Introducing Virtual Reality and Emerging Technologies in a Teacher Training STEM Course
Abstract
:1. Introduction
1.1. Science Education and STEM
1.2. Emerging Technologies in Science Education
1.3. Initial Teacher Training in the Use of Technologies
2. Method
2.1. Participants
2.2. Data Collection Instruments
2.3. The Training Proposal: Immersive Virtual Reality and Emerging Technologies for STEM Education
2.4. Procedure
2.5. Data Analysis
3. Results
3.1. Quantitative Results of CUTE-STEM
3.2. Qualitative Results of CUTE-STEM
3.3. Qualitative Results: Thematic Analysis of Semi-Structured Interviews with Participants
4. Discussion
5. Conclusions, Limitations, and Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bybee, R. The Case for STEM Education Challenges and Opportunities; National STEM Teachers Association: Washington, DC, USA, 2013. [Google Scholar]
- Shaughnessy, M. By way of introduction: Mathematics in a STEM context. Math. Teach. Middle Sch. 2013, 18, 324. [Google Scholar]
- Martín-Páez, T.; Aguilera, D.; Perales-Palacios, F.J.; Vílchez-González, J.M. What are we talking about when we talk about STEM education? A review of literature. Sci. Educ. 2019, 103, 799–822. [Google Scholar] [CrossRef]
- Fleer, M. Affective imagination in science education: Determining the emotional nature of scientific and technological learning of young children. Res. Sci. Educ. 2013, 43, 2085–2106. [Google Scholar] [CrossRef]
- Toma, R.B.; Meneses-Villagrá, J.A. Preferencia por contenidos científicos de física o de biología en educación primaria: Un análisis clúster. Rev. Eureka Sobre Enseñanza Y Divulg. De Las Cienc. 2019, 16, 1104. [Google Scholar] [CrossRef]
- Zollman, A. Learning for STEM literacy: STEM literacy for learning. Sch. Sci. Math. 2012, 112, 12–19. [Google Scholar] [CrossRef]
- Pellas, N.; Vosinakis, S. The effect of simulation games on learning computer programming: A comparative study on high school students’ learning performance by assessing computational problem-solving strategies. Educ. Inf. Technol. 2018, 23, 2423–2452. [Google Scholar] [CrossRef]
- Ye, H.; Liang, B.; Ng, O.-L.; Chai, C.S. Integration of computational thinking in K-12 mathematics education: A systematic review on CT-based mathematics instruction and student learning. Int. J. STEM Educ. 2023, 10, 3. [Google Scholar] [CrossRef]
- Lai, X.; Ye, J.; Wong, G.K.W. Effectiveness of collaboration in developing computational thinking skills: A systematic review of social cognitive factors. J. Comput. Assist. Learn. 2023, 39, 1418–1435. [Google Scholar] [CrossRef]
- Thibaut, L.; Ceuppens, S.; De Loof, H.; De Meester, J.; Goovaerts, L.; Struyf, A.; Boeve-de Pauw, J.; Dehaene, W.; Deprez, J.; De Cock, M.; et al. Integrated STEM education: A systematic review of instructional practices in secondary education. Eur. J. STEM Educ. 2018, 3, 2. [Google Scholar] [CrossRef]
- Toma, R.B.; Greca, I.M. The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia J. Math. Sci. Technol. Educ. 2018, 14, 1383–1395. [Google Scholar] [CrossRef]
- Xia, L.; Zhong, B. A systematic review on teaching and learning robotics content knowledge in K-12. Comput. Educ. 2018, 127, 267–282. [Google Scholar] [CrossRef]
- Oliveira, A.; Feyzi Behnagh, R.; Ni, L.; Mohsinah, A.A.; Burgess, K.J.; Guo, L. Emerging technologies as pedagogical tools for teaching and learning science: A literature review. Hum. Behav. Emerg. Technol. 2019, 1, 149–160. [Google Scholar] [CrossRef]
- Ferrada, C.; Carrillo-Rosúa, F.J.; Díaz-Levicoy, D.; Silva-Díaz, F. La robótica desde las áreas STEM en Educación Primaria: Una revisión sistemática. Educ. Knowl. Soc. (EKS) 2020, 21, 18. [Google Scholar] [CrossRef]
- Molina-Ayuso, Á.; Adamuz-Povedano, N.; Bracho-López, R.; Torralbo-Rodríguez, M. Introduction to computational thinking with Scratch for teacher training for Spanish primary school teachers in mathematics. Educ. Sci. 2022, 12, 899. [Google Scholar] [CrossRef]
- Silva-Díaz, F.; Carrillo-Rosúa, J.; Fernández-Ferrer, G.; Marfil-Carmona, R.; Narváez, R. Valoración de tecnologías inmersivas y enfoque STEM en la formación inicial del profesorado. RIED Rev. Iberoam. De Educ. A Distancia 2023, 27. [Google Scholar] [CrossRef]
- Meccawy, M. Teachers’ prospective attitudes towards the adoption of extended reality technologies in the classroom: Interests and concerns. Smart Learn. Environ. 2023, 10, 36. [Google Scholar] [CrossRef]
- Boel, C.; Rotsaert, T.; Valcke, M.; Rosseel, Y.; Struyf, D.; Schellens, T. Are teachers ready to immerse? Acceptance of mobile immersive virtual reality in secondary education teachers. Res. Learn. Technol. 2023, 31, 2855. [Google Scholar] [CrossRef]
- Liu, D.; Dede, C.; Huang, R.; Richards, J. Virtual, Augmented, and Mixed Realities in Education; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Makransky, G.; Petersen, G.B.; Klingenberg, S. Can an immersive virtual reality simulation increase students’ interest and career aspirations in science? Br. J. Educ. Technol. 2020, 51, 2079–2097. [Google Scholar] [CrossRef]
- Markowitz, D.M.; Laha, R.; Perone, B.P.; Pea, R.D.; Bailenson, J.N. Immersive Virtual Reality Field Trips Facilitate Learning About Climate Change. Front. Psychol. 2018, 9, 2364. [Google Scholar] [CrossRef]
- Silva-Díaz, F.; Carrillo-Rosúa, J.; Fernández-Plaza, J.A. Uso de tecnologías inmersivas y su impacto en las actitudes científico-matemáticas del estudiantado de Educación Secundaria Obligatoria en un contexto en riesgo de exclusión social. Educar 2021, 57, 119–138. [Google Scholar] [CrossRef]
- Billingsley, G.; Smith, S.; Smith, S.; Meritt, J. A systematic literature review of using immersive virtual reality technology in teacher education. J. Interact. Learn. Res. 2019, 30, 65–90. Available online: https://www.learntechlib.org/primary/p/176261/ (accessed on 31 March 2023).
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Cromley, J.G.; Chen, R.; Lawrence, L. Meta-analysis of STEM learning using virtual reality: Benefits across the board. J. Sci. Educ. Technol. 2023, 32, 355–364. [Google Scholar] [CrossRef]
- Di Natale, A.F.; Reppeto, C.; Riva, G.; Villani, D. Immersive virtual reality in K-12 and higher education: A 10-year systematic review of empirical research. Br. J. Educ. Technol. 2020, 51, 2006–2033. [Google Scholar] [CrossRef]
- Silva-Díaz, F.; Fernández-Ferrer, G.; Vázquez-Vílchez, M.; Ferrada, C.; Narváez, R.; Carrillo-Rosúa, J. Tecnologías emergentes en la educación STEM. Análisis bibliométrico de publicaciones en Scopus y WoS (2010–2020). Bordón Rev. De Pedagog. 2022, 74, 25–44. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Lei, J.; Wang, Q.; Ren, Y. Effects of an immersive virtual reality-based classroom on students’ learning performance in science lessons. Br. J. Educ. Technol. 2020, 51, 2034–2049. [Google Scholar] [CrossRef]
- Chang, S.C.; Hsu, T.C.; Kuo, W.C.; Jong, M.S.Y. Effects of applying a VR-based two-tier test strategy to promote elementary students’ learning performance in a Geology class. Br. J. Educ. Technol. 2019, 51, 148–165. [Google Scholar] [CrossRef]
- Cheng, K.H.; Tsai, C.C. Students’ motivational beliefs and strategies, perceived immersion and attitudes towards science learning with immersive virtual reality: A partial least squares analysis. Br. J. Educ. Technol. 2020, 51, 2139–2158. [Google Scholar] [CrossRef]
- Silva-Díaz, F.; García-Yeguas, A.; Carrillo-Rosúa, J. Integración de tecnologías emergentes para la educación STEAM: Proyecto TECNOSTEAM. In En Las Nuevas Realidades Educativas: El Uso de Tecnologías Emergentes Para el Aprendizaje; Aznar-Díaz, I., Fernández-Martín, F.D., de la Cruz Campos, J.C., Victoria Maldonado, J.J., Eds.; Dykinson: Madrid, Spain, 2023; pp. 129–136. [Google Scholar]
- Barroso-Osuna, J.; Gutiérrez-Castillo, J.J.; del Carmen Llorente-Cejudo, M.; Valencia Ortiz, R. Difficulties in the incorporation of Augmented reality in university education: Visions from the experts. J. New Approaches Educ. Res. 2019, 8, 126. [Google Scholar] [CrossRef]
- Cabero, J. Nuevas Tecnologías Aplicadas a La Educación; McGraw-Hill: Madrid, Spain, 2015. [Google Scholar]
- Ertmer, P.A.; Ottenbreit-Leftwich, A.T.; Sadik, O.; Sendurur, E.; Sendurur, P. Teacher beliefs and technology integration practices: A critical relationship. Comput. Educ. 2012, 59, 423–435. [Google Scholar] [CrossRef]
- Sánchez-Prieto, J.C.; Huang, F.; Olmos-Migueláñez, S.; García-Peñalvo, F.J.; Teo, T. Exploring the unknown: The effect of resistance to change and attachment on mobile adoption among secondary pre-service teachers. Br. J. Educ. Technol. J. 2019, 50, 2433–2449. [Google Scholar] [CrossRef]
- Cabello, V.M.; Martinez, M.L.; Armijo, S.; Maldonado, L. Promoting STEAM learning in the early years: “Pequeños Científicos” Program. LUMAT Int. J. Math Sci. Technol. Educ. 2021, 9, 33–62. [Google Scholar] [CrossRef]
- Del Moral Pérez, M.E.; Neira Piñeiro, M.R.; Castañeda Fernández, J.; López-Bouzas, N. Competencias docentes implicadas en el diseño de Entornos Literarios Inmersivos: Conjugando proyectos STEAM y cultura maker. RIED Rev. Iberoam. Educ. A Distancia 2022, 26, 59–82. [Google Scholar] [CrossRef]
- Cabero-Almenara, J.; Marín, V. Blended learning y realidad aumentada: Experiencias de diseño docente. RIED Rev. Iberoam. Educ. A Distancia 2018, 21, 57–74. [Google Scholar] [CrossRef]
- Cviko, A.; McKenney, S.; Voogt, J. Teacher roles in designing technology-rich learning activities for early literacy: A cross-case analysis. Comput. Educ. 2014, 72, 68–79. [Google Scholar] [CrossRef]
- Buss, R.R.; Foulger, T.S.; Wetzel, K.; Lindsey, L. Preparing teachers to integrate technology into K–12 instruction II: Examining the effects of technology-infused methods courses and student teaching. J. Digit. Learn. Teach. Educ. 2018, 34, 134–150. [Google Scholar] [CrossRef]
- Cabero-Almenara, J.; Vázquez-Cano, E.; Villota-Oyarvide, W.R.; López-Meneses, E. La innovación en el aula universitaria a través de la realidad aumentada. Análisis desde la perspectiva del estudiantado español y latinoamericano. Rev. Electrón. Educ. 2021, 25, 1–17. [Google Scholar] [CrossRef]
- Nistor, N.; Stanciu, D.; Lerche, T.; Kiel, E. “I am fine with any technology, as long as it doesn’t make trouble, so that I can concentrate on my study”: A case study of university students’ attitude strength related to educational technology acceptance. Br. J. Educ. Technol. J. 2019, 50, 2557–2571. [Google Scholar] [CrossRef]
- Guisasola, J.; Ametller, J.; Zuza, K. Designing Teaching Learning Sequences with Design Based Research: An emerging research line in science education|Investigación basada en el diseño de Secuencias de Enseñanza-Aprendizaje: Una línea de investigación emergente en Enseñanza de las Ciencias. Rev. Eureka 2021, 18, 46–57. [Google Scholar] [CrossRef]
- León, O.G.; Montero, I. Métodos de Investigación En Psicología y Educación: Las Tradiciones Cuantitativa y Cualitativa; McGraw-Hill: Madrid, Spain, 2015. [Google Scholar]
- Hernández Sampieri, R.; Fernández Collado, C.; Baptista Lucio, M. Metodología de la Investigación, 6th ed.; McGraw-Hill Education: Madrid, Spain, 2014. [Google Scholar]
- Cardona, M.C. Introducción a Los Métodos de Investigación En Educación; EOS: Madrid, Spain, 2022. [Google Scholar]
- Christensen, R. Effects of technology integration education on the attitudes of teachers and students. J. Res. Technol. Educ. 2002, 34, 411–433. [Google Scholar] [CrossRef]
- Cabero-Almenara, J.; Romero-Tena, R.; Llorente-Cejudo, C.; Palacios-Rodríguez, A. Academic Performance and Technology Acceptance Model (TAM) Through a Flipped Classroom Experience: Training of Future Teachers of Primary Education. Contemp. Educ. Technol. 2021, 13, ep305. [Google Scholar] [CrossRef]
- Alalwan, N.; Cheng, L.; Al-Samarraie, H.; Yousef, R.; Ibrahim Alzahrani, A.; Sarsam, S.M. Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: A developing country perspective. Stud. Educ. Eval. 2020, 66, 100876. [Google Scholar] [CrossRef]
- Meccawy, M. Creating an immersive XR learning experience: A roadmap for educators. Electronics 2022, 11, 3547. [Google Scholar] [CrossRef]
- Bell, D. The reality of STEM education, design and technology teachers’ perceptions: A phenomenographic study. Int. J. Technol. Des. Educ. 2016, 26, 61–79. [Google Scholar] [CrossRef]
Code | Age | Gender | Academic Background |
---|---|---|---|
P01 | 23 | Female | Bachelor’s Degree in Primary Education (third year) |
P02 | 34 | Female | Bachelor’s Degree in Teaching Art and Visual Communication Master’s in Educational Administration PhD Student in Art an Education (second year) |
P03 | 27 | Female | Bachelor’s Degree in Primary Education (third year) |
P04 | 24 | Male | Bachelor’s Degree in Primary Education (third year) |
P05 | 19 | Female | Bachelor’s Degree in Primary Education (second year) |
P06 | 20 | Male | Bachelor’s Degree in Primary Education (second year) |
P07 | 21 | Female | Bachelor’s Degree in Primary Education (second year) |
P08 | 20 | Male | Bachelor’s Degree in Primary Education (second year) |
P09 | 24 | Male | Bachelor’s Degree in Chemistry PhD Student in Educational Sciences (second year) |
P10 | 21 | Female | Bachelor’s Degree in Primary Education (second year) |
Dimension | Definition |
---|---|
(a) Attitude towards technology. (1–5) | This category aims to examine individuals’ attitudes and skills towards technology. It involves assessing the extent of their interest in technology, their personal usage of technology, and their technological competencies for educational purposes. This category also involves evaluating individuals’ critical thinking abilities when it comes to digital content, such as their capacity to evaluate the quality and reliability of information on the internet and social media. |
(b) Frequency of use of Augmented and Virtual Reality for entertainment and educational purposes. (6–11) | This category measures the frequency and purpose of using Virtual or Augmented Reality for personal entertainment or educational activities. It aims to evaluate the degree to which participants integrate technological tools and devices into their daily routine. |
(c) Feasibility of using Technologies for STEM Learning in Primary Education. (12–17) | This category evaluates the feasibility of using technologies such as 3D printing, virtual laboratories, augmented reality, immersive virtual reality, educational robotics, and sensors for data collection in laboratory settings. The focus is on assessing the potential practicality and ease of implementation of these technologies in the primary education classroom. |
(d) Potential of Technologies as a Resource for STEM Learning in Primary Education. (18–23) | This category refers to the assessment of the potential use of specific technologies for teaching and learning in the STEM fields (Science, Technology, Engineering, and Mathematics) at the primary education level. |
∑ | Min | Max | Mo | Wilcoxon | ES | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Items | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Sig. | Z | d |
1. I am interested in technologies | 41 | 47 | 3 | 3 | 5 | 5 | 4 | 5 | 0.034 * | −2.121 | 0.848 |
2. I use technologies in my personal leisure time | 42 | 44 | 3 | 3 | 5 | 5 | 4 | 5 | 0.414 | −0.816 | 0.268 |
3. I use technology in my learning process | 39 | 46 | 3 | 4 | 5 | 5 | 4 | 5 | 0.038 * | −2.070 | 1.099 |
4. I have a critical capacity towards digital content (Internet, social media, etc.) | 34 | 43 | 2 | 3 | 4 | 5 | 4 | 5 | 0.024* | −2.264 | 1.08 |
5. I am competent in using technologies | 31 | 39 | 2 | 2 | 4 | 5 | 3 | 5 | 0.054 | −1.930 | 0.853 |
12. Feasibility of using 3D printing | 31 | 35 | 2 | 3 | 5 | 5 | 3 | 3 | 0.157 | −1.414 | 0.463 |
13. Feasibility of using Virtual laboratories (applications that simulate laboratories) | 26 | 35 | 1 | 3 | 5 | 5 | 3 | 3 | 0.041 * | −2.041 | 0.928 |
14. Feasibility of using Augmented Reality | 33 | 40 | 1 | 3 | 5 | 5 | 3 | 4 | 0.020 * | −2.333 | 0.740 |
15. Feasibility of using Immersive Virtual Reality | 33 | 34 | 1 | 2 | 5 | 5 | 3 | 4 | 0.660 | −0.439 | 0.093 |
16. Feasibility of using Educational robotics | 36 | 34 | 2 | 2 | 5 | 5 | 4 | 3 | 0.480 | −0.707 | −0.207 |
17. Feasibility of using Sensors (data collection in laboratories) | 28 | 32 | 1 | 2 | 4 | 4 | 3 | 3 | 0.279 | −1.081 | 0.559 |
18. Potential of 3D printing in PE. | 43 | 46 | 4 | 3 | 5 | 5 | 4 | 5 | 0.180 | −1.342 | 0.499 |
19. Potential of Virtual laboratories in PE. | 45 | 47 | 4 | 4 | 5 | 5 | 4 | 5 | 0.317 | −1.000 | 0.395 |
20. Potential of Augmented Reality in PE. | 42 | 45 | 3 | 4 | 5 | 5 | 4 | 4 | 0.180 | −1.342 | 0.515 |
21. Potential of Immersive Virtual Reality in PE. | 44 | 46 | 3 | 4 | 5 | 5 | 5 | 5 | 0.414 | −0.816 | 0.325 |
22. Potential of Educational robotics in PE. | 48 | 48 | 4 | 4 | 5 | 5 | 5 | 5 | 1.000 | 0.000 | 0 |
23. Potential of Sensors in PE. | 40 | 41 | 3 | 3 | 5 | 5 | 4 | 4 | 0.763 | −0.302 | 0.142 |
Dimensions | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Sig. | Z | d |
A. Attitude towards technology. | 187 | 219 | 13 | 15 | 22 | 25 | 20 | 21 a | 0.007 ** | −2.689 | 1.127 |
C. Feasibility of using technologies for STEM learning in Primary Education. | 187 | 210 | 8 | 16 | 25 | 28 | 16 | 18 a | 0.191 | −1.309 | 0.515 |
D. Potential of technologies as a resource for STEM learning in Primary Education. | 262 | 273 | 23 | 24 | 30 | 30 | 26 | 30 | 0.261 | −1.124 | 0.504 |
Total (A, C & D) | 636 | 702 | 52 | 55 | 72 | 77 | 59 a | 72 | 0.028 * | −2.194 | 1.025 |
f Pre | f Post | |||
---|---|---|---|---|
Item | Yes | No | Yes | No |
6. Augmented Reality for leisure purposes | 40% | 60% | 90% | 10% |
7. Augmented Reality as a learning tool in a subject | 30% | 70% | 70% | 30% |
8. Augmented Reality for educational purposes (as a teacher) | 10% | 90% | 40% | 60% |
9. Immersive Virtual Reality for leisure purposes | 20% | 80% | 80% | 20% |
10. Immersive Virtual Reality as a learning tool in a subject. | 10% | 90% | 80% | 20% |
11. Immersive Virtual Reality for educational purposes (as a teacher) | 10% | 90% | 40% | 60% |
Dimension | Yes | No | Yes | No |
B. Frequency of use of Augmented and Virtual Reality for entertainment and educational purposes | 20% | 80% | 66.6% | 33.3% |
Categories | Definition |
---|---|
(a) Perceptions of Technology in Contemporary Society | This category explores participants’ general perceptions of technology in today’s society. It encompasses their views on the abundance of information, the role of technology in education, and the need for responsible technology usage to avoid misinformation. |
(b) Experiences and Opinions on Emerging Technologies in the Course | This category centers on participants’ experiences with specific emerging technologies, such as Virtual Reality, 3D Printing, and Robotics, during the course. It includes their opinions on the potential benefits and challenges associated with the implementation of these technologies in educational settings. |
(c) The Relationship Between Technology and Teaching Methodologies | This category focuses on the participants’ perspectives regarding the integration of technology with teaching methodologies. It includes discussions on the need to move away from traditional passive teaching approaches and the importance of adopting more active, student-centered methods. Additionally, it addresses the potential of technology to enhance the learning process when appropriately aligned with educational objectives. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Díaz, F.; Marfil-Carmona, R.; Narváez, R.; Silva Fuentes, A.; Carrillo-Rosúa, J. Introducing Virtual Reality and Emerging Technologies in a Teacher Training STEM Course. Educ. Sci. 2023, 13, 1044. https://doi.org/10.3390/educsci13101044
Silva-Díaz F, Marfil-Carmona R, Narváez R, Silva Fuentes A, Carrillo-Rosúa J. Introducing Virtual Reality and Emerging Technologies in a Teacher Training STEM Course. Education Sciences. 2023; 13(10):1044. https://doi.org/10.3390/educsci13101044
Chicago/Turabian StyleSilva-Díaz, Francisco, Rafael Marfil-Carmona, Romina Narváez, Alicia Silva Fuentes, and Javier Carrillo-Rosúa. 2023. "Introducing Virtual Reality and Emerging Technologies in a Teacher Training STEM Course" Education Sciences 13, no. 10: 1044. https://doi.org/10.3390/educsci13101044
APA StyleSilva-Díaz, F., Marfil-Carmona, R., Narváez, R., Silva Fuentes, A., & Carrillo-Rosúa, J. (2023). Introducing Virtual Reality and Emerging Technologies in a Teacher Training STEM Course. Education Sciences, 13(10), 1044. https://doi.org/10.3390/educsci13101044