Contributions
4.2. Practical Implications
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
95% CI | ||||||||
---|---|---|---|---|---|---|---|---|
Conditions | Mean | Lower | Upper | Median | SD | Minimum | Maximum | |
Complexity | C | 4.15 | 2.83 | 5.48 | 5 | 2.19 | 1 | 7 |
NC | 5.77 | 4.33 | 7.21 | 6 | 2.39 | 1 | 10 | |
Mental Effort-Complexity | C | 5.54 | 4.39 | 6.69 | 6 | 1.90 | 2 | 8 |
NC | 6.77 | 5.21 | 8.33 | 8 | 2.59 | 2 | 10 | |
Clarity | C | 2.31 | 1.11 | 3.50 | 2 | 1.97 | 1 | 8 |
NC | 3.08 | 1.93 | 4.22 | 3 | 1.89 | 1 | 7 | |
Efficiency | C | 2.92 | 1.56 | 4.28 | 2 | 2.25 | 1 | 8 |
NC | 3.69 | 2.27 | 5.12 | 3 | 2.36 | 1 | 8 | |
Mental Effort-Clarity & Efficiency | C | 3.15 | 1.62 | 4.69 | 3 | 2.54 | 1 | 10 |
NC | 4.77 | 3.31 | 6.23 | 5 | 2.42 | 1 | 9 | |
Knowledge & understanding | C | 7.85 | 6.93 | 8.76 | 8 | 1.52 | 6 | 10 |
NC | 6.08 | 4.38 | 7.78 | 6 | 2.81 | 1 | 10 | |
Mental Effort-Knowledge & Understanding | C | 6.15 | 5.00 | 7.31 | 7 | 1.91 | 3 | 9 |
NC | 7.31 | 6.04 | 8.57 | 8 | 2.10 | 4 | 10 |
Appendix B
Conditions | N | Mean | Median | SD | Min | Max | |
---|---|---|---|---|---|---|---|
T1 SMC | C | 13 | 5.85 | 4 | 4.413 | 2 | 18 |
NC | 13 | 8.92 | 8 | 4.591 | 3 | 16 | |
T2 SMC | C | 12 | 2.33 | 2.00 | 1.155 | 1 | 5 |
NC | 8 | 5.13 | 4.00 | 3.796 | 2 | 14 | |
T3 SMC | C | 4 | 1.50 | 1.50 | 0.577 | 1 | 2 |
NC | 4 | 3.00 | 2.00 | 2.828 | 1 | 7 | |
T1 Double Twist | C | 13 | 12.23 | 10 | 9.057 | 3 | 32 |
NC | 13 | 17.08 | 17 | 8.108 | 7 | 30 | |
T2 Double Twist | C | 5 | 4.40 | 4 | 1.140 | 3 | 6 |
NC | 4 | 5.25 | 4.00 | 3.304 | 3 | 10 | |
T3 Double Twist | C | 0 | NaN | NaN | NaN | NaN | NaN |
NC | 0 | NaN | NaN | NaN | NaN | NaN | |
T1 Duncan | C | 13 | 2.85 | 3 | 1.573 | 1 | 6 |
NC | 13 | 3.92 | 4 | 1.656 | 2 | 8 | |
T2 Duncan | C | 9 | 1.44 | 1 | 0.527 | 1 | 2 |
NC | 7 | 1.43 | 1 | 0.535 | 1 | 2 | |
T3 Duncan | C | 2 | 1.50 | 1.50 | 0.707 | 1 | 2 |
NC | 1 | 3.00 | 3 | NaN | 3 | 3 |
Appendix C
Conditions | N | Mean | Median | SD | Min | Max | |
---|---|---|---|---|---|---|---|
GL1 | C | 13 | 6.92 | 7 | 2.47 | 1 | 10 |
NC | 13 | 7.23 | 8 | 2.98 | 2 | 10 | |
GL2 | C | 13 | 7.77 | 8 | 2.62 | 2 | 10 |
NC | 13 | 7.77 | 8 | 2.42 | 3 | 10 | |
GL3 | C | 13 | 7.69 | 8 | 2.53 | 3 | 10 |
NC | 13 | 7.77 | 8 | 1.96 | 3 | 10 | |
GL4 | C | 13 | 6.69 | 7 | 2.66 | 1 | 10 |
NC | 13 | 7.69 | 8 | 2.32 | 2 | 10 | |
GL5 | C | 13 | 9.08 | 9 | 1.04 | 7 | 10 |
NC | 13 | 8.54 | 9 | 1.81 | 5 | 10 | |
GL6 | C | 13 | 7.54 | 8 | 1.98 | 2 | 10 |
NC | 13 | 7.85 | 8 | 2.08 | 4 | 10 | |
GL7 | C | 13 | 7.46 | 8 | 2.18 | 3 | 10 |
NC | 13 | 8.15 | 8 | 1.57 | 6 | 10 | |
GL8 | C | 13 | 7.77 | 8 | 2.39 | 3 | 10 |
NC | 13 | 8.08 | 8 | 1.38 | 5 | 10 | |
GL9 | C | 13 | 6.00 | 6 | 1.83 | 3 | 9 |
NC | 13 | 6.46 | 7 | 2.63 | 1 | 10 | |
GL10 | C | 13 | 8.54 | 9 | 1.39 | 7 | 10 |
NC | 13 | 7.69 | 8 | 2.32 | 1 | 10 | |
GL11 | C | 13 | 6.85 | 8 | 3.08 | 1 | 10 |
NC | 13 | 7.46 | 8 | 2.54 | 3 | 10 |
Appendix D
CL Type/Item | KMO | Reliability α |
---|---|---|
ICL | 0.826 | |
Item 1 | 0.509 | |
Item 2 | 0.560 | |
ECL | 0.393 | 0.735 |
Item 3 | 0.393 | |
Item 4 | 0.749 | |
Item 5 | 0.477 | |
GCL | 0.067 | |
Item 6 | 0.550 | |
Item 7 | 0.698 |
Appendix E. Bootstrap Process
Appendix F. Adaptation and Translation of the CLS
# | Original Item (English) | # New | Adapted Item (English) | Adapted Selected Item (French) |
---|---|---|---|---|
1 | The content of this activity was very complex. | 1 | - | - |
2 | The problem/s covered in this activity was/were very complex. | 2 | The procedures covered in these activities were very complex. | Les procédures abordées dans ces activités étaient très complexes. |
3 | In this activity, very complex terms were mentioned. | 3 | - | - |
4 | I invested a very high mental effort in the complexity of this activity. | 4 | I invested a very high mental effort in the complexity of these activities. | J’ai investi un effort mental très important dans la complexité de ces activités. |
5 | The explanations and instructions in this activity were very unclear. | 5 | The instructions for these activities were very unclear. | Les instructions de ces activités n’étaient pas très claires |
6 | The explanations and instructions in this activity were full of unclear language. | 6 | - | |
7 | The explanations and instructions in this activity were, in terms of learning, very ineffective. | 7 | The instructions for these activities were, in terms of learning very ineffective. | Les instructions de ces activités étaient, en termes d’apprentissage, très inefficaces. |
8 | I invested a very high mental effort in unclear and ineffective explanations and instructions in this activity. | 8 | I invested a very high mental effort in unclear and ineffective instructions in these activities. | J’ai investi un effort mental très important dans les instructions peu claires et inefficaces de ces activités. |
9 | This activity really enhanced my understanding of the content that was covered. | 9 | - | - |
10 | This activity really enhanced my understanding of the problem/s that was/ were covered. | 10 | - | - |
11 | This activity really enhanced my knowledge of the terms that were mentioned. | 11 | - | - |
12 | This activity really enhanced my knowledge and understanding of how to deal with the problem/s covered. | 12 | These activities really enhanced my knowledge and understanding of how to realize the procedures covered. | Ces activités ont vraiment amélioré ma connaissance et ma compréhension de la manière de réaliser les procédures abordées. |
13 | I invested a very high mental effort during this activity in enhancing my knowledge and understanding. | 13 | I invested a very high mental effort during these activities in enhancing my knowledge and understanding of the procedures. | J’ai investi un effort mental très important au cours de ces activités pour améliorer ma connaissance et ma compréhension des procédures. |
Appendix G. Translation of SGUS Questionnaire
# | Original Item (English) | Translated Item (French) |
---|---|---|
1 | GL1 With AR-glasses I could access information at the most appropriate place and moment. | GL1 Avec les lunettes AR, j’ai pu accéder à l’information à l’endroit et au moment les plus appropriés. |
2 | GL2 Content displayed on the AR-glasses made sense in the context I used it. | Gl2 Le contenu affiché sur les lunettes AR avait un sens dans le contexte où je l’ai utilisé. |
3 | GL3 AR-glasses provided me with the most suitable amount of information. | GL3 Les lunettes AR m’ont fourni la quantité d’informations la plus appropriée. |
4 | GL4 AR-glasses allowed a natural way to interact with information displayed. | GL4 Les lunettes AR permettent d’interagir de manière naturelle avec les informations affichées. |
5 | GL5 I had a good conception of what is real and what is augmented when using AR-glasses. | GL5 J’ai une bonne conception de ce qui est réel et de ce qui est augmenté lorsque j’utilise des lunettes AR. |
6 | GL6 The interaction with content on AR-glasses captivated my attention in a positive way. | GL 6 L’interaction avec le contenu des lunettes AR a captivé mon attention de manière positive. |
7 | GL7 The instructions given by AR-glasses helped me to accomplish the task. | GL7 Les instructions données par les lunettes AR m’ont aidé à accomplir la tâche. |
8 | GL8 I understood what is expected from me in each phase of the task with the help of AR-glasses. | GL8 J’ai compris ce que l’on attendait de moi à chaque phase de la tâche avec l’aide des lunettes AR. |
9 | GL9 Performing the task with the help of AR-glasses was natural to me. | GL9 L’exécution de la tâche avec l’aide des lunettes AR était naturelle pour moi |
10 | GL10 While using AR-glasses, I was aware of the phase of the task at all times during the execution of the task. | GL10 En utilisant les lunettes AR, j’étais conscient de la phase de la tâche à tout moment pendant l’exécution de la tâche. |
11 | GL11 While using AR-glasses, I was able to pay attention to the essential aspects of the task all the time. | GL11 En utilisant les lunettes AR, j’ai pu prêter attention aux aspects essentiels de la tâche à tout moment. |
Appendix H. Smart Glass User Satisfaction
Items | MSA |
---|---|
Overall | 0.661 |
GL1 | 0.760 |
GL2 | 0.735 |
GL3 | 0.874 |
GL4 | 0.519 |
GL5 | 0.193 |
GL6 | 0.678 |
GL7 | 0.667 |
GL8 | 0.703 |
GL9 | 0.581 |
GL10 | 0.412 |
GL11 | 0.726 |
Appendix I. Counterbalancing Method for Knot Recall
References
- Allcoat, D., Hatchard, T., Azmat, F., Stansfield, K., Watson, D., & von Mühlenen, A. (2021). Education in the digital age: Learning experience in virtual and mixed realities. Journal of Educational Computing Research, 59(5), 795–816. [Google Scholar] [CrossRef]
- Altmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., & Brünken, R. (2020). The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses—Theoretical background and empirical results. British Journal of Educational Technology, 51(3), 611–628. [Google Scholar] [CrossRef]
- Altmeyer, K., Malone, S., Kapp, S., Barz, M., Lauer, L., Thees, M., Kuhn, J., Peschel, M., Sonntag, D., & Brünken, R. (2021, September 20–22). The effect of augmented reality on global coherence formation processes during STEM laboratory work in elementary school children. [Conference session] (pp. 20–22), International Cognitive Load Theory Conference, Kingston, ON, Canada. Available online: https://www.dfki.de/en/web/research/projects-and-publications/publication/11870 (accessed on 6 December 2024).
- Asoodar, M., Janesarvatan, F., Yu, H., & de Jong, N. (2024). Theoretical foundations and implications of augmented reality, virtual reality, and mixed reality for immersive learning in health professions education. Advances in Simulation, 9(1), 36. [Google Scholar] [CrossRef]
- Ayres, P., & Sweller, J. (2021). The split-attention principle in multimedia learning. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 199–211). Cambridge University Press. [Google Scholar] [CrossRef]
- Barsom, E. Z., Graafland, M., & Schijven, M. P. (2016). Systematic review on the effectiveness of augmented reality applications in medical training. Surgical Endoscopy, 30(10), 4174–4183. [Google Scholar] [CrossRef]
- Baumgarten, K. M., & Wright, R. W. (2007). Ease of tying arthroscopic knots. Journal of Shoulder and Elbow Surgery, 16(4), 438–442. [Google Scholar] [CrossRef]
- Bautista, L., Maradei, F., & Pedraza, G. (2023). Strategies to reduce visual attention changes while learning and training in extended reality environments. International Journal on Interactive Design and Manufacturing, 17(1), 17–43. [Google Scholar] [CrossRef]
- Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38(1), 285–303. [Google Scholar] [CrossRef]
- Camp, G., Surma, T., & Kirschner, P. A. (2021). Foundations of multimedia learning. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 17–24). Cambridge University Press. [Google Scholar] [CrossRef]
- Çeken, B., & Taşkın, N. (2022). Multimedia learning principles in different learning environments: A systematic review. Smart Learning Environments, 9(1), 19. [Google Scholar] [CrossRef]
- Chanquoy, L., Tricot, A., & Sweller, J. (2007). Chapitre 3. La théorie de la charge cognitive. Collection U, 131–188. Available online: https://shs-cairn-info.gorgone.univ-toulouse.fr/la-charge-cognitive--9782200347246-page-131 (accessed on 23 November 2024).
- Chen, P. (2023, June 2). How immersive technology is transforming education, healthcare and beyond. World Economic Forum. Available online: https://www.weforum.org/stories/2023/06/immersive-technology-transform-education-healthcare/ (accessed on 23 November 2024).
- Chiniara, G., Cole, G., Brisbin, K., Huffman, D., Cragg, B., Lamacchia, M., & Norman, D. (2013). Simulation in healthcare: A taxonomy and a conceptual framework for instructional design and media selection. Medical Teacher, 35(8), e1380–e1395. [Google Scholar] [CrossRef]
- Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 25(2), 315–324. [Google Scholar] [CrossRef]
- Co, M., Chiu, S., & Billy Cheung, H. H. (2023). Extended reality in surgical education: A systematic review. Surgery, 174(5), 1175–1183. [Google Scholar] [CrossRef]
- de Bruin, A. B. H., Roelle, J., Carpenter, S. K., Baars, M., & EFG-MRE. (2020). Synthesizing cognitive load and self-regulation theory: A theoretical framework and research agenda. Educational Psychology Review, 32(4), 903–915. [Google Scholar] [CrossRef]
- de Sá, V. H. L. C., Pazin, G. S., Elias, P. E., Achar, E., & Pereira Filho, G. V. (2022). How to do it: Teaching surgical skills to medical undergraduates. Annals of Medicine and Surgery, 82, 104617. [Google Scholar] [CrossRef]
- Feldon, D. F., Callan, G., Juth, S., & Jeong, S. (2019). Cognitive load as motivational cost. Educational Psychology Review, 31(2), 319–337. [Google Scholar] [CrossRef]
- Fiorella, L., & Mayer, R. E. (2021). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 185–198). Cambridge University Press. [Google Scholar] [CrossRef]
- Forgione, A., & Guraya, S. Y. (2017). The cutting-edge training modalities and educational platforms for accredited surgical training: A systematic review. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 22(1), 51. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K. L., Ayres, P., & Sweller, J. (2015). Cognitive load theory for the design of medical simulations. Simulation in Healthcare, 10(5), 295. [Google Scholar] [CrossRef]
- Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16(6), 511–525. [Google Scholar] [CrossRef]
- Gonnermann-Müller, J., & Krüger, J. M. (2024). Unlocking augmented reality learning design based on evidence from empirical cognitive load studies—A systematic literature review. Journal of Computer Assisted Learning, 41(1), e13095. [Google Scholar] [CrossRef]
- Grantcharov, T. P. (2008). Is virtual reality simulation an effective training method in surgery? Nature Clinical Practice Gastroenterology & Hepatology, 5(5), 232–233. [Google Scholar] [CrossRef]
- Gregory, T. M., Gregory, J., Sledge, J., Allard, R., & Mir, O. (2018). Surgery guided by mixed reality: Presentation of a proof of concept. Acta Orthopaedica, 89(5), 480–483. [Google Scholar] [CrossRef]
- Helin, K., Kuula, T., Vizzi, C., Karjalainen, J., & Vovk, A. (2018). User experience of augmented reality system for astronaut’s manual work support. Frontiers in Robotics and AI, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Issa, N., Schuller, M., Santacaterina, S., Shapiro, M., Wang, E., Mayer, R. E., & DaRosa, D. A. (2011). Applying multimedia design principles enhances learning in medical education. Medical Education, 45(8), 818–826. [Google Scholar] [CrossRef]
- Kim, S. H., & Ha, K. I. (2000). The SMC knot—A new slip knot with locking mechanism. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 16(5), 563–565. [Google Scholar] [CrossRef]
- Krüger, J. M., & Bodemer, D. (2022). Application and investigation of multimedia design principles in augmented reality learning environments. Information, 13(2), 74. [Google Scholar] [CrossRef]
- Lacroix, P.-M., Commeil, P., Chauveaux, D., & Fabre, T. (2021). Learning and optimizing arthroscopic knot-tying by surgery residents using procedural simulation. Orthopaedics & Traumatology: Surgery & Research, 107(8), 102944. [Google Scholar] [CrossRef]
- Laumann, D., Schlummer, P., Abazi, A., Borkamp, R., Lauströer, J., Pernice, W., Schuck, C., Schulz-Schaeffer, R., & Heusler, S. (2024). Analyzing the effective use of augmented reality glasses in university physics laboratory courses for the example topic of optical polarization. Journal of Science Education and Technology, 33(5), 668–685. [Google Scholar] [CrossRef]
- Leahy, W., & Sweller, J. (2019). The centrality of element interactivity to cognitive load theory. In Advances in cognitive load theory (pp. 221–232). Routledge. [Google Scholar]
- Leppink, J., Paas, F., Gog, T., Van der Vleuten, C., & Van Merrienboer, J. J. G. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32–42. [Google Scholar] [CrossRef]
- Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, H., Wu, J., Tang, Y., Li, H., Wang, W., Li, C., & Zhou, Y. (2019). Percutaneous placement of lumbar pedicle screws via intraoperative CT image–based augmented reality–guided technology. Journal of Neurosurgery: Spine, 32(4), 542–547. [Google Scholar] [CrossRef]
- Lu, S., Sanchez Perdomo, Y. P., Jiang, X., & Zheng, B. (2020). Integrating eye-tracking to augmented reality system for surgical training. Journal of Medical Systems, 44(11), 192. [Google Scholar] [CrossRef]
- Magalhães, R., Oliveira, A., Terroso, D., Vilaça, A., Veloso, R., Marques, A., Pereira, J., & Coelho, L. (2024). Mixed reality in the operating room: A systematic review. Journal of Medical Systems, 48(1), 76. [Google Scholar] [CrossRef] [PubMed]
- Makransky, G., & Petersen, G. B. (2021). The cognitive affective model of immersive learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33(3), 937–958. [Google Scholar] [CrossRef]
- Masson, J.-B. (2023). Qu’attendre de la réalité virtuelle et augmentée pour les applications médicales. Annales des Mines-Enjeux Numériques, 22(2), 42–50. [Google Scholar] [CrossRef]
- Mayer, R. E. (2002). Multimedia learning. In Psychology of learning and motivation (Volume 41, pp. 85–139). Academic Press. [Google Scholar] [CrossRef]
- Mayer, R. E. (2020). Designing multimedia instruction in anatomy: An evidence-based approach. Clinical Anatomy, 33(1), 2–11. [Google Scholar] [CrossRef]
- Mayer, R. E. (2021). Cognitive theory of multimedia learning. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 57–72). Cambridge University Press. [Google Scholar] [CrossRef]
- Mayer, R. E. (2024). The past, present, and future of the cognitive theory of multimedia learning. Educational Psychology Review, 36(1), 8. [Google Scholar] [CrossRef]
- Mayer, R. E., & Fiorella, L. (2021). Introduction to multimedia learning. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 3–16). Cambridge University Press. [Google Scholar] [CrossRef]
- Mayo, W. J. (1927). Medical education for the general practitioner. Journal of the American Medical Association, 88(18), 1377–1379. [Google Scholar] [CrossRef]
- McInnis, C., Asif, H., Ajzenberg, H., Wang, P., Mosa, A., Dang, F., Savage, T., Vo, T. X., Wang, J., Zevin, B., Mann, S., & Winthrop, A. (2021). The next surgical skills and technology elective program: The “surgical skills and technology elective program” decreases cognitive load during suturing tasks in second year medical students. Journal of Surgical Research, 267, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Mergen, M., Graf, N., & Meyerheim, M. (2024). Reviewing the current state of virtual reality integration in medical education—A scoping review. BMC Medical Education, 24(1), 788. [Google Scholar] [CrossRef]
- Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321–1329. [Google Scholar]
- Nagayo, Y., Saito, T., & Oyama, H. (2021). A novel suture training system for open surgery replicating procedures performed by experts using augmented reality. Journal of Medical Systems, 45(5), 60. [Google Scholar] [CrossRef]
- Nagayo, Y., Saito, T., & Oyama, H. (2022). Augmented reality self-training system for suturing in open surgery: A randomized controlled trial. International Journal of Surgery, 102, 106650. [Google Scholar] [CrossRef]
- Nottage, W. M., & Lieurance, R. K. (1999). Arthroscopic knot typing techniques. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 15(5), 515–521. [Google Scholar] [CrossRef]
- Ouwehand, K., van der Kroef, A., Wong, J., & Paas, F. (2021). Measuring cognitive load: Are there more valid alternatives to likert rating scales? Frontiers in Education, 6, 702616. Available online: https://www.frontiersin.org/articles/10.3389/feduc.2021.702616 (accessed on 11 November 2024). [CrossRef]
- Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84(4), 429. [Google Scholar] [CrossRef]
- Paas, F., & Sweller, J. (2021). Implications of cognitive load theory for multimedia learning. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 73–81). Cambridge University Press. [Google Scholar] [CrossRef]
- Palumbo, A. (2022). Microsoft HoloLens 2 in medical and healthcare context: State of the art and future prospects. Sensors, 22(20), 7709. [Google Scholar] [CrossRef] [PubMed]
- Park, S., Bokijonov, S., & Choi, Y. (2021). Review of microsoft hololens applications over the past five years. Applied Sciences, 11(16), 7259. [Google Scholar] [CrossRef]
- Parong, J. (2021). Multimedia learning in virtual and mixed reality. In L. Fiorella, & R. E. Mayer (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 498–509). Cambridge University Press. [Google Scholar] [CrossRef]
- Pimentel, D., Fauville, G., Frazier, K., McGivney, E., Rosas, S., & Woolsey, E. (2022). An introduction to learning in the metaverse. Meridian Treehouse. [Google Scholar]
- Pociask, F. D., & Morrison, G. R. (2008). Controlling split attention and redundancy in physical therapy instruction. Educational Technology Research and Development, 56(4), 379–399. [Google Scholar] [CrossRef]
- Poupard, M., Larrue, F., Sauzéon, H., & Tricot, A. (2024). A systematic review of immersive technologies for education: Learning performance, cognitive load and intrinsic motivation. British Journal of Educational Technology, 56(1), 5–41. [Google Scholar] [CrossRef]
- Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. [Google Scholar] [CrossRef]
- Rivière, E., Saucier, D., Lafleur, A., Lacasse, M., & Chiniara, G. (2018). Twelve tips for efficient procedural simulation. Medical Teacher, 40(7), 743–751. [Google Scholar] [CrossRef]
- Rolla, P. R., & Surace, M. F. (2002). The double-twist knot: A new arthroscopic sliding knot. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 18(7), 815–820. [Google Scholar] [CrossRef]
- Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Margallo, J. A., Plaza de Miguel, C., Fernández Anzules, R. A., & Sánchez-Margallo, F. M. (2021). Application of mixed reality in medical training and surgical planning focused on minimally invasive surgery. Frontiers in Virtual Reality, 2, 692641. [Google Scholar] [CrossRef]
- Sandars, J., Patel, R. S., Goh, P. S., Kokatailo, P. K., & Lafferty, N. (2015). The importance of educational theories for facilitating learning when using technology in medical education. Medical Teacher, 37(11), 1039–1042. [Google Scholar] [CrossRef]
- Schroeder, N. L., & Cenkci, A. T. (2018). Spatial contiguity and spatial split-attention effects in multimedia learning environments: A meta-analysis. Educational Psychology Review, 30(3), 679–701. [Google Scholar] [CrossRef]
- Schroeder, N. L., & Cenkci, A. T. (2020). Do measures of cognitive load explain the spatial split-attention principle in multimedia learning environments? A systematic review. Journal of Educational Psychology, 112, 254–270. [Google Scholar] [CrossRef]
- Seufert, T. (2018). The interplay between self-regulation in learning and cognitive load. Educational Research Review, 24, 116–129. [Google Scholar] [CrossRef]
- Silvero Isidre, A., Friederichs, H., Müther, M., Gallus, M., Stummer, W., & Holling, M. (2023). Mixed reality as a teaching tool for medical students in neurosurgery. Medicina, 59(10), 1720. [Google Scholar] [CrossRef]
- Strzys, M. P., Kapp, S., Thees, M., Klein, P., Lukowicz, P., Knierim, P., Schmidt, A., & Kuhn, J. (2018). Physics holo.lab learning experience: Using smartglasses for augmented reality labwork to foster the concepts of heat conduction. European Journal of Physics, 39(3), 035703. [Google Scholar] [CrossRef]
- Sullivan, M. E. (2020). Applying the science of learning to the teaching and learning of surgical skills: The basics of surgical education. Journal of Surgical Oncology, 122(1), 5–10. [Google Scholar] [CrossRef]
- Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. [Google Scholar] [CrossRef]
- Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer. [Google Scholar] [CrossRef]
- Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. [Google Scholar] [CrossRef]
- ten Berge, T., & van Hezewijk, R. (1999). Procedural and declarative knowledge: An evolutionary perspective. Theory & Psychology, 9(5), 605–624. [Google Scholar] [CrossRef]
- Thees, M., Altmeyer, K., Kapp, S., Rexigel, E., Beil, F., Klein, P., Malone, S., Brünken, R., & Kuhn, J. (2022). Augmented reality for presenting real-time data during students’ laboratory work: Comparing a head-mounted display with a separate display. Frontiers in Psychology, 13, 804742. [Google Scholar] [CrossRef]
- Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. [Google Scholar] [CrossRef]
- Tokuno, J., Carver, T. E., & Fried, G. M. (2023). Measurement and management of cognitive load in surgical education: A narrative review. Journal of Surgical Education, 80(2), 208–215. [Google Scholar] [CrossRef] [PubMed]
- Tricot, A. (1998). Charge cognitive et apprentissage. Une présentation des travaux de John Sweller. Revue de Psychologie de L’Education, 3, 37–64. [Google Scholar]
- White, J. 2019 February 24. Microsoft at MWC barcelona: Introducing microsoft HoloLens 2. The Official Microsoft Blog. Available online: https://blogs.microsoft.com/blog/2019/02/24/microsoft-at-mwc-barcelona-introducing-microsoft-hololens-2/ (accessed on 21 November 2024).
- Wit, L. D., Kessels, R. P. C., Kurasz, A. M., Sr, P. A., O’Shea, D., Marsiske, M., Chandler, M. J., Piai, V., Lambertus, T., & Smith, G. E. (2023). Declarative learning, priming, and procedural learning performances comparing individuals with amnestic mild cognitive impairment, and cognitively unimpaired older adults. Journal of the International Neuropsychological Society, 29(2), 113–125. [Google Scholar] [CrossRef]
- Wu, B., Yu, X., & Gu, X. (2020). Effectiveness of immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Technology, 51(6), 1991–2005. [Google Scholar] [CrossRef]
- Xue, H., Sharma, P., & Wild, F. (2019). User satisfaction in augmented reality-based training using microsoft HoloLens. Computers, 8(1), 9. [Google Scholar] [CrossRef]
- Yoganathan, S., Finch, D. A., Parkin, E., & Pollard, J. (2018). 360° virtual reality video for the acquisition of knot tying skills: A randomised controlled trial. International Journal of Surgery, 54, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41(2), 64–70. [Google Scholar] [CrossRef]
95% CI | ||||||
---|---|---|---|---|---|---|
Conditions | Mean | Lower | Upper | Median | SD | |
ICL | C | 4.846 | 3.775 | 5.917 | 5.500 | 1.772 |
NC | 6.269 | 4.843 | 7.695 | 6.500 | 2.360 | |
ECL | C | 2.795 | 1.663 | 3.927 | 2.333 | 1.873 |
NC | 3.846 | 2.804 | 4.888 | 4.000 | 1.725 | |
GCL | C | 7.000 | 6.240 | 7.760 | 7.500 | 1.258 |
NC | 6.692 | 5.585 | 7.799 | 7.500 | 1.832 |
95% CI | ||||||||
---|---|---|---|---|---|---|---|---|
Conditions | Mean | Lower | Upper | Median | SD | Minimum | Maximum | |
Qt SMC | C | 1.231 | 0.728 | 1.73 | 1 | 0.832 | 0 | 2 |
NC | 1.462 | 0.781 | 2.14 | 2 | 1.127 | 0 | 3 | |
Qt Double Twist | C | 1.231 | 0.966 | 1.50 | 1 | 0.439 | 1 | 2 |
NC | 1.154 | 0.927 | 1.38 | 1 | 0.376 | 1 | 2 | |
Qt Duncan | C | 2.538 | 2.069 | 3.01 | 3 | 0.776 | 1 | 3 |
NC | 2.000 | 1.396 | 2.60 | 2 | 1.000 | 1 | 3 |
95% CI | ||||||||
---|---|---|---|---|---|---|---|---|
Conditions | Mean | Lower | Upper | Median | SD | Minimum | Maximum | |
Recall SMC | C | 79.9 | 50.4 | 109.4 | 67 | 48.8 | 23 | 177 |
NC | 38.4 | 28.1 | 48.7 | 31 | 17.0 | 17 | 69 | |
Recall Double Twist | C | 144.1 | 97.4 | 190.8 | 125 | 77.3 | 32 | 270 |
NC | 140.3 | 105.4 | 175.2 | 125 | 57.8 | 79 | 288 | |
Recall Duncan | C | 48.2 | 36.5 | 59.8 | 39 | 19.2 | 23 | 81 |
NC | 33.5 | 24.2 | 42.8 | 32 | 15.4 | 17 | 71 |
Statistic | p | Effect Size | ||
---|---|---|---|---|
T1 SMC | Mann–Whitney U | 47.5 | 0.030 | 0.438 |
T1 Double Twist | Mann–Whitney U | 51.0 | 0.044 | 0.396 |
T1 Duncan | Mann–Whitney U | 47.0 | 0.025 | 0.444 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugisha, G.; Arguel, A. Procedural Learning in Mixed Reality: Assessing Cognitive Load and Performance. Educ. Sci. 2025, 15, 339. https://doi.org/10.3390/educsci15030339
Mugisha G, Arguel A. Procedural Learning in Mixed Reality: Assessing Cognitive Load and Performance. Education Sciences. 2025; 15(3):339. https://doi.org/10.3390/educsci15030339
Chicago/Turabian StyleMugisha, Ghislain, and Amael Arguel. 2025. "Procedural Learning in Mixed Reality: Assessing Cognitive Load and Performance" Education Sciences 15, no. 3: 339. https://doi.org/10.3390/educsci15030339
APA StyleMugisha, G., & Arguel, A. (2025). Procedural Learning in Mixed Reality: Assessing Cognitive Load and Performance. Education Sciences, 15(3), 339. https://doi.org/10.3390/educsci15030339