# Relationships and Gender Differences in Math Anxiety, Math Self-Efficacy, Geoscience Self-Efficacy, and Geoscience Interest in Introductory Geoscience Students

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

- RQ1: What are the relationships among math anxiety, math self-efficacy, geoscience self-efficacy, and geoscience interest in a sample of undergraduate students in introductory geoscience courses?
- RQ2: Is students’ geoscience interest predicted by math anxiety, math self-efficacy, and geoscience self-efficacy?
- RQ3: Are there gender differences in the relationship between study variables or in how study variables predict interest?

#### 1.1. Math Skills as a Barrier in Geoscience

#### 1.2. Math Anxiety and Efficacy as Barriers in Geoscience

#### 1.3. Math Attitudes and Geoscience Interest

#### 1.4. Gender, Math Attitudes, and Geoscience Interest

#### 1.5. The Current Study

## 2. Materials and Methods

#### 2.1. Participants

#### 2.2. Materials

#### 2.3. Procedure

## 3. Results

#### 3.1. Scale Psychometrics and Descriptive Statistics

#### 3.2. Main Inferential Analyses

## 4. Discussion

## 5. Limitations and Future Research

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Fratesi, S.E.; Vacher, H. Using Spreadsheets in Geoscience Education: Survey and Annotated Bibliography of Articles in the Journal of Geoscience Education through 2003. Spreadsheets Educ.
**2004**, 1, 168–194. [Google Scholar] - Hancock, G.; Manduca, C.A. Developing Quantitative Skills Activities for Geoscience Students. EOS
**2005**, 86, 355. [Google Scholar] [CrossRef] - Macdonald, R.H.; Srogi, L.; Stracher, G. Special Issue: Building the Quantitative Skills of Students in Geoscience Courses. J. Geosci. Educ.
**2000**, 48, 409–412. [Google Scholar] [CrossRef] - Macdonald, R.H.; Manduca, C.A.; Mogk, D.W.; Tewksbury, B.J. Teaching Methods in Undergraduate Geoscience Courses: Results of the 2004 On the Cutting Edge Survey of US Faculty. J. Geosci. Educ.
**2005**, 53, 237–252. [Google Scholar] [CrossRef] - Manduca, C.A.; Macdonald, H.; Feiss, G. Education: Preparing Students for Geosciences of the Future. Geotimes
**2008**, 53, 59. [Google Scholar] - McFadden, R.R.; Viskupic, K.; Egger, A.E. Faculty Self-Reported Use of Quantitative and Data Analysis Skills in Undergraduate Geoscience Courses. J. Geosci. Educ.
**2021**, 69, 373–386. [Google Scholar] [CrossRef] - Wenner, J.M.; Baer, E.A.; Manduca, C.; Macdonald, R.H.; Patterson, S.; Savina, M. The Case for Infusing Quantitative Literacy into Introductory Geoscience Courses. Numeracy
**2009**, 2, 4. [Google Scholar] [CrossRef] - Wenner, J.M.; Burn, H.E.; Baer, E.M. The Math You Need, When You Need It: Online Modules That Remediate Mathematical Skills in Introductory Geoscience Courses. J. Coll. Sci. Teach.
**2011**, 41, 16–24. [Google Scholar] - Wenner, J.M.; Baer, E.M.D. The Math You Need, When You Need It (TMYN): Leveling the Playing Field. Numeracy
**2015**, 8, 5. [Google Scholar] [CrossRef] - Baber, L.D.; Pifer, M.J.; Colbeck, C.; Furman, T. Increasing Diversity in the Geosciences: Recruitment Programs and Student Self-Efficacy. J. Geosci. Educ.
**2010**, 58, 32–42. [Google Scholar] [CrossRef] - James, N.M.; Kreager, B.Z.; LaDue, N.D. Predict-Observe-Explain Activities Preserve Introductory Geology Students’ Self-Efficacy. J. Geosci. Educ.
**2022**, 70, 238–249. [Google Scholar] [CrossRef] - van der Hoeven Kraft, K.J. Developing Student Interest: An Overview of the Research and Implications for Geoscience Education Research and Teaching Practice. J. Geosci. Educ.
**2017**, 65, 594–603. [Google Scholar] [CrossRef] - Van Der Hoeven Kraft, K.J.; Srogi, L.; Husman, J.; Semken, S.; Fuhrman, M. Engaging Students to Learn through the Affective Domain: A New Framework for Teaching in the Geosciences. J. Geosci. Educ.
**2011**, 59, 71–84. [Google Scholar] [CrossRef] - Lukes, L.A.; Jones, J.P.; McConnell, D.A. Self-Regulated Learning: Overview and Potential Future Directions in Geoscience. J. Geosci. Educ.
**2021**, 69, 14–26. [Google Scholar] [CrossRef] - McConnell, D.A. The Collision of Will and Skill in Introductory Geoscience Courses; the Affective Domain and the Effective Application of Cognitive Strategies. Abstr. Programs—Geol. Soc. Am.
**2008**, 40, 246–247. [Google Scholar] - McConnell, D.A.; van Der Hoeven Kraft, K.J. Affective Domain and Student Learning in the Geosciences. J. Geosci. Educ.
**2011**, 59, 106–110. [Google Scholar] [CrossRef] - Ricchezza, V.; Vacher, H.L. Quantitative Literacy in the Affective Domain: Computational Geology Students’ Reactions to Devlin’s The Math Instinct. Numer. Adv. Educ. Quant. Lit.
**2017**, 10, 11. [Google Scholar] [CrossRef] - Yacobucci, M.M. Integrating Critical Thinking About Values Into an Introductory Geoscience Course. J. Geosci. Educ.
**2013**, 61, 351–363. [Google Scholar] - Boyle, A.; Maguire, S.; Martin, A.; Milsom, C.; Nash, R.; Rawlinson, S.; Turner, A.; Wurthmann, S.; Conchie, S. Fieldwork Is Good: The Student Perception and the Affective Domain. J. Geogr. High. Educ.
**2007**, 31, 299–317. [Google Scholar] [CrossRef] - Kortz, K.M.; Cardace, D.; Savage, B. Affective Factors during Field Research That Influence Intention to Persist in the Geosciences. J. Geosci. Educ.
**2020**, 68, 133–151. [Google Scholar] [CrossRef] - LaDue, N.D.; Pacheco, H.A. Critical Experiences for Field Geologists: Emergent Themes in Interest Development. J. Geosci. Educ.
**2013**, 61, 428–436. [Google Scholar] [CrossRef] - Mogk, D.W.; Goodwin, C. Learning in the Field; Synthesis of Research on Thinking and Learning in the Geosciences. Spec. Pap.—Geol. Soc. Am.
**2012**, 486, 131–163. [Google Scholar] [CrossRef] - Stokes, A.; Boyle, A.P. The Undergraduate Geoscience Fieldwork Experience; Influencing Factors and Implications for Learning. Spec. Pap.—Geol. Soc. Am.
**2009**, 461, 291–311. [Google Scholar] [CrossRef] - Corbett, R.G. Should We Support Establishment of Advanced Placement Geology Courses? Prof. Geol.
**2000**, 37, 17. [Google Scholar] - Shea, J.H. Mathematics in Physical-Geology Textbooks. J. Geosci. Educ.
**1990**, 38, 138–148. [Google Scholar] [CrossRef] - Bransford, J.; Brown, A.L.; Cocking, R.R.; National Research Council (US); Committee on Developments in the Science of Learning; Division of Behavioral and Social Sciences and Education; Board on Behavioral, Cognitive, and Sensory Sciences. How People Learn: Brain, Mind, Experience, and School; National Academy Press: Washington, DC, USA, 1999; ISBN 0585047219. [Google Scholar]
- Fike, D.S.; Fike, R. Predictors of First-Year Student Retention in the Community College. Community Coll. Rev.
**2008**, 36, 68–88. [Google Scholar] [CrossRef] - Planty, M.; Hussar, W.; Snyder, T.; Provasnik, S.; Kena, G.; Dinkes, R.; KewalRamani, A.; Kemp, J.; Kridl, B.; Livingston, A. The Condition of Education 2008; National Center for Education Statistics: Washington, DC, USA, 2008; p. 334. [Google Scholar]
- Bailey, C.M. A Quantitative Approach to Introductory Geology Courses. J. Geosci. Educ.
**2000**, 48, 413–418. [Google Scholar] [CrossRef] - Richardson, R.M.; Mccallum, W.G. The Third R in Literacy. In Madison and Steen, Quantitative Literacy: Why Numeracy Matters for Schools and Colleges; The National Council on Education and the Disciplines: Washington, DC, USA, 2003; pp. 99–106. [Google Scholar]
- Burn, H.E.; Baer, E.M.D.; Wenner, J.M. Embedded Mathematics Remediation Using the Math You Need, When You Need It: A 21
^{st}-Century Solution to an Age-Old Problem. About Campus**2013**, 18, 22–25. [Google Scholar] [CrossRef] - Perin, D. Facilitating Student Learning through Contextualization: A Review of Evidence. Community Coll. Rev.
**2011**, 39, 268–295. [Google Scholar] [CrossRef] - Beilock, S.L.; Maloney, E.A. Math Anxiety: A Factor in Math Achievement Not to Be Ignored. Policy Insights Behav. Brain Sci.
**2015**, 2, 4–12. [Google Scholar] [CrossRef] - Luttenberger, S.; Wimmer, S.; Paechter, M. Spotlight on Math Anxiety. Psychol. Res. Behav. Manag.
**2018**, 11, 311–322. [Google Scholar] [CrossRef] - Ashcraft, M.H. Math Anxiety: Personal, Educational, and Cognitive Consequences. Curr. Dir. Psychol. Sci.
**2002**, 11, 181–185. [Google Scholar] [CrossRef] - Richardson, F.C.; Suinn, R.M. The Mathematics Anxiety Rating Scale: Psychometric Data. J. Couns. Psychol.
**1972**, 19, 551–554. [Google Scholar] [CrossRef] - Lyons, I.M.; Beilock, S.L. Mathematics Anxiety: Separating the Math from the Anxiety. Cereb. Cortex
**2012**, 22, 2102–2110. [Google Scholar] [CrossRef] - Jameson, M.M. Theoretical Perspectives on Potential Influences and Outcomes. In Anxiety in Schools: The Causes, Consequences, and Solutions for Academic Anxieties; Cassady, J., Ed.; Peter Lang Publishing: New York, NY, USA, 2010; Volume 2. [Google Scholar]
- Geist, E. Math Anxiety and the “Math Gap”: How Attitudes toward Mathematics Disadvantages Students as Early as Preschool. Education
**2015**, 135, 328–336. [Google Scholar] - Jameson, M.M. The Development and Validation of the Children’s Anxiety in Math Scale. J. Psychoeduc. Assess.
**2013**, 31, 391–395. [Google Scholar] [CrossRef] - Barroso, C.; Ganley, C.M.; McGraw, A.L.; Geer, E.A.; Hart, S.A.; Daucourt, M.C. A Meta-Analysis of the Relation between Math Anxiety and Math Achievement. Psychol. Bull.
**2021**, 147, 134–168. [Google Scholar] [CrossRef] [PubMed] - Foley, A.E.; Herts, J.B.; Borgonovi, F.; Guerriero, S.; Levine, S.C.; Beilock, S.L. The Math Anxiety-Performance Link: A Global Phenomenon. Curr. Dir. Psychol. Sci.
**2017**, 26, 52–58. [Google Scholar] [CrossRef] - Núñez-Peña, M.I.; Suárez-Pellicioni, M.; Bono, R. Effects of Math Anxiety on Student Success in Higher Education. Int. J. Educ. Res.
**2013**, 58, 36–43. [Google Scholar] [CrossRef] - Jameson, M.M. Time, Time, Time: Perceptions of the Causes of Mathematics Anxiety in Highly Maths Anxious Female Adult Learners. Adult Educ. Q.
**2020**, 70, 223–239. [Google Scholar] [CrossRef] - Jameson, M.M.; Fusco, B.R. Math Anxiety, Math Self-Concept, and Math Self-Efficacy in Adult Learners Compared to Traditional Undergraduate Students. Adult Educ. Q.
**2014**, 64, 306–322. [Google Scholar] [CrossRef] - Jameson, M.M.; Allen, M. How Avoidant Are Math Anxious People? Let Me Count the Ways: Behavioral Inhibition, Harm Avoidance, & Experiential Avoidance. In Proceedings of the Hawaii International Conference on Education, Waikoloa, HI, USA, 3–6 January 2022. [Google Scholar]
- Headley, R. An Intervention to Address Math Anxiety in the Geosciences. J. Geosci. Educ.
**2022**, 71, 33–42. [Google Scholar] [CrossRef] - Ashcraft, M.H.; Ridley, K.S. Math Anxiety and Its Cognitive Consequences. In The Handbook of Mathematical Cognition; Psychology Press: London, UK, 2005; pp. 315–327. [Google Scholar]
- Ashcraft, M.H.; Krause, J.A. Working Memory, Math Performance, and Math Anxiety. Psychon. Bull. Rev.
**2007**, 14, 243–248. [Google Scholar] [CrossRef] - Ramirez, G.; Gunderson, E.A.; Levine, S.C.; Beilock, S.L. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School. J. Cogn. Dev.
**2013**, 14, 187–202. [Google Scholar] [CrossRef] - Lee, J. Universals and Specifics of Math Self-Concept, Math Self-Efficacy, and Math Anxiety across 41 PISA 2003 Participating Countries. Learn. Individ. Differ.
**2009**, 19, 355–365. [Google Scholar] [CrossRef] - Palestro, J.J.; Jameson, M.M. Math Self-Efficacy, Not Emotional Self-Efficacy, Mediates the Math Anxiety-Performance Relationship in Undergraduate Students. Cogn. Brain Behav.
**2020**, 24, 379–394. [Google Scholar] [CrossRef] - Akin, A.; Kurbanoglu, I.N. The Relationships between Math Anxiety, Math Attitudes, and Self-Efficacy: A Structural Equation Model. Stud. Psychol.
**2011**, 53, 263. [Google Scholar] - Hidi, S. Interest and Its Contribution as a Mental Resource for Learning. Rev. Educ. Res.
**1990**, 60, 549–571. [Google Scholar] [CrossRef] - Hidi, S.; Renninger, K.A. The Four-Phase Model of Interest Development. Educ. Psychol.
**2006**, 41, 111–127. [Google Scholar] [CrossRef] - Clinton, V.; Van den Broek, P. Interest, Inferences, and Learning from Texts. Learn. Individ. Differ.
**2012**, 22, 650–663. [Google Scholar] [CrossRef] - Clinton, V.; Walkington, C. Interest-Enhancing Approaches to Mathematics Curriculum Design: Illustrations and Personalization. J. Educ. Res.
**2019**, 112, 495–511. [Google Scholar] [CrossRef] - Harackiewicz, J.M.; Durik, A.M.; Barron, K.E.; Linnenbrink-Garcia, L.; Tauer, J.M. The Role of Achievement Goals in the Development of Interest: Reciprocal Relations between Achievement Goals, Interest, and Performance. J. Educ. Psychol.
**2008**, 100, 105–122. [Google Scholar] [CrossRef] - Lynch, R. Towards an Understanding of Interest Development: Challenges and Opportunities for Psychologists and Counsellors in Schools. J. Psychol. Couns. Sch.
**2017**, 27, 208–221. [Google Scholar] [CrossRef] - Bandura, A. Self-Efficacy: Toward a Unifying Theory of Behavioral Change. Psychol. Rev.
**1977**, 84, 191–215. [Google Scholar] [CrossRef] - Feldmann, L.; Sprafke, N. How to Design Empowering Work-Based Learning Settings to Foster Students’ Competence Development. Int. J. Cross-Discip. Subj. Educ.
**2015**, 6, 2081–2089. [Google Scholar] [CrossRef] - Lent, R.W.; Sheu, H.B.; Miller, M.J.; Cusick, M.E.; Penn, L.T.; Truong, N.N. Predictors of Science, Technology, Engineering, and Mathematics Choice Options: A Meta-Analytic Path Analysis of the Social–Cognitive Choice Model by Gender and Race/Ethnicity. J. Couns. Psychol.
**2018**, 65, 17. [Google Scholar] [CrossRef] - Huang, X.; Zhang, J.; Hudson, L. Impact of Math Self-Efficacy, Math Anxiety, and Growth Mindset on Math and Science Career Interest for Middle School Students: The Gender Moderating Effect. Eur. J. Psychol. Educ.
**2019**, 34, 621–640. [Google Scholar] [CrossRef] - Hoisch, T.D.; Bowie, J.I. Assessing Factors That Influence the Recruitment of Majors from Introductory Geology Classes at Northern Arizona University. J. Geosci. Educ.
**2010**, 58, 166–176. [Google Scholar] [CrossRef] - Pugh, K.; Paek, S.H.; Phillips, M.; Sexton, J.; Bergstrom, C.; Flores, S.; Riggs, E. Predicting Academic and Career Choice: The Role of Transformative Experience, Connection to Instructor, and Gender Accounting for Interest/Identity and Contextual Factors. J. Res. Sci. Teach.
**2021**, 58, 822–851. [Google Scholar] [CrossRef] - Sexton, J.M.; Pugh, K.J.; Bergstrom, C.M.; Riggs, E.M. Reasons Undergraduate Students Majored in Geology across Six Universities: The Importance of Gender and Department. J. Geosci. Educ.
**2018**, 66, 319–336. [Google Scholar] [CrossRef] - Silvia, P.J. Interest and Interests: The Psychology of Constructive Capriciousness. Rev. Gen. Psychol.
**2001**, 5, 270–290. [Google Scholar] [CrossRef] - Gonzalez, L.; Keane, C.; Martinez, C. Status of the Geoscience Workforce 2009—Report Summary; American Geological Institute: Alexandria, VA, USA, 2009. [Google Scholar]
- Pugh, K.; Phillips, M.; Sexton, J.; Bergstrom, C.; Riggs, E. A Quantitative Investigation of Geoscience Departmental Factors Associated with the Recruitment and Retention of Female Students. J. Geosci. Educ.
**2019**, 67, 266–284. [Google Scholar] [CrossRef] - Marín-Spiotta, E.; Barnes, R.T.; Berhe, A.A.; Hastings, M.G.; Mattheis, A.; Schneider, B.; Williams, B.M. Hostile Climates Are Barriers to Diversifying the Geosciences. Adv. Geosci.
**2020**, 53, 117–127. [Google Scholar] [CrossRef] - Sexton, J.; Newman, H.; Bergstrom, C.; Pugh, K.; Riggs, E. Multisite Investigation of Sexist Experiences Encountered by Undergraduate Female Geology Students. Int. J. Gend. Sci. Technol.
**2020**, 12, 353–376. [Google Scholar] - Clancy, K.B.H.; Nelson, R.G.; Rutherford, J.N.; Hinde, K. Survey of Academic Field Experiences (SAFE): Trainees Report Harassment and Assault. PLoS ONE
**2014**, 9, e102172. [Google Scholar] [CrossRef] - Fairchild, E.; Newman, H.; Sexton, J.; Pugh, K.; Riggs, E. ‘Not to Be Stereotypical, but.’. Exclusive and Inclusive Gendered Discourses about Geology Field Experiences. J. Gend. Stud.
**2021**, 31, 492–504. [Google Scholar] [CrossRef] - Banchefsky, S.; Park, B. Negative Gender Ideologies and Gender-Science Stereotypes Are More Pervasive in Male-Dominated Academic Disciplines. Soc. Sci.
**2018**, 7, 27. [Google Scholar] [CrossRef] - Bossé, M.J.; Lee, T.D.; Swinson, M.; Faulconer, J. The Nctm Process Standards and the Five Es of Science: Connecting Math and Science. Sch. Sci. Math.
**2010**, 110, 262–276. [Google Scholar] [CrossRef] - Rutherford, F.J.; Ahlgren, A. Science for All Americans; Oxford University Press: Oxford, UK, 1991; ISBN 0-19-536186-5. [Google Scholar]
- Spencer, S.J.; Steele, C.M.; Quinn, D.M. Stereotype Threat and Women’s Math Performance. J. Exp. Soc. Psychol.
**1999**, 35, 4–28. [Google Scholar] [CrossRef] - Bhanot, R.; Jovanovic, J. Do Parents’ Academic Gender Stereotypes Influence Whether They Intrude on Their Children’s Homework? Sex Roles
**2005**, 52, 597–607. [Google Scholar] [CrossRef] - Bonnot, V.; Krauth-Gruber, S. System-Justifying Behaviors: When Feeling Dependent on a System Triggers Gender Stereotype-Consistent Academic Performance: System Dependency and Stereotype-Consistent Performance. Eur. J. Soc. Psychol.
**2016**, 46, 776–782. [Google Scholar] [CrossRef] - Fennema, E.; Leder, G.C. Mathematics and Gender; Teachers College, Columbia University: New York, NY, USA, 1990; ISBN 9780807730027. [Google Scholar]
- Turner, S.L.; Steward, J.C.; Lapan, R.T. Family Factors Associated with Sixth-Grade Adolescents’ Math and Science Career Interests. Career Dev. Q.
**2004**, 53, 41–52. [Google Scholar] [CrossRef] - Smeding, A. Women in Science, Technology, Engineering, and Mathematics (STEM): An Investigation of Their Implicit Gender Stereotypes and Stereotypes’ Connectedness to Math Performance. Sex Roles
**2012**, 67, 617–629. [Google Scholar] [CrossRef] - Devine, A.; Fawcett, K.; Szűcs, D.; Dowker, A. Gender Differences in Mathematics Anxiety and the Relation to Mathematics Performance While Controlling for Test Anxiety. Behav. Brain Funct.
**2012**, 8, 33. [Google Scholar] [CrossRef] - Pajares, F. Gender Differences in Mathematics Self-Efficacy Beliefs; Cambridge University Press: Cambridge, UK, 2005; ISBN 0-521-82605-5. [Google Scholar]
- Rubinsten, O.; Bialik, N.; Solar, Y. Exploring the Relationship between Math Anxiety and Gender through Implicit Measurement. Front. Hum. Neurosci.
**2012**, 6, 279. [Google Scholar] [CrossRef] - Ahmed, W. Developmental Trajectories of Math Anxiety during Adolescence: Associations with STEM Career Choice. J. Adolesc.
**2018**, 67, 158–166. [Google Scholar] [CrossRef] - Levy, H.E.; Fares, L.; Rubinsten, O. Math Anxiety Affects Females’ Vocational Interests. J. Exp. Child Psychol.
**2021**, 210, 105214. [Google Scholar] [CrossRef] - Daker, J.R.; Gattas, S.U.; Sokolowski, M.H.; Green, A.E.; Lyons, I.M. First-Year Students’ Math Anxiety Predicts STEM Avoidance and Underperformance throughout University, Independently of Math Ability. NPJ Sci. Learn.
**2021**, 6, 17. [Google Scholar] [CrossRef] - Eddy, R.M. Chemophobia in the College Classroom: Extent, Sources, and Student Characteristics. J. Chem. Educ.
**2000**, 77, 514. [Google Scholar] [CrossRef] - Faulconer, E.K.; Griffith, J.C. Identifying Sources of Anxiety in an Introductory Online Undergraduate Chemistry Course. J. Sci. Educ. Technol.
**2021**, 31, 143–151. [Google Scholar] [CrossRef] - Lent, R.W.; Lopez, F.G.; Bieschke, K.J. Mathematics Self-Efficacy: Sources and Relation to Science-Based Career Choice. J. Couns. Psychol.
**1991**, 38, 424–430. [Google Scholar] [CrossRef] - Lin, L.; Lee, T.; Snyder, L.A. Math Self-Efficacy and STEM Intentions: A Person-Centered Approach. Front. Psychol.
**2018**, 9, 409175. [Google Scholar] [CrossRef] - Hopko, D.R.; Mahadevan, R.; Bare, R.L.; Hunt, M.K. The Abbreviated Math Anxiety Scale (AMAS): Construction, Validity, and Reliability. Assessment
**2003**, 10, 178–182. [Google Scholar] [CrossRef] - Nielsen, I.L.; Moore, K.A. Psychometric Data on the Mathematics Self-Efficacy Scale. Educ. Psychol. Meas.
**2003**, 63, 128–138. [Google Scholar] [CrossRef] - Midgley, C.; Maehr, M.L.; Hruda, L.Z.; Anderman, E.; Anderman, L.; Freeman, K.E.; Urdan, T. Manual for the Patterns of Adaptive Learning Scales; University of Michigan: Ann Arbor, MI, USA, 2000. [Google Scholar]
- Pugh, K.; Phillips, M.; Sexton, J.; Bergstrom, C.; Riggs, E.; Flores, S. Motivational and Classroom Predictors of Academic and Career Choice in the Geosciences. In Proceedings of the American Educational Research Association Annual Conference, Washington, DC, USA, 8–12 April 2016. [Google Scholar]
- Trujillo, G.; Tanner, K.D. Considering the Role of Affect in Learning: Monitoring Students’ Self-Efficacy, Sense of Belonging, and Science Identity. LSE
**2014**, 13, 6–15. [Google Scholar] [CrossRef] - Williams, M.M.; George-Jackson, C. Using and Doing Science: Gender, Self-Efficacy, and Science Identity of Undergraduate Students in STEM. J. Women Minor. Sci. Eng.
**2014**, 20, 99–126. [Google Scholar] [CrossRef] - Vuong, M.; Brown-Welty, S.; Tracz, S. The Effects of Self-Efficacy on Academic Success of First-Generation College Sophomore Students. J. Coll. Stud. Dev.
**2010**, 51, 50–64. [Google Scholar] [CrossRef] - Wright, M.C.; McKay, T.; Hershock, C.; Miller, K.; Tritz, J. Better Than Expected: Using Learning Analytics to Promote Student Success in Gateway Science. Chang. Mag. High. Learn.
**2014**, 46, 28–34. [Google Scholar] [CrossRef] - Sexton, J.; London, D.; Jameson, M.M.; Wenner, J.M. Thriving, Persisting, or Agonizing: Integrated Math Anxiety Experiences of University Students in Introductory Geoscience Classes. Educ. Sci.
**2022**, 12, 577. [Google Scholar] [CrossRef]

Institution and Participant Characteristics | Site A (n = 98) | Site B (n = 119) | Site C (n = 28) | |
---|---|---|---|---|

Institution Information | ||||

Type of institution | 2 year | 4 year, Ph.D. Granting | 4 year, Ph.D. Granting | |

Years of data collection | 2021–2022 | 2019–2021 | 2021 | |

Region | Southeast United States | West United States | Midwest United States | |

Participant Information | ||||

Gender Identity | Nonbinary | 3.2% | 2.4% | 4% |

Men | 46.93% | 39.2% | 48% | |

Women | 39.6% | 55.8% | 42% | |

Not Reported | 8% | 3% | 6% | |

Race/Ethnicity | American Indian | 1.6% | 1% | 0% |

Asian | 4.1% | 2.5% | 6% | |

Black | 11.2% | 1.7% | 10% | |

Latinx | 9.2% | 11% | 18% | |

Middle Eastern | 1% | 0.9% | 2.1% | |

Multiracial | 9% | 9% | 6% | |

White | 61.2% | 68% | 56% | |

Not Reported | 2% | 2.5% | 4% | |

First-Generation Student ^{a} | Yes | 14.6% | 30% | 42% |

No | 76% | 65% | 50% | |

Not Reported | 9.4% | 5% | 8% | |

Year in School | 1st Year | 19.5% | 30% | 36% |

2nd Year | 22.4% | 33.5% | 6% | |

3rd Year | -- | 21.8% | 22% | |

4th Year | -- | 12% | 22% | |

Not Reported/Other ^{b} | 58% | 3.3% | 14% | |

International Student | Yes | 3.1% | 5.8% | 2% |

No | 94.9% | 91.7% | 94% | |

Not Reported | 2% | 2.5% | 4% |

^{a}In the United States, a first-generation student is someone whose biological or legal parent(s) have not successfully completed a four-year college degree when the student is in college.

^{b}Not Reported/Other refers to participants who either chose to not respond to that question or provided additional text explaining something other than the optional categories.

Measure/Construct | Internal Consistency Alpha |
---|---|

Abbreviated Math Anxiety Scale | 0.92 |

Math Self-Efficacy Scale | 0.93 |

Geoscience Self-Efficacy Scale | 0.82 |

Geoscience Interest measure | 0.93 |

Measure/Construct | Men ^{a} | Women ^{b} | Men and Women ^{c} | |||
---|---|---|---|---|---|---|

Mean | SD | Mean | SD | Mean | SD | |

Abbreviated Math Anxiety Scale | 23.41 | 9.22 | 26.79 | 8.41 | 25.18 | 8.95 |

Math Self-Efficacy Scale | 26.52 | 8.70 | 24.25 | 8.75 | 25.33 | 8.78 |

Geoscience Self-Efficacy Scale | 15.92 | 2.56 | 15.54 | 2.34 | 15.72 | 2.45 |

Geoscience Interest measure | 31.49 | 6.69 | 29.42 | 7.36 | 30.40 | 7.11 |

^{a}n = 106;

^{b}n = 117;

^{c}n = 223. Note: Only individuals who self-identified their gender identity as “man” or “woman” are included in Table 3.

Math Anxiety | Math Self-Efficacy | Geoscience Self-Efficacy | Geoscience Interest | |
---|---|---|---|---|

Math Anxiety | – | – | – | – |

Math Self-Efficacy | −0.408 * | – | – | – |

Geoscience Self-Efficacy | −0.382 * | 0.413 * | – | – |

Geoscience Interest | −0.207 * | 0.269 * | 0.389 * | – |

**Table 5.**Hierarchical regression analysis summary table with geoscience interest as outcome variable.

Variable | Standardized Beta Coefficient | t | p | Adjusted R^{2} |
---|---|---|---|---|

Block 1 | 0.148 | |||

Geoscience self-efficacy | 0.389 | 6.583 | <0.001 | |

Block 2 | 0.159 | |||

Geoscience self-efficacy ^{a} | 0.335 | 5.194 | <0.001 | |

Math self-efficacy ^{a} | 0.131 | 2.034 | 0.043 | |

Block 3 | 0.156 | |||

Geoscience self-efficacy ^{a} | 0.327 | 4.887 | <0.001 | |

Math self-efficacy | 0.121 | 1.794 | 0.074 | |

Math anxiety | −0.032 | −0.487 | 0.627 |

^{a}Significant predictor of geoscience interest.

Math Anxiety | Math Self-Efficacy | Geoscience Self-Efficacy | Geoscience Interest | |
---|---|---|---|---|

Math Anxiety | −0.306 * | −0.407 ** | −0.174 | |

Math Self-Efficacy | −0.517 ** | - | 0.356 ** | 0.128 |

Geoscience Self-Efficacy | −0.452 ** | 0.470 ** | - | 0.335 ** |

Geoscience Interest | −0.249 | 0.349 ** | 0.437 ** | - |

**Table 7.**Hierarchical regression analysis summary table comparing gender with geoscience interest as outcome variable.

Variable | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|

Standardized Beta Coefficient | t | p | Adjusted R^{2} | Standardized Beta Coefficient | t | p | Adjusted R^{2} | |

Block 1 | 0.104 | 0.184 | ||||||

Geoscience self-efficacy | 0.335 | 3.630 | <0.001 | 0.437 | 5.215 | <0.001 | ||

Block 2 | 0.095 | 0.204 | ||||||

Geoscience self-efficacy ^{a} | 0.332 | 3.342 | 0.001 | 0.351 | 3.738 | <0.001 | ||

Math self-efficacy ^{a} | 0.010 | 0.098 | 0.922 | 0.184 | 1.956 | 0.053 | ||

Block 3 | 0.088 | 0.197 | ||||||

Geoscience self-efficacy ^{a} | 0.317 | 2.991 | 0.003 | 0.353 | 3.594 | <0.001 | ||

Math self-efficacy | 0.001 | 0.014 | 0.989 | 0.186 | 1.821 | 0.071 | ||

Math anxiety | −0.045 | −0.434 | 0.665 | 0.007 | 0.065 | 0.948 |

^{a}Significant predictor of geoscience interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jameson, M.M.; Sexton, J.; London, D.; Wenner, J.M.
Relationships and Gender Differences in Math Anxiety, Math Self-Efficacy, Geoscience Self-Efficacy, and Geoscience Interest in Introductory Geoscience Students. *Educ. Sci.* **2024**, *14*, 426.
https://doi.org/10.3390/educsci14040426

**AMA Style**

Jameson MM, Sexton J, London D, Wenner JM.
Relationships and Gender Differences in Math Anxiety, Math Self-Efficacy, Geoscience Self-Efficacy, and Geoscience Interest in Introductory Geoscience Students. *Education Sciences*. 2024; 14(4):426.
https://doi.org/10.3390/educsci14040426

**Chicago/Turabian Style**

Jameson, Molly M., Julie Sexton, Dina London, and Jennifer M. Wenner.
2024. "Relationships and Gender Differences in Math Anxiety, Math Self-Efficacy, Geoscience Self-Efficacy, and Geoscience Interest in Introductory Geoscience Students" *Education Sciences* 14, no. 4: 426.
https://doi.org/10.3390/educsci14040426