Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Data Collection Procedure
2.4. Questionnaire
2.5. Data Analysis Plan
3. Results
Prediction Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
A. Age |
B. Gender |
Are you familiar with or have you heard about artificial intelligence? |
○ Yes |
○ No |
○ Maybe |
Do you use applications or tools with artificial intelligence in your daily life? |
○ Yes |
○ No |
○ Maybe |
Do you believe that artificial intelligence aids in the progress and efficiency of individuals? |
○ Yes |
○ No |
○ Maybe |
Are the outcomes and decisions generated by artificial intelligence systems easily understandable and explainable? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Am I well-informed about how the artificial intelligence models used in my field of study function? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Should measures be taken to ensure that artificial intelligence is used ethically and, in a manner, respectful of fundamental rights and values? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Should the existing ethical principles and regulations that apply to the development and use of artificial intelligence be disseminated in my field of study? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Do artificial intelligence systems respect my autonomy and allow me to have control over decisions that directly affect me? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Is it important to evaluate the benefits associated with the use of artificial intelligence in my field of study? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Has artificial intelligence allowed for process optimization and more efficient task completion in contexts where it has been implemented? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Has artificial intelligence enabled me to achieve more accurate and reliable outcomes compared to traditional or previous methods? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Has artificial intelligence been a useful tool in supporting decision-making in complex situations or with large data sets in my educational context? |
○ Strongly disagree |
○ Disagree |
○ Neither agree nor disagree |
○ Agree |
○ Strongly agree |
Have I had the opportunity to participate in artificial intelligence technology research or development projects funded by external bodies or academic institutions during my higher education studies? |
○ Yes |
○ No |
Do you believe that tools with artificial intelligence influence your academic performance? |
○ Yes |
○ No |
How many days a week do you use artificial intelligence tools for academic activities? |
○ 1 day |
○ 2 days |
○ 3 days |
○ 4 days |
○ 5 days |
○ 6 days |
○ 7 days |
How many hours a week do you use artificial intelligence tools for academic activities? |
○ 1–5 |
○ 5–10 |
○ 10–20 |
○ More than 20 |
How many artificial intelligence tools or applications do you use for your academic activities? |
○ 1 |
○ 2 |
○ 3 |
○ 4 |
○ 5 or more |
What is your grade average for the current academic cycle? |
………………………… |
References
- Salas-Pilco, S.Z.; Yang, Y. Artificial intelligence applications in Latin American higher education: A systematic review. Int. J. Educ. Technol. High. Educ. 2022, 19, 21. [Google Scholar] [CrossRef]
- Khan, I.; Ahmad, A.R.; Jabeur, N.; Mahdi, M.N. An artificial intelligence approach to monitor student performance and devise preventive measures. Smart Learn. Environ. 2021, 8, 17. [Google Scholar] [CrossRef]
- Bonilla-Jurado, D.; Zambrano, R.; Moncayo, H. Desarrollo profesional continuo de docentes para actividades en los Institutos Tecnológicos: Una revisión literaria. Rev. Científica UISRAEL 2023, 10, 27–39. [Google Scholar] [CrossRef]
- Hwang, G.J.; Xie, H.; Wah, B.W.; Gašević, D. Vision, challenges, roles and research issues of Artificial Intelligence in Education. Comput. Educ. Artif. Intell. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Stadlman, M.; Salili, S.M.; Borgaonkar, A.D.; Miri, A.K. Artificial Intelligence Based Model for Prediction of Students’ Performance: A Case Study of Synchronous Online Courses during the COVID-19 Pandemic. J. STEM Educ. 2022, 23, 39–46. Available online: https://www.proquest.com/docview/2680630973/4E92CB5712D34224PQ/2?accountid=142712 (accessed on 6 September 2023).
- Alqahtani, T.; Badreldin, H.A.; Alrashed, M.; Alshaya, A.I.; Alghamdi, S.S.; bin Saleh, K.; Alowais, S.A.; Alshaya, O.A.; Rahman, I.; Al Yami, M.S.; et al. The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Res. Soc. Adm. Pharm. 2023, 19, 1236–1242. [Google Scholar] [CrossRef]
- Mora, E.; Bonilla-Jurado, D.; Núñez, L.; Sarmiento, J. Inadaptabilidad de los Docentes al Manejo de Plataformas Virtuales: Caso EducarEcuador. Rev. Conrado 2018, 14, 83–90. Available online: http://conrado.ucf.edu.cu/index.php/conrado (accessed on 8 September 2023).
- Dai, Y.; Liu, A.; Lim, P.C. Reconceptualizing ChatGPT and generative AI as a student-driven innovation in higher education. Procedia CIRP 2023, 119, 84–90. [Google Scholar] [CrossRef]
- Al Ka’bi, A. Proposed artificial intelligence algorithm and deep learning techniques for development of higher education. Int. J. Intell. Netw. 2023, 4, 68–73. [Google Scholar] [CrossRef]
- Gordillo-Tenorio, W.; Meléndez-Flores, C.; Sierra-Liñan, F.; Cabanillas-Carbonell, M. Information Technologies that Help Improve Academic Performance, A Review of the Literature. Int. J. Emerg. Technol. Learn. 2023, 18, 262–279. [Google Scholar] [CrossRef]
- Hanaysha, J.R.; Shriedeh, F.B.; In’airat, M. Impact of classroom environment, teacher competency, information and communication technology resources, and university facilities on student engagement and academic performance. Int. J. Inf. Manag. Data Insights 2023, 3, 100188. [Google Scholar] [CrossRef]
- Alfalah, A.A. Factors influencing students’ adoption and use of mobile learning management systems (m-LMSs): A quantitative study of Saudi Arabia. Int. J. Inf. Manag. Data Insights 2023, 3, 100143. [Google Scholar] [CrossRef]
- Melo, E.; Silva, I.; Costa, D.G.; Viegas, C.M.D.; Barros, T.M. On the Use of eXplainable Artificial Intelligence to Evaluate School Dropout. Educ. Sci. 2022, 12, 845. [Google Scholar] [CrossRef]
- Barvinski, C.; Ferreira, G.; Machado, L.; Longhi, M.; Behar, P. Construction of a socio-affective profile model of students in a virtual learning environment. In Smart Education and e-Learning; Smart Innovation, Systems and Technologies; Uskov, V.L., Howlett, R.J., Jain, L.C., Eds.; Springer Science and Business Media Deutschland GmbH: Porto Alegre, Brazil, 2019; pp. 159–168. [Google Scholar] [CrossRef]
- Palacios, A.; Pascual, V.; Moreno-Mediavilla, D. The role of new technologies in STEM education. Bordon. Rev. De Pedagog. 2022, 74, 11–21. [Google Scholar] [CrossRef]
- Tauber, Z.; Lacey, H.; Lichnovska, R.; Erdosova, B.; Zizka, R.; Sedy, J.; Cizkova, K. Students’ preparedness, learning habits and the greatest difficulties in studying Histology in the digital era: A comparison between students of general and dental schools. Eur. J. Dent. Educ. 2021, 25, 371–376. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.J.; Aznar-Díaz, I.; Cáceres-Reche, M.P.; Romero-Rodríguez, J.M. Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Educ. Sci. 2019, 9, 51. [Google Scholar] [CrossRef]
- Díaz-Serrano, J.; Alfageme-González, M.B.; Cutanda-López, M.T. Interacción del rendimiento académico con los estilos de aprendizaje y de enseñanza. Rev. Electrónica Interuniv. De Form. Del Profr. 2022, 25, 145–160. [Google Scholar] [CrossRef]
- Wang, Y. Artificial Intelligence Technologies in College English Translation Teaching. J. Psycholinguist. Res. 2023, 52, 1525–1544. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, S. Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Educ. Inf. Technol. 2023, 1–20. [Google Scholar] [CrossRef]
- Lin, H. Influences of Artificial Intelligence in Education on Teaching Effectiveness. Int. J. Emerg. Technol. Learn. 2022, 17, 144–156. [Google Scholar] [CrossRef]
- Rodríguez, M.d.L.F.; Suelves, D.M.; Méndez, V.G.; Mas, J.A.R.-L. Profesorado universitario. ¿Consumidor o productor de contenidos digitales educativos? Rev. Electrónica Interuniv. De Form. Del Profr. 2023, 26, 13–25. [Google Scholar] [CrossRef]
- Phan, M.; De Caigny, A.; Coussement, K. A decision support framework to incorporate textual data for early student dropout prediction in higher education. Decis. Support Syst. 2023, 168, 113940. [Google Scholar] [CrossRef]
- Roselló, L.A.; Rodicio, C.I.F.; Suarez, D.C.R. Diferencias en las percepciones del alumnado universitario sobre apoyos docentes según metodología, grado de estudios y edad. Rev. Electrónica Interuniv. De Form. Del Profr. 2023, 26, 193–205. [Google Scholar] [CrossRef]
- Jiao, P.; Ouyang, F.; Zhang, Q.; Alavi, A.H. Artificial intelligence-enabled prediction model of student academic performance in online engineering education. Artif. Intell. Rev. 2022, 55, 6321–6344. [Google Scholar] [CrossRef]
- Flores, F.A.I.; Sanchez, D.L.C. Factores endógenos y exógenos para el modelado y predicción del rendimiento académico de estudiantes universitarios. Rev. Electrónica Interuniv. Form. Profr. 2023, 26, 233–247. [Google Scholar] [CrossRef]
- Ouyang, F.; Wu, M.; Zheng, L.; Zhang, L.; Jiao, P. Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. Int. J. Educ. Technol. High. Educ. 2023, 20, 4. [Google Scholar] [CrossRef]
- Xing, W.; Du, D.; Bakhshi, A.; Chiu, K.; Du, H. Designing a Transferable Predictive Model for Online Learning Using a Bayesian Updating Approach. IEEE Trans. Learn. Technol. 2021, 14, 474–485. [Google Scholar] [CrossRef]
- Verdugo-Castro, S.; García-Holgado, A.; Sánchez-Gómez, M.C. The gender gap in higher STEM studies: A systematic literature review. Heliyon 2022, 8, e10300. [Google Scholar] [CrossRef]
- Bowman, N.A.; Logel, C.; LaCosse, J.; Jarratt, L.; Canning, E.A.; Emerson, K.T.U.; Murphy, M.C. Gender representation and academic achievement among STEM-interested students in college STEM courses. J. Res. Sci. Teach. 2022, 59, 1876–1900. [Google Scholar] [CrossRef]
- Posso-Yépez, M.; León-Ron, V.; Narváez-Olmedo, G.; Posso-Astudillo, M. Perspectivas de género y condiciones de aprendizajes virtuales en pandemia. Rev. Electron. Interuniv. Form. Profr. 2022, 25, 27–41. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, M. The implications of expectancy-value theory of motivation in language education. Front. Psychol. 2022, 13, 992372. [Google Scholar] [CrossRef] [PubMed]
- Portillo-Tarragona, P.; Marín-Vinuesa, L.M.; Scarpellini, S. La Edad y el Rendimiento Académico Universitario. In La Innovación Docente Como Misión del Profesorado. Actas del IV Congreso Internacional Sobre Aprendizaje, Innovación y Competitividad, CINAIC; Universidad de Zaragoza: Zaragoza, Spain, 2017; pp. 28–33. [Google Scholar] [CrossRef]
- Mao, Z.; Lee, I. Researching L2 Student Engagement with Written Feedback: Insights from Sociocultural Theory. TESOL Q. 2022, 56, 788–798. [Google Scholar] [CrossRef]
- Alonso-Tapia, J.; Merino-Tejedor, E.; Huertas, J.A. Academic engagement: Assessment, conditions, and effects-a study in higher education from the perspective of the person-situation interaction. Eur. J. Psychol. Educ. 2023, 38, 631–655. [Google Scholar] [CrossRef]
- Dhiman, B. Use and impact of social media on academic performance of kurukshetra university students: A case study. SSRN Electron. J. 2022, 2–11. [Google Scholar] [CrossRef]
- Tamura, N.; Komada, Y.; Inoue, Y.; Tanaka, H. Social jetlag among Japanese adolescents: Association with irritable mood, daytime sleepiness, fatigue, and poor academic performance. Chronobiol. Int. 2022, 39, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Neroni, J.; Meijs, C.; Gijselaers, H.J.M.; Kirschner, P.A.; de Groot, R.H.M. Learning strategies and academic performance in distance education. Learn. Individ. Differ. 2019, 73, 1–7. [Google Scholar] [CrossRef]
- De Jesús Araiza, M.; García, M. Impact of an LMS Platform on the academic performance of postgraduate students: A study from data analytics. Int. J. Technol. Learn. 2021, 28, 75–91. [Google Scholar] [CrossRef]
- Sinchigalo, R.; Guzmán, B.; Bonilla-Jurado, D. Bienestar emocional y rendimiento académico en estudiantes universitarios: Relación bidimensional y su impacto en las estrategias de apoyo. J. Sci. Res. 2022, 7, 71–95. [Google Scholar] [CrossRef]
- Arroba-Freire, E.; Bonilla-Jurado, D.; Guevara, C.; Ramírez-Casco, A. Factor Analysis: An Application of the Digital Competencies Questionnaire in Students of the Business Administration Career of the Instituto Tecnológico Superior España (ISTE). J. High. Educ. Theory Pract. 2022, 22, 201. Available online: https://www.proquest.com/openview/af6b578412f4d52d45ee53e344ed429a/1?pq-origsite=gscholar&cbl=766331 (accessed on 12 September 2023).
- Cressie, N.; Moores, M.T. Spatial Statistics. In BT-Encyclopedia of Mathematical Geosciences; Sagar, B.S.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Hernández-Sampieri, R.; Mendoza, C. Metodología de la Investigación: Las Rutas Cuantitativa, Cualitativa y Mixta; MacGraw Hill Education: Mexico City, Mexico, 2018. [Google Scholar]
- Hamoud, A.; Salah, A.; Aqeel, W. Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis. Int. J. Interact. Multimed. Artif. Intell. 2018, 5, 26–31. [Google Scholar] [CrossRef]
- Mensah, R.O.; Quansah, C.; Oteng, B.; Nettey, J.N.A. Assessing the effect of information and communication technology usage on high school student’s academic performance in a developing country. Cogent Educ. 2023, 10, 2188809. [Google Scholar] [CrossRef]
- Ionescu, R.V.; Zlati, M.L.; Antohi, V.M.; Stanciu, S. Reduced inequalities as factor of sustainable development: The analysis under econometric models. Sustainability 2018, 10, 3523. [Google Scholar] [CrossRef]
- Floryan, D.; Graham, M.D. Data driven discovery of intrinsic dynamics. Nat. Mach. Intell. 2022, 4, 1113–1120. [Google Scholar] [CrossRef]
- Saha, S.; Gao, J.; Gerlach, R. A survey of the application of graph-based approaches in stock market analysis and prediction. Int. J. Data Sci. Anal. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Popenici, S.A.D.; Kerr, S. Exploring the impact of artificial intelligence on teaching and learning in higher education. Res. Pract. Technol. Enhanc. Learn. 2017, 12, 22. [Google Scholar] [CrossRef]
- Matzavela, V.; Alepis, E. Decision tree learning through a Predictive Model for Student Academic Performance in Intelligent M-Learning environments. Comput. Educ. Artif. Intell. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Waheed, H.; Hassan, S.U.; Aljohani, N.R.; Hardman, J.; Alelyani, S.; Nawaz, R. Predicting academic performance of students from VLE big data using deep learning models. Comput. Hum. Behav. 2020, 104, 106189. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shahzadi, E. Prediction of Students’ Academic Performance using Artificial Neural Network. Bull. Educ. Res. 2018, 40, 157–164. Available online: https://eric.ed.gov/?id=EJ1209686 (accessed on 7 September 2023).
- Costa-Mendes, R.; Oliveira, T.; Castelli, M.; Cruz-Jesus, F. A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach. Educ. Inf. Technol. 2021, 26, 1527–1547. [Google Scholar] [CrossRef]
- Cruz-Jesus, F.; Castelli, M.; Oliveira, T.; Mendes, R.; Nunes, C.; Sa-Velho, M.; Rosa-Louro, A. Using artificial intelligence methods to assess academic achievement in public high schools of a European Union country. Heliyon 2020, 6, e04081. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, E.; Tafur, A.; Figueroa, M.; Ames, E. Academic Performance and Study Habits in Higher Educa. Rev. Conrado 2021, 17, 17–27. Available online: http://scielo.sld.cu/pdf/rc/v17n81/1990-8644-rc-17-81-17.pdf (accessed on 8 September 2023).
- Faura-Martínez, U.; Lafuente-Lechuga, M.; Cifuentes-Faura, J. Sustainability of the Spanish university system during the pandemic caused by COVID-19. Educ. Rev. 2022, 74, 645–663. [Google Scholar] [CrossRef]
- Zamora-Antuñano, M.A.; Barros-Baertl, R.; Tovar-Luna, B.; González-Gutiérrez, C.A.; Mendez-Lozano, N.E.; Cruz-Perez, M.Á. The use of augmented reality to strengthen competence in data analysis and problem solving in engineering students at the Universidad del Valle de México. Educ. Sci. 2022, 12, 755. [Google Scholar] [CrossRef]
Number of Students | Mean Error | Root Mean Square Error | Mean Absolute Error | Percentage of Mean Error | Mean Absolute Error Percentage |
---|---|---|---|---|---|
100 | −5.3291 × 10−17 | 0.23328 | 0.17106 | −0.10605 | 2.2769 |
398 | −6.2708 × 10−16 | 0.27226 | 0.17017 | −0.14211 | 2.2434 |
911 | −8.0043 × 10−16 | 0.26485 | 0.16541 | −0.11861 | 2.0894 |
Coefficient | Standard Deviation | Statistic t | p-Value | ||
---|---|---|---|---|---|
Constant | 5.88627 | 0.0547259 | 107.6 | <0.0001 | *** |
Gender | −0.00595790 | 0.01802 | −0.3306 | 0.741 | |
Age | 0.0049758 | 0.0015332 | 3.245 | 0.0012 | *** |
Hours | 0.248434 | 0.0196315 | 12.65 | <0.0001 | *** |
Days | 0.138942 | 0.0202055 | 6.876 | <0.0001 | *** |
Tools Or applications | 0.305412 | 0.0273203 | 11.18 | <0.0001 | *** |
Student | Predicted Average | Student | Predicted Average | Student | Predicted Average | Student | Predicted Average |
---|---|---|---|---|---|---|---|
912 | 9.02 | 937 | 7.97 | 962 | 9.05 | 987 | 7.98 |
913 | 9.03 | 938 | 7.94 | 963 | 9.02 | 988 | 9.02 |
914 | 8.67 | 939 | 7.42 | 964 | 9.12 | 989 | 6.97 |
915 | 7.94 | 940 | 8.65 | 965 | 8.70 | 990 | 8.64 |
916 | 9.02 | 941 | 7.98 | 966 | 8.64 | 991 | 9.05 |
917 | 6.80 | 942 | 9.47 | 967 | 9.02 | 992 | 9.02 |
918 | 9.05 | 943 | 9.50 | 968 | 9.07 | 993 | 9.02 |
919 | 7.95 | 944 | 9.48 | 969 | 6.67 | 994 | 9.47 |
920 | 9.09 | 945 | 9.02 | 970 | 9.47 | 995 | 7.95 |
921 | 7.98 | 946 | 6.67 | 971 | 9.02 | 996 | 6.83 |
922 | 7.98 | 947 | 9.05 | 972 | 7.95 | 997 | 7.94 |
923 | 7.95 | 948 | 7.97 | 973 | 6.98 | 998 | 7.35 |
924 | 8.52 | 949 | 6.75 | 974 | 9.47 | 999 | 9.02 |
925 | 9.02 | 950 | 9.48 | 975 | 7.95 | 1000 | 7.96 |
926 | 6.67 | 951 | 9.01 | 976 | 9.04 | 1001 | 7.94 |
927 | 7.01 | 952 | 9.07 | 977 | 9.02 | 1002 | 9.03 |
928 | 9.05 | 953 | 9.02 | 978 | 7.95 | 1003 | 6.67 |
929 | 8.68 | 954 | 7.95 | 979 | 9.62 | 1004 | 7.95 |
930 | 9.47 | 955 | 9.02 | 980 | 9.03 | 1005 | 9.11 |
931 | 6.97 | 956 | 7.98 | 981 | 8.68 | 1006 | 8.64 |
932 | 7.30 | 957 | 6.69 | 982 | 7.94 | 1007 | 7.95 |
933 | 6.66 | 958 | 6.67 | 983 | 6.67 | 1008 | 7.94 |
934 | 8.00 | 959 | 9.03 | 984 | 8.76 | 1009 | 7.98 |
935 | 9.05 | 960 | 8.72 | 985 | 9.01 | 1010 | 8.05 |
936 | 7.95 | 961 | 8.04 | 986 | 7.94 | 1011 | 9.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco-Mendoza, S.; Guevara, C.; Mayorga-Albán, A.; Fernández-Escobar, J. Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance. Educ. Sci. 2023, 13, 990. https://doi.org/10.3390/educsci13100990
Pacheco-Mendoza S, Guevara C, Mayorga-Albán A, Fernández-Escobar J. Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance. Education Sciences. 2023; 13(10):990. https://doi.org/10.3390/educsci13100990
Chicago/Turabian StylePacheco-Mendoza, Silvia, Cesar Guevara, Amalín Mayorga-Albán, and Juan Fernández-Escobar. 2023. "Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance" Education Sciences 13, no. 10: 990. https://doi.org/10.3390/educsci13100990
APA StylePacheco-Mendoza, S., Guevara, C., Mayorga-Albán, A., & Fernández-Escobar, J. (2023). Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance. Education Sciences, 13(10), 990. https://doi.org/10.3390/educsci13100990