Democratic Didactics in Digitalized Higher Education: The DEA Framework for Teaching and Learning
Abstract
1. Introduction
1.1. Background and Context
1.2. Problem Statement and Research Gap
1.3. Purpose and Research Objective
1.4. Research Question and Conceptual Aim
2. Theoretical Background
2.1. Subjectivation and Recognition
2.2. Democracy and Education
2.3. Toward a Heuristic Synthesis
3. The DEA Model: Conceptual Premises and Structuring Logics
3.1. Vertices of the Model
- Education refers to pedagogical and didactic processes oriented toward formation, interpretive judgement and responsibility.
- Democracy designates the normative horizon of recognition, participation and contestation that sustains collective life.
- Digitalisation refers to the infrastructural embedding of data-driven systems in HE, while algorithmic mediation names the specific logics of classification, prediction and optimisation that shape legibility and addressability, as discussed in Section 2.3.
3.2. Analytical Dimensions
3.2.1. Formative Dimension
- Locus of judgement—whether interpretive discretion remains with educators or is delegated to algorithmic routines.
- Dialogical recognition—whether learners are addressed as educable subjects or reduced to profiles.
- Temporal openness—whether detour, interruption and delay remain recognised as formative or are eliminated in the name of efficiency.
3.2.2. Normative Dimension
- Negotiability of address—whether learner positions can be contested or are stabilised through classificatory routines (Butler, 1997; Fricker, 2007).
- Traceability of performance—whether recognition arises dialogically or becomes bound to data legibility regimes through machine-readable traces.
3.2.3. Inferential Dimension
- Epistemic: interpretive judgement versus statistical regularity.
- Didactic: formative detour versus linear sequencing.
- Ethical: dialogical recognition versus conditional legibility.
3.3. Relational Vectors and Governance
- Epistemic friction and legibility of the subject—emerging between education and digitalisation.
- Accountability, transparency and governance—operating between democracy and digitalisation.
3.4. Framing Structures
- Societal discourses—narratives of efficiency, innovation or crisis that legitimise technological interventions and orient expectations towards education.
- Institutional configurations—organisational priorities, accountability metrics and governance arrangements that determine how algorithmic systems enter pedagogical practice.
- Cultural and algorithmic imaginaries—symbolic meanings attached to digitalisation, personalisation or democratisation that shape how technologies are interpreted by actors.
- Biographical and lifeworld conditions—situated experiences through which profiling, recognition and agency are affirmed, negotiated or resisted.
3.5. Integrated Overview
4. Theoretical and Democratic-Pedagogical Implications for HE
4.1. Pedagogical Responsibility: Negotiating Judgement Under Algorithmic Conditions
4.2. Democratic Subject-Formation: Visibility, Labelling and the Politics of Participation
4.3. Didactic Relations and Epistemic Authority: Algorithmic Guidance and Pedagogical Space
4.4. Research Agendas and Institutional Development: From Diagnosis to Design
5. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| DEA | Democracy, Education, Algorithm |
| HE | Higher Education |
| 1 | The theoretical perspectives discussed in this chapter do not aim to provide an exhaustive reconstruction of democratic, pedagogical or subjectivation theory. They offer a heuristic selection of influential approaches that illuminate different and sometimes conflicting dimensions of subject formation, recognition and democracy. Extending these perspectives to algorithmic mediation is a deliberate interpretive move that reveals how tensions reappear under digital conditions while maintaining the original orientation of the theories. |
| 2 | Digitalisation here designates the broader embedding of digital infrastructures, while the more specific logics of algorithmic mediation are addressed in Section 2.3. |
| 3 | The choice of education, democracy and algorithmic conditions as the vertices of the DEA model is deliberate, as they define the main conditions of higher education under digitalisation. Other domains such as economy or culture are considered only insofar as they affect pedagogy, legitimacy and digital infrastructures. The triangular constellation thus serves as a focused heuristic that highlights where formative, normative and technological forces converge. |
| 4 | The information presented in the tables of this paper represents illustrative examples of possible perspectives rather than comprehensive or exhaustive specifications. |
References
- Amoore, L. (2020). Cloud ethics: Algorithms and the attributes of ourselves and others. Duke University Press. [Google Scholar] [CrossRef]
- Amsler, S. S. (2015). The Education of radical democracy. Routledge. [Google Scholar]
- Apple, M. W. (1980). The other side of the hidden curriculum: Correspondence theories and the labor process. The Journal of Education, 162(1), 47–66. [Google Scholar] [CrossRef]
- Barocas, S., Hardt, M., & Narayanan, A. (2023). Fairness and machine learning: Limitations and opportunities. MIT Press. Available online: https://fairmlbook.org/pdf/fairmlbook.pdf (accessed on 15 September 2025).
- Bartok, L., Donner, M.-T., Ebner, M., Gosch, N., Handle-Pfeiffer, D., Hummel, S., Kriegler-Kastelic, G., Leitner, P., Tang, T., Veljanova, H., Winter, C., & Zwiauer, C. (2023). Learning Analytics—Studierende im Fokus. Zeitschrift für Hochschulentwicklung: ZFHE; Beiträge zu Studium, Wissenschaft und Beruf, 18, 223–250. [Google Scholar] [CrossRef]
- Barton, M.-C., & Pöppelbuß, J. (2022). Prinzipien für die ethische Nutzung künstlicher Intelligenz. HMD Praxis der Wirtschaftsinformatik, 59, 468–481. [Google Scholar] [CrossRef]
- Benner, D. (2025). Allgemeine Pädagogik. Eine systematisch-problemgeschichtliche Einführung in die Grundstruktur pädagogischen Denkens und Handelns (9th ed.). Beltz Verlag. [Google Scholar]
- Biesta, G. J. J. (2010). Good education in an age of measurement: Ethics, politics, democracy. Routledge. [Google Scholar]
- Biesta, G. J. J. (2015). What is education for? On good education, teacher judgement, and educational professionalism. European Journal of Education, 50(1), 75–87. [Google Scholar] [CrossRef]
- Biesta, G. J. J. (2017). The rediscovery of teaching. Routledge. [Google Scholar]
- Butler, J. (1997). Excitable speech: Politics of the performative. Routledge. [Google Scholar]
- Bünger, C., & Jergus, K. (2023). Bildung und Subjektivierung. Systematische Spannungslinien des Subjektivierungskonzepts im Kontext von Optimierung, Digitalisierung und Migration. Zeitschrift für Erziehungswissenschaft, 26, 1389–1409. [Google Scholar] [CrossRef]
- Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. [Google Scholar] [CrossRef]
- Couldry, N., & Mejias, U. A. (2019). The costs of connection: How data is colonizing human life and appropriating it for capitalism. Stanford University Press. [Google Scholar] [CrossRef]
- Daly, A., Hagendorff, T., Li, H., Mann, M., Marda, V., Wagner, B., Wei Wang, W., & Witteborn, S. (2019). Artificial intelligence, governance and ethics: Global perspectives (The Chinese University of Hong Kong Faculty of Law Research Paper No. 2019-15). Available online: https://ssrn.com/abstract=3414805 (accessed on 19 September 2025). [CrossRef]
- Dewey, J. (1916). Democracy and education: An introduction to the philosophy of education. Macmillan. [Google Scholar]
- Dignum, V. (2017, August 19–25). Responsible autonomy: AI, ethics, and policy. Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI’17) (pp. 4698–4704), Melbourne, Australia. [Google Scholar] [CrossRef]
- Dignum, V. (2019). Responsible artificial intelligence: How to develop and use AI in a responsible way. Springer. [Google Scholar] [CrossRef]
- Donner, M.-T., & Hummel, S. (2025). Systematic literature review of AI-based mentoring in HE. In H.-W. Wollersheim, T. Köhler, & N. Pinkwart (Eds.), Scalable mentoring in HE. Technological approaches, teaching patterns, and AI techniques. in press. Springer. [Google Scholar]
- Egbringhoff, J., Kleemann, F., Matuschek, I., & Voß, G. G. (2023). Subjektivierung von Bildung bildungspolitische und bildungspraktische Konsequenzen der Subjektivierung von Arbeit. Arbeitsbericht. Institut Arbeit und Gesellschaft (INAG). [Google Scholar]
- Egger, R. (2006). Gesellschaft mit beschränkter Bildung. Eine empirische Studie zur sozialen Erreichbarkeit und zum individuellen Nutzen von Lernprozessen. Leykam. [Google Scholar]
- Egger, R. (2008). Biografie und Lebenswelt. Möglichkeiten und Grenzen der Biografie- und Lebensweltorientierung in der sozialen Arbeit. In J. Bakic, M. Diebäcker, & E. Hammer (Eds.), Aktuelle Leitbegriffe der sozialen Arbeit. Ein kritisches Handbuch (pp. 40–55). Löcker. [Google Scholar]
- Engel, J., & Kerres, M. (2023). Bildung in der nächsten Gesellschaft—Eine postdigitale Sicht auf neue formen der Subjektivierung. Ludwigsburger Beiträge zur Medienpädagogik (LBzM), 23, 1–13. [Google Scholar] [CrossRef]
- Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin’s Press. [Google Scholar] [CrossRef]
- Feenberg, A. (1999). Questioning technology. Routledge. [Google Scholar]
- Feenberg, A. (2002). Transforming technology: A critical theory revisited. Oxford University Press. [Google Scholar]
- Foucault, M. (1979). Überwachen und Strafen: Die Geburt des Gefängnisses. Suhrkamp. [Google Scholar]
- Foucault, M. (1982). The subject and power. Critical Inquiry, 8, 777–795. [Google Scholar] [CrossRef]
- Freire, P. (1970). Pedagogy of the oppressed. Continuum Books. [Google Scholar]
- Fricker, M. (2007). Epistemic injustice: Power and the ethics of knowing. Oxford Academic. [Google Scholar] [CrossRef]
- Friesen, M., & Kuntze, S. (2021). How context specific is teachers’ analysis of how representations are dealt with in classroom situations? Approaching a context-aware measure for teacher noticing. ZDM Mathematics Education, 53, 181–193. [Google Scholar] [CrossRef]
- Galle, M. (2021). Personalisiertes Lernen als pädagogisch-psychologisches didaktisches Konzept. In M. Galle (Ed.), Unterrichtszentrierte Schulentwicklung (pp. 29–37). Springer. [Google Scholar] [CrossRef]
- Garrison, D. R., Anderson, T., & Archer, W. (2000). Critical inquiry in a text-based environment: Computer conferencing in higher education. The Internet and Higher Education, 2, 87–105. [Google Scholar] [CrossRef]
- Giroux, H. A. (2015). Neoliberalism’s war against he and the role of public intellectuals. Revista Interdisciplinaria de Filosofía y Psicología, 10(34), 5–16. [Google Scholar]
- Gudjons, H. (2012). Pädagogisches Grundwissen (11th ed.). Verlag Julius Klinkhardt. [Google Scholar]
- Habermas, J. (1981). Theorie des kommunikativen Handelns. Suhrkamp. [Google Scholar]
- Hess, D. E., & McAvoy, P. (2015). The political classroom. Evidence and ethics in democratic education. Routledge. [Google Scholar]
- Honneth, A. (1994). Kampf um Anerkennung: Zur moralischen Grammatik sozialer Konflikte. Suhrkamp. [Google Scholar]
- Hughson, T. A., & Wood, B. E. (2020). The OECD learning compass 2030 and the future of disciplinary learning: A bernsteinian critique. Journal of Education Policy, 37(4), 634–654. [Google Scholar] [CrossRef]
- Hummel, S. (2021). Learning analytics—Ein hochschuldidaktisches Begleitprogramm zur prozessorientierten Lernunterstützung. FNMA-Magazin, 21–24. Available online: https://fnma.at/content/download/2305/12827?version=2 (accessed on 19 September 2025).
- Hummel, S., Donner, M.-T., Abbas, S. H., & Wadhwa, G. (2025a). Bildungstechnologiedesign von KI-gestützten avataren zur förderung selbstregulierten lernens. In T. Köhler, E. Schopp, N. Kahnwald, & R. Sonntag (Eds.), Community in new media. Trust in crisis: Communication models in digital communities: Proceedings of 27th conference GeNeMe (pp. 197–209). TUDpress. [Google Scholar] [CrossRef]
- Hummel, S., Donner, M.-T., & Egger, R. (2025b). Turning tides in HE? Exploring AI’s role in qualification, self-education and socialization. In H.-W. Wollersheim, T. Köhler, & N. Pinkwart (Eds.), Scalable mentoring in HE. Technological approaches, teaching patterns and AI techniques. in press. Springer. [Google Scholar]
- Ifenthaler, D. (2023). Ethische Perspektiven auf künstliche Intelligenz im Kontext der Hochschule. In T. Schmohl, A. Watanabe, & K. Schelling (Eds.), Künstliche Intelligenz in der Hochschulbildung. Chancen und Grenzen des KI-gestützten Lernens und Lehrens (pp. 71–86). Transcript. [Google Scholar] [CrossRef]
- International Computer and Information Literacy Study (ICILS). (2023). Main findings and educational policy implications. Publications Office of the European Union. Available online: https://data.europa.eu/doi/10.2766/5221263 (accessed on 19 September 2025).
- Jackson, P. (1968). Life in classrooms. Holt, Rinehart & Winston. [Google Scholar]
- Klafki, W. (1996). Neue studien zur bildungstheorie und didaktik: Zeitgemäße allgemeinbildung und kritisch-konstruktive didaktik (7th ed.). Beltz. [Google Scholar]
- Knox, J., Williamson, B., & Bayne, S. (2020). Machine behaviourism: Future visions of ‘learnification’ and ‘datafication’ across humans and digital technologies. Learning, Media and Technology, 45(1), 31–45. [Google Scholar] [CrossRef]
- Koller, H.-C. (2012). Bildung anders denken. Einführung in die Theorie transformatorischer Bildungsprozesse. Kohlhammer. [Google Scholar]
- Koller, H.-C. (2023). Bildung anders denken. Einführung in die Theorie transformatorischer Bildungsprozesse (3rd ed.). Kohlhammer. [Google Scholar]
- Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. [Google Scholar] [CrossRef]
- Mounk, Y. (2018). The people vs. democracy: Why our freedom is in danger and how to save it. Harvard University Press. Available online: http://www.jstor.org/stable/j.ctv24trckb (accessed on 10 September 2025).
- Negt, O. (2010). Der politische Mensch. Demokratie als Lebensform. Gefälligkeitsübersetzung: The political person. Democracy as a way of life. Steidl Verlag. [Google Scholar]
- Norris, P., & Inglehart, R. (2019). Cultural backlash: Trump, brexit and authoritarian populism. Cambridge University Press. [Google Scholar]
- Nussbaum, M. C. (2000). Women and human development: The capabilities approach. Cambridge University Press. [Google Scholar] [CrossRef]
- Nussbaum, M. C. (2010). Not for profit: Why democracy needs the humanities. Princeton University Press. [Google Scholar]
- Pangrazio, L., & Sefton-Green, J. (2020). The social utility of data literacy. Learning, Media and Technology, 45(2), 208–220. [Google Scholar] [CrossRef]
- Pelletier, K., Brown, M., Brooks, D. C., McCormack, M., Reeves, J., & Arbino, N. (2021). 2021 educause horizon report, teaching and learning edition. Educause. [Google Scholar]
- Puentedura, R. R. (2013). SAMR: Getting to transformation. Available online: http://www.hippasus.com/rrpweblog/archives/2013/04/16/SAMRGettingToTransformation.pdf (accessed on 14 September 2025).
- Rancière, J. (1991). The ignorant schoolmaster: Five lessons in intellectual emancipation. Stanford University Press. [Google Scholar]
- Redecker, C. (2017). European framework for the digital competence of educators: DigCompEdu (EUR 28775 EN). Publications Office of the European Union. [Google Scholar] [CrossRef]
- Schmohl, T., Watanabe, A., & Schelling, K. (2023). Künstliche Intelligenz in der Hochschulbildung: Chancen und Grenzen des KI-gestützten Lernens und Lehrens. Eine Einführung in die Beiträge des Bandes. In T. Schmohl, A. Watanabe, & K. Schelling (Eds.), Künstliche Intelligenz in der Hochschulbildung (pp. 7–26). Transcript Verlag. [Google Scholar] [CrossRef]
- Selwyn, N. (2022). The future of AI and education: Some cautionary notes. European Journal of Education, 57(4), 620–631. [Google Scholar] [CrossRef]
- Siemens, G. (2013). Learning analytics: The emergence of a discipline. American Behavioral Scientist, 57, 1380–1400. [Google Scholar] [CrossRef]
- Terhart, E. (2011). Lehrerberuf und Professionalität. Gewandeltes Begriffsverständnis–Neue Herausforderungen. In W. Helsper, & R. Tippelt (Eds.), Pädagogische Professionalität (pp. 202–224). Beltz. [Google Scholar]
- Terhart, E. (2019). Lehren und Lernen. In J. Drerup, & G. Schweiger (Eds.), Handbuch Philosophie der Kindheit (pp. 145–151). J.B. Metzler. [Google Scholar] [CrossRef]
- Uljens, M. (2023). Non-affirmative theory of education and bildung. Springer. [Google Scholar] [CrossRef]
- Von Hentig, H. (1996). Bildung. Ein essay. Beltz Verlag. [Google Scholar]
- Von Thiessen, R., & Volz, S. (2023). Künstliche Intelligenz in der Bildung. Rechtliche Best Practices. Kanton Zürich. Available online: https://www.zh.ch/content/dam/zhweb/bilder-dokumente/themen/wirtschaft-arbeit/wirtschaftsstandort/dokumente/best_practices_ki_bildung_de_v2.pdf (accessed on 20 September 2025).
- Vuorikari, R., Punie, Y., Carretero Gómez, S., & Van den Brande, G. (2016). DigComp 2.0: The digital competence framework for citizens. Update phase 1: The conceptual reference model (EUR 27948 EN). Publications Office of the European Union. [Google Scholar] [CrossRef]
- Williamson, B. (2023). Governing through infrastructural control: Artificial intelligence and cloud computing in the data-intensive state. In W. Housley, A. Edwards, R. Beneito-Montagut, & R. Fitzgerald (Eds.), The sage handbook of digital society (pp. 521–539). Sage. [Google Scholar]
- Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223–235. [Google Scholar] [CrossRef]

| Dimension | Perspective | Analytical Focus |
|---|---|---|
| Democracy | Political and ethical horizon of education; refers to voice, recognition, participation, legitimacy in collective life. | Capacities for deliberation, recognition of marginalized voices, contestation, accountability, formation of civic agency. |
| Education | Relational and formative processes of Bildung; structured through pedagogical responsibility, didactic asymmetries, interpretive judgment, and biographical learning. | Pedagogical judgment, dialogical recognition, subject formation, openness to alterity, biographical learning trajectories, dispositions. |
| Algorithmic Conditions | Algorithmic and infrastructural mediation of education; datafication, inferential classification, optimization logics. | Epistemic operations (classification, prediction), conditions of legibility, personalization routines, systemic governance. |
| Dimension | Normative (Responsibility, Values) | Formative (Subjectivity, Bildung) | Inferential (Data, Classification) |
|---|---|---|---|
| Democracy | Legitimacy, accountability, inclusion of voices, civic equality. | Subject formation for civic agency, capacities for dissent and deliberation. | Political categorization, statistical representation of populations. |
| Education | Ethical-pedagogical responsibility, recognition, asymmetry in didactics. | Processes of Bildung, openness, dialogical encounter, biographical dispositions, reflexive self-relation. | Contextual interpretation of evidence; resistance to reduction of learning to data. |
| Algorithmic Conditions | Normative claims embedded in algorithmic governance; transparency, fairness, explainability. | Reshaping of subjectivity through profiling, personalization, visibility regimes. | Data-driven inference, predictive modeling, optimization of learning patterns. |
| Analytical Axis | Definition | Key Questions |
|---|---|---|
| Voice–Recognition–Contestation | Intersection of education and democracy: conditions under which learners appear as subjects of recognition and dissent. | Who is heard? Who is silenced? What forms of contestation are possible? |
| Epistemic Friction–Legibility of the Subject | Intersection of education and digitalisation: tension between pedagogical openness, biographical complexity, and algorithmic classification. | What counts as valid evidence of learning? What remains opaque or invisible? |
| Accountability–Transparency–Governance | Intersection of democracy and digitalisation: distribution of responsibility across human and non-human actors. | How are decisions justified? Who is accountable? What mechanisms support legitimacy? |
| Dimension | Framing Contexts | Examples of Relevance |
|---|---|---|
| Democracy | Institutional frameworks; public discourse; civic imaginaries; historical initiatives for participation | Parliaments; universities as hinge institutions; democratic movements; civic education |
| Education | Didactic structures; pedagogical traditions; biographical learning trajectories and dispositions; disciplinary cultures | Teacher–student relations; curricular design; experiential learning; biographical trajectories as conditions of Bildung |
| Algorithmic Conditions | Socio-technical infrastructures; governance regimes; cultural and algorithmic imaginaries | Learning analytics dashboards; algorithmic feedback loops; data policies; platform logics |
| Dimension | Analytical Focus | Normative Perspective | Formative Perspective | Inferential Perspective | Relational Vectors | Framing Contexts |
|---|---|---|---|---|---|---|
| Democracy | Political and ethical stakes of education in collective life | Legitimacy, equality and accountability as conditions of participation | Formation of civic agency: judgement, deliberation, dissent | Political categorisation and statistical representation of populations | Contestation of exclusions; accountability and transparency in institutional fields | Civic imaginaries, democratic struggles, public discourse, institutional frameworks |
| Education | Dialogical relations in teaching, learning and content mediation | Recognition of learners as subjects of pedagogical responsibility; asymmetry in didactics | Processes of Bildung, openness to interruption and alterity, biographical dispositions | Context-sensitive interpretation; resistance to reduction of learning to data | Voice and recognition within teacher–learner relations; epistemic friction between pedagogical openness and algorithmic normalisation | Biographical trajectories, disciplinary cultures, institutional didactics |
| Algorithmic Conditions | Classification, prediction, optimisation and visibility regimes | Embedded norms in algorithmic governance: fairness, transparency, efficiency, accountability | Reconfiguration of formation through profiling, personalisation and feedback systems | Data-driven inference, conditions of legibility and predictability | Epistemic friction in profiling; redistribution of recognition via data infrastructures | Platform governance, socio-technical imaginaries, regulatory regimes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummel, S. Democratic Didactics in Digitalized Higher Education: The DEA Framework for Teaching and Learning. Educ. Sci. 2025, 15, 1499. https://doi.org/10.3390/educsci15111499
Hummel S. Democratic Didactics in Digitalized Higher Education: The DEA Framework for Teaching and Learning. Education Sciences. 2025; 15(11):1499. https://doi.org/10.3390/educsci15111499
Chicago/Turabian StyleHummel, Sandra. 2025. "Democratic Didactics in Digitalized Higher Education: The DEA Framework for Teaching and Learning" Education Sciences 15, no. 11: 1499. https://doi.org/10.3390/educsci15111499
APA StyleHummel, S. (2025). Democratic Didactics in Digitalized Higher Education: The DEA Framework for Teaching and Learning. Education Sciences, 15(11), 1499. https://doi.org/10.3390/educsci15111499
