Cognitive and Emotional Development of STEM Skills in Primary School Teacher Training through Practical Work
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objectives
- Specific Objective 1: To develop practical STEM activities that are easy to implement in primary schools (10–12 years old), with the aim of contributing to fostering scientific-technological and mathematical vocations in the future from the earliest educational levels.
- Specific Objective 2: To compare the evolution of the variable level of knowledge of primary school teacher trainees after the development of two didactic interventions.
- Specific Objective 3: To compare the level of teacher self-efficacy shown by the participant sample before and after the didactic interventions implemented.
- Specific Objective 4: To diagnose and analyse the emotions experienced by trainee primary school teachers in STEM areas, before and after the implemented teaching interventions.
- Specific Objective 5: To find out the reflections and opinions of future primary school teachers towards the development of practical STEM activities in the classroom.
2.2. Hypothesis
2.3. Sample
2.4. Measuring Instrument
2.5. Validation of the Evaluation Instrument: Calibration Indexes
3. Results
3.1. Results Referring to the Variable Level of Knowledge
3.2. Results for the Variable Level of Teacher Self-Efficacy
3.3. Results Referring to the Emotional Variable
3.4. Results Regarding the Reflection of the Participants
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Karacop, A. The effects of using jigsaw method based on cooperative learning model in the undergraduate science laboratory practices. Univ. J. Educ. Res. 2017, 5, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Peñaherrera, M.; Ortiz, A.; Cobos, F. ¿Cómo promover la educación científica en el alumnado de primaria? Una experiencia desde el contexto ecuatoriano. REurEDC 2013, 10, 222–232. [Google Scholar] [CrossRef]
- Balastegui, M.; Palomar, R.; Solbes, J. ¿En qué aspectos es más deficiente la alfabetización científica del alumnado de Bachillerato? REurEDC 2020, 17, 3302. [Google Scholar] [CrossRef]
- Jimoyiannis, A. Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Comput. Educ. 2010, 55, 1259–1269. [Google Scholar] [CrossRef]
- Hmelo-Silver, C.E. Problem-Based Learning: What and how do students learn? Educ. Psych. Rev. 2004, 16, 235–265. [Google Scholar] [CrossRef]
- National Research Council. STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Organisation for Economic Co-Operation and Development [OECD]. The Future of Education and Skills: Education 2030; OECD: Paris, France, 2018. [Google Scholar]
- Sabariego, J.M.; Manzanares, M. Alfabetización Científica. In Proceedings of the I Congreso Iberoamericano De Ciencia, Tecnología, Sociedad E Innovación CTS+I; OEI: Mexico City, México, 2006. [Google Scholar]
- Márquez, C.; Bonil Gargallo, J. Una propuesta de aplicación de la práctica reflexiva a la formación inicial de maestros de Educación Primaria. In En II Congrés Internacional del Didáctiques; Universitat: Girona, España, 2010; pp. 1–7. [Google Scholar]
- Hernández-del Barco, M.A.; Sánchez-Martín, J.S.; Corbacho-Cuello, I. Estudio comparativo de diferentes estrategias de aprendizaje basado en juegos: Rendimiento emocional de maestros en formación durante el aprendizaje de las ciencias. Rev. Inter. Pesq. Did. Ciên. Mat. 2021, 2, 1–25. [Google Scholar]
- Mellado, V.; Borrachero, A.B.; Brígido, M.; Melo, L.V.; Dávila, M.A.; Cañada, F.; Conde, M.C.; Costillo, E.; Cubero, J.; Esteban, R.; et al. Las emociones en la enseñanza de las ciencias. Ens. Cienc. 2014, 32, 11–36. [Google Scholar]
- Osborne, J.; Simon, S.; Collins, S. Attitudes towards science: A review of the literature and its implications. Int. J. Sci. Educ. 2003, 25, 1049–1079. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, A.; Manassero, M.A. El declive de las actitudes hacia la ciencia de los estudiantes: Un indicador inquietante para la educación científica. REurEDC 2008, 5, 274–292. [Google Scholar] [CrossRef]
- Mateos-Núñez, M.; Martínez-Borreguero, G.; Naranjo-Correa, F.L. Comparación de las emociones, actitudes y niveles de autoeficacia ante áreas STEM entre diferentes etapas educativas. Eur. J. Educ. Psychol. 2019, 13, 251–267. [Google Scholar] [CrossRef]
- Vedder-Weiss, D.; Fortus, D. Adolescents’ declining motivation to learn science: A follow-up study. J. Res. Sci. Teach. 2012, 49, 1057–1095. [Google Scholar] [CrossRef]
- National Research Council (NRC). Learning Science in Informal Environments: People, Places, and Pursuits; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- National Science Board. Science and Engineering Indicators 2012; National Science Foundation: Arlington, VA, USA, 2012. [Google Scholar]
- Glancy, A.W.; Moore, T.J. Theoretical foundations for effective STEM learning environments. Sch. Eng. Educ. Work. Pap. 2013, 1, 1–24. [Google Scholar]
- Moore, T.J.; Stohlmann, M.S.; Wang, H.-H.; Tank, K.M.; Glancy, A.W.; Roehrig, G.H. Implementation and integration of engineering in K-12 STEM education. In Engineering in Precollege Settings: Research into Practice; Purzer, Ş., Strobel, J., Cardella, M., Eds.; Purdue University Press: West Lafayette, IN, USA, 2014. [Google Scholar]
- Sanders, M.E. STEM, STEM education, STEMmania. Technol. Teach. 2008, 68, 20–26. [Google Scholar]
- Bybee, R.W. Achieving Scientific Literacy: Strategies for Insuring that Free-Choice Science Education Complements National Formal Science Education Efforts. In Free-Choice Science Education: How We Learn Science Outside of School; John, H.F., Ed.; Teachers College Press: New York, NY, USA, 2001; pp. 44–63. [Google Scholar]
- Bybee, R.W. The Case for STEM Education: Challenges and Opportunities; National Science Teachers Association, NSTA Press: Arlington, VA, USA, 2013. [Google Scholar]
- Wiswall, M.; Stiefel, L.; Schwartz, A.E.; Boccardo, J. Does attending a STEM high school improve student performance? Evidence from New York City. Econom. Educ. Rev. 2014, 40, 93–105. [Google Scholar] [CrossRef]
- Slavit, D.; Nelson, T.H.; Lesseig, K. The teachers’ role in developing, opening, and nurturing an inclusive STEM-focused school. Int. J. STEM Educ. 2016, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Pierce, K.M.; Bolt, D.M.; Vandell, D.L. Specific features of after-school program quality: Associations with children’s functioning in middle childhood. Am. J. Com. Psych. 2010, 45, 381–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottia, M.C.; Stearns, E.; Mickelson, R.A.; Moller, S. Boosting the numbers of STEM majors? The role of high schools with a STEM program. Sci. Educ. 2018, 102, 85–107. [Google Scholar] [CrossRef]
- Kennedy, T.J.; Odell, M.R.L. Engaging students in STEM education. Sci. Educ. Int. 2014, 25, 246–258. [Google Scholar]
- Weilbacher, G. Is curriculum integration an endangered species? Middle Sch. J. 2001, 33, 18–27. [Google Scholar] [CrossRef]
- Adams, A.E.; Miller, B.G.; Saul, M.; Pegg, J. Supporting elementary pre-service teachers to teach STEM through place-based teaching and learning experiences. Electr. J. Sci. Educ. 2014, 18, 1–22. [Google Scholar]
- Schenk, T.; Rethwisch, D.; Chapman, M.; Laanan, S.F.; Starobin, S.S.; Zhang, L. Achievement outcomes of Project Lead the Way: A study of the impact of PLTW in Iowa. 2011; Unpublished manuscript. [Google Scholar]
- Van Overschelde, J.P. Project Lead The Way students more prepared for higher education. Am. J. Engin. Educ. 2013, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Starobin, S.S.; Schenk, T., Jr.; Laanan, F.S.; Rethwisch, D.G.; Moeller, D. Going and passing through community colleges: Examining the effectiveness of Project Lead the Way in STEM pathways. Community Coll. J. Res. Pract. 2013, 37, 226–236. [Google Scholar] [CrossRef]
- Martínez-Borreguero, G.; Naranjo-Correa, F.L.; Mateos-Núñez, M.; Sánchez-Martín, J. Recreational Experiences for Teaching Basic Scientific Concepts in Primary Education: The Case of Density and Pressure. Eurasia J. Math. Sci. Technol. Ed. 2018, 14, 1–16. [Google Scholar]
- Mateos-Núñez, M.; Martínez-Borreguero, G.; Naranjo-Correa, F.L. Learning Science in Primary Education with STEM Workshops: Analysis of Teaching Effectiveness from a Cognitive and Emotional Perspective. Sustainability 2020, 12, 3095. [Google Scholar] [CrossRef] [Green Version]
- Brígido, M.; Bermejo, M.L.; Conde, M.D.C.; Borrachero, A.B.; Mellado, V. Estudio longitudinal de las emociones en Ciencias de estudiantes de Maestro. Rev. Galego-Port. Psicol. Educ. 2010, 18, 161–179. [Google Scholar]
- Rice, D.C.; Roychoudhury, A. Preparing more confident preservice elementary science teachers: One elementary science methods teacher’s selfstudy. J. Sci. Teach. Educ. 2003, 14, 97–126. [Google Scholar] [CrossRef]
- Mulholland, J.; Wallace, J. Teacher induction and elementary science teaching: Enhancing self-efficacy. Teach. Teach. Educ. 2001, 17, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Mellado, V. The classroom practice of pre-service teachers and their conceptions of teaching and learning science. Sci. Educ. 1998, 82, 197–214. [Google Scholar] [CrossRef]
- Bandura, A. Fearful expectations and avoidant actions as coeffects of perceived self-inefficacy. Am. Psychol. 1986, 41, 1389–1391. [Google Scholar] [CrossRef]
- Van Aalderen, S.I.; Walma, J.H.; Asma, L.J.F. Primary teachers’ attitudes toward science: A new theoretical framework. Sci. Educ. 2012, 96, 158–182. [Google Scholar] [CrossRef]
- Bleicher, R.E.; Lindgren, J. Success in learning science and preservice science teaching SE. J. Sci. Teach. Educ. 2005, 16, 205–225. [Google Scholar] [CrossRef]
- McDonnough, J.T.; Matkins, J.J. The role of field experience in elementary preservice teachers’ SE and ability to connect research to practice. Sch. Sci. Math. 2010, 110, 13–23. [Google Scholar] [CrossRef]
- Sherman, A.; MacDonald, L. Pre-service teachers’ experiences with a science education module. J. Sci. Teach. Educ. 2007, 18, 525–541. [Google Scholar] [CrossRef]
- Kenny, J. Preparing pre-service primary teachers to teach primary science: A partnership-based approach. Int. J. Sci. Educ. 2010, 32, 1267–1288. [Google Scholar] [CrossRef]
- Crawford, B. Embracing the essence of inquiry: New roles for science teachers. J. Res. Sci. Teach. 2000, 37, 916–937. [Google Scholar] [CrossRef]
- Knaggs, C.M.; Sondergeld, T.A. Science as a learner and as a teacher: Measuring science self-efficacy of elementary preservice teachers. Sch. Sci. Math. 2015, 115, 117–128. [Google Scholar] [CrossRef]
- Settlage, J.; Southerland, S.A.; Smith, L.K.; Ceglie, R. Constructing a doubt-free teaching self: Teacher identity, and science instruction within diverse settings. J. Res. Sci. Teach. 2009, 46, 102–125. [Google Scholar] [CrossRef]
- Carbonell, J. La educación y la escuela ante los cambios sociales. In El Desarrollo de Competencias Docentes en la Formación del Profesorado; López-Hernández, A., Ed.; Ministerio de Educación y Ciencia. Secretaría General Técnica: Madrid, España, 2007; pp. 9–32. [Google Scholar]
- Hernández-Suárez, C.A.; Galán, C.A.P.; Núñez, R.P. Desarrollo de competencias y su relación con el contexto educativo entre docentes de ciencias naturales. Rev. Virt. Univ. Cat. Nor. 2017, 51, 194–215. [Google Scholar]
- Siew, N.M.; Amir, N.; Chong, C.L. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus 2015, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Bolger, M. Analysis of Korean elementary pre-service teachers’ changing attitudes about integrated STEAM pedagogy through developing lesson plans. Int. J. Sci. Math. Educ. 2017, 15, 587–605. [Google Scholar] [CrossRef]
- El-Deghaidy, H.; Mansour, N. Science teachers’ perceptions of STEM education: Possibilities and challenges. Int. J. Learn. Teach. 2015, 1, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Borreguero, G.; Naranjo-Correa, F.L.; Pérez, Á.L.; Suero, M.I.; Pardo, P.J. Meaningful learning theory in science education: Just another pedagogical trend? J. Sci. Educ. 2017, 18, 19–23. [Google Scholar]
- Custer, R.L.; Daugherty, J.L. Professional development for teachers of engineering: Research and related activities. Bridge 2009, 39, 18–24. [Google Scholar]
- Díaz-Quero, V. Formación docente, práctica pedagógica y saber pedagógico. Laurus 2006, 12, 88–103. [Google Scholar]
- Díaz Barriga, Á. Investigación educativa y formación de profesores. Contradicciones de una articulación. Cuad. Del CESU 1990, 20, 57–62. [Google Scholar]
- Islas, P.; Trevizo, M.O.; Heiras, A. La planeación didáctica como factor determinante en la autoeficacia del maestro universitario. IE Rev. Investig. Educ. REDIECH 2014, 5, 43–50. [Google Scholar] [CrossRef]
- Harlen, W. Principles and Big Ideas in Science Education; ASE: Hatfield, UK, 2010. [Google Scholar]
- Bozu, Z. Los jóvenes profesores universitarios en el contexto actual de la enseñanza universitaria. Claves y controversias. Rev. Iber. Educ. 2010, 51, 3. [Google Scholar] [CrossRef]
- Canto, J.E. Autoeficacia y educación. Nueva Época 1998, 2, 45–53. [Google Scholar]
- Martínez-Borreguero, G.; Mateos-Núñez, M.; Naranjo-Correa, F.L. Implementation and Didactic Validation of STEM Experiences in Primary Education: Analysis of the Cognitive and Affective Dimension. In Theorizing STEM Education in the 21st Century; IntechOpen: London, UK, 2019. [Google Scholar]
- Osborne, J.; Dillon, J. Science Education in Europe: Critical Reflections; The Nuffield Foundation: London, UK, 2008. [Google Scholar]
- Acevedo, J.A. Formación del profesorado de ciencias y enseñanza de la naturaleza de la ciencia. REurEDC 2010, 7, 653–660. [Google Scholar] [CrossRef]
- Tschannen-Moran, M.; Woolfolk-Hoy, A. Teacher efficacy: Capturing an elusive construct. Teach. Teach. Educ. 2001, 17, 783–805. [Google Scholar] [CrossRef]
- Saracaloğlu, A.S.; Yenıce, N. Investigating the self-efficacy beliefs of science and elementary teachers with respect to some variables. JTPE 2009, 5, 244–260. [Google Scholar]
- Martínez-Borreguero, G.; Mateos-Núñez, M.; Naranjo-Correa, F.L.; Corzo Cortés, T. Análisis comparativo de la efectividad cognitiva de actividades prácticas que integran contenidos STEM en la formación de maestros. In Investigación Educativa Ante Los Actuales Retos Migratorios; Romero Rodríguez, J.M., Cáceres Reche, M.P., De la Cruz Campos, J.C., Ramos Navas-Parejo, M., Eds.; Dykinson, S.L.: Madrid, Spain, 2021; pp. 1128–1138. [Google Scholar]
- Martínez-Borreguero, G.; Mateos-Núñez, M.; Naranjo-Correa, F.L. STEM projects as science teaching and learning strategies in teacher training and primary education: Cognitive and affective analysis. In Education in a Competitive and Globalizing World. Topics in Science Education; Bowman, M.N., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2021; pp. 137–167. [Google Scholar]
- Costillo, E.; Borrachero, A.B.; Brígido, M.; Mellado, V. Las emociones sobre la enseñanza-aprendizaje de las ciencias y las matemáticas de futuros profesores de Secundaria. REurEDC 2013, 10, 514–532. [Google Scholar]
- Gómez-Ochoa de Alda, J.A.; Marcos-Merino, J.M.; Méndez-Gómez, F.J.; Mellado, V.; Esteban-Gallego, M.R. Emociones académicas y aprendizaje de biología. una asociación duradera. Ens. Cienc. 2019, 37, 43–61. [Google Scholar]
- Ding, C.S.; Hershberger, S.L. Assessing content validity and content equivalence using structural equation modeling. Struc. Equ. Mod. 2002, 9, 283–297. [Google Scholar] [CrossRef]
- Ding, L.; Chabay, R.; Sherwood, B.; Beichner, R. Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Phys. Rev. Spec.-Top. Phys. Educ. Res. 2006, 2, 10105. [Google Scholar] [CrossRef] [Green Version]
- McColgan, M.W.; Finn, R.A.; Broder, D.L.; Hassel, G.E. Assessing students’ conceptual knowledge of electricity and magnetism. Phys. Rev. Phys. Educ. Res. 2017, 13, 20121. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, L.H. Construcción, validación y calibración de un instrumento de medida del aprendizaje: Test de ley de Bernoulli. Rev. Educ. Ing. 2013, 8, 24–37. [Google Scholar]
- Doran, R. Basic Measurement and Evaluation of Science Instruction; National Science Teachers Association: Arlington, VA, USA, 1980. [Google Scholar]
- Welch, S.; Comer, J. Quantitative Methods for Public Administration: Techniques and Applications. In Quantitative Methods for Public Administration: Techniques and Applications, 3rd ed.; Waveland Press Inc.: Long Grove, CA, USA, 2006. [Google Scholar]
- George, D.; Mallery, P. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference, 14th ed.; Routledge: Boston, MA, USA, 2016. [Google Scholar]
- Appleton, K. How do beginning primary school teachers cope with science? Toward an understanding of science teaching practice. Res. Sci. Educ. 2003, 33, 1–25. [Google Scholar]
- Fernández-Nistal, M.T.; Peña-Boone, S.H. Concepciones de maestros de primaria sobre el planeta Tierra y gravedad: Implicaciones en la enseñanza de la ciencia. Rev. Elec. Inv. Educ. 2008, 10, 1–25. [Google Scholar]
- Symington, D. Elementary school teachers’ knowledge of science and its effect on choice between alternative verbal behaviours. Res. Sci. Educ. 1980, 10, 69–76. [Google Scholar] [CrossRef]
- Harlen, W. Primary teachers’ understanding in science and its impact in the classroom. Res. Sci. Educ. 1997, 27, 323–337. [Google Scholar] [CrossRef]
- Radloff, J.; Guzey, S. Investigating preservice STEM teacher conceptions of STEM education. J. Sci. Educ. Techn. 2016, 25, 759–774. [Google Scholar] [CrossRef]
- Duran, E.; Ballone-Duran, L.; Haney, J.; Beltyukova, S. The impact of a professional development program integrating informal science education on early childhood teachers’ self-efficacy and beliefs about inquiry-based science teaching. J. Elem. Sci. Educ. 2009, 21, 53–70. [Google Scholar] [CrossRef] [Green Version]
- Retana-Alvarado, D.A.; De las Heras-Pérez, M.Á.; Vázquez-Bernal, B.; Jiménez-Pérez, R. El cambio en las emociones de maestros en formación inicial hacia el clima de aula en una intervención basada en investigación escolar. REurEDC 2018, 15, 2602. [Google Scholar] [CrossRef] [Green Version]
- Kikas, E. Teachers’ conceptions and misconceptions concerning three natural phenomena. J. Res. Sci. Teach. 2004, 41, 432–448. [Google Scholar] [CrossRef]
- Trundle, K.C.; Atwood, R.K.; Christopher, J.E. Preservice elementary teachers’ conceptions of moon phases before and after instruction. J. Res. Sci. Teach. 2002, 39, 633–658. [Google Scholar] [CrossRef]
- De Juanas Oliva, Á.; Martín del Pozo, R.; González-Ballesteros, M. Competencias docentes para desarrollar la competencia científica en educación primaria. Bordón 2016, 68, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Torres-Salas, M.I. La enseñanza tradicional de las ciencias versus las nuevas tendencias educativas. Rev. Elec. Educ. 2010, 14, 131–142. [Google Scholar] [CrossRef]
- De-Juanas, A.; Martín del Pozo, R.; Pesquero, E. Teaching competences necessary for developing key competences of primary education students in Spain: Teacher assessments. Teach. Develop. 2016, 20, 123–145. [Google Scholar] [CrossRef]
- Correia, M.; Baptista, M. Supporting the Development of Pre-Service Primary Teachers PCK and CK through a STEM Program. Educ. Sci. 2022, 12, 258. [Google Scholar] [CrossRef]
- Niess, M.L. Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teach. Teach. Educ. 2005, 21, 509–523. [Google Scholar] [CrossRef]
- Duran, E.; Ballone-Duran, L. Project ASTER: A model staff development program and its impact on early childhood teachers’ self-efficacy. J. Elem. Sci. Educ. 2005, 17, 1–12. [Google Scholar] [CrossRef]
- Rodríguez, S.; Núñez, J.C.; Valle, A.; Blas, R.; Rosario, P. Autoeficacia docente, motivación del profesor y estrategias de enseñanza. Escr. Psico. 2009, 3, 1–7. [Google Scholar]
- Dávila, M.A.; Borrachero, A.B.; Cañada, F.; Martínez, G.; Sánchez, J. Evolucion de las emociones que experimentan los estudiantes del grado de maestro en educación primaria. en didáctica de la materia y la energia. REurEDC 2015, 12, 550–564. [Google Scholar] [CrossRef]
- Khader, F.R. Teachers’ pedagogical beliefs and actual class- room practices in social studies instruction. Am. Int. J. Cont. Res. 2012, 2, 73–92. [Google Scholar]
- Maher, P.A.; Bailey, J.M.; Etheridge, D.A.; Warby, D.B. Preservice teachers’ beliefs and confidence after working with STEM faculty mentors: An exploratory study. Teach. Educ. Prac. 2013, 26, 266–284. [Google Scholar]
- Hué, C. Bienestar docente y pensamiento emocional. Rev. Fuentes 2012, 12, 47–68. [Google Scholar]
Degree | Group | Gender | Percentage | Frequency | Total |
---|---|---|---|---|---|
Degree in Primary Education | Control (CG) | Male | 30.43% | 35 | 115 |
Female | 69.57% | 80 | |||
Experimental 1 (EG1) | Male | 26.73% | 27 | 101 | |
Female | 73.27% | 74 | |||
Experimental 2 (EG2) | Male | 29.46% | 38 | 129 | |
Female | 70.54% | 91 |
Question | Options |
---|---|
Two spotlights are used to illuminate a stage. One is fitted with a cyan filter and the other with a green filter. What colour does the stage appear to be illuminated? |
|
The force weight: |
|
Of the following statements, which one(s) is/are false? |
|
What pressure does a body with a mass of 100 kg exert on a supporting surface if its area is 100 cm2? |
|
A cardboard box weighing 250 g is standing on a horizontal floor, then… |
|
I Feel Qualified to… | Assessment (From 0 to 4) |
---|---|
Identify, describe and classify some materials by their properties (hardness, solubility, state of aggregation, thermal conductivity, etc.). | |
Know the procedures for measuring the mass, volume and density of a body. | |
Use different procedures for measuring the mass and volume of a body. | |
Identify and explain the main characteristics of buoyancy in a liquid medium. | |
To know basic laws governing phenomena such as change of state, chemical reactions, combustion, oxidation and fermentation. | |
Plan and carry out simple experiments and predict changes in the movement, shape or state of bodies due to the effect of forces or energy inputs, communicating the process followed and the result obtained. | |
Identify and explain some of the main characteristics of the different forms of energy: mechanical, light, sound, electrical, thermal, chemical. | |
Identify and explain some of the main characteristics of renewable and non-renewable energies, identifying the different energy sources and raw materials and the origin from which they are derived. | |
Identify and explain the benefits and risks related to the use of energy: depletion, acid rain, radioactivity and outlining possible actions for sustainable development. | |
Knowing and stating the basic principles governing machines. | |
Identify different types of machines. | |
Classify machines according to the number of parts, the way they are operated and the action they perform. | |
Identify and describe some of the components of the machines. | |
Identify some of the applications of machines and devices and their usefulness in facilitating human activities. | |
Plan the construction of objects and devices for a given purpose, using appropriate energy sources, operators and materials. | |
Perform individual and teamwork and provide feedback on what strategies have been employed. | |
Build a simple structure that fulfils a function or condition to solve a problem from modular parts (stairs, bridge, slide, etc.). | |
Explain and state the basic laws governing phenomena such as the reflection of light, refraction of light, etc. | |
Explain and state the basic laws governing phenomena such as the transmission of electric current. | |
Identify the elements of an electrical circuit and build one. | |
Identify and explain some effects of electricity. | |
Give examples of conductive and insulating materials. | |
Identify the main characteristics of magnets and relate electricity and magnetism. | |
Know and explain some of the great discoveries and inventions of mankind. | |
Carry out simple experiments and small research on different physical phenomena of matter: posing problems, stating hypotheses. | |
Carry out simple experiments and small research on different physical phenomena by selecting the necessary material, assembling, carrying out and drawing conclusions. |
Coefficient | Obtained Value Pre-Test | Obtained Value Post-Test | Recommended Value |
---|---|---|---|
Mean difficulty index (P) | 0.35 | 0.69 | [0.30–0.90] |
Mean discrimination index 1 (D1) | 0.34 | 0.44 | ≥0.30 |
Mean discrimination index 2 (D2) | 0.79 | 0.67 | ≥0.50 |
Mean point biserial coefficient (rpb) | 0.27 | 0.31 | ≥0.20 |
Ferguson’s Delta (δ) | 0.97 | 0.96 | ≥0.90 |
KR-20 | 0.74 | 0.79 | ≥0.60 |
n | Mean | Std. Deviation | Std. Error Mean | |
---|---|---|---|---|
Control Group (CG) | 115 | 2.85 | 1.93 | 0.180 |
Experimental Group 1 (EG1) | 101 | 2.67 | 1.01 | 0.099 |
Experimental Group 2 (EG2) | 129 | 2.70 | 1.57 | 0.138 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between groups | 1.972 | 2 | 0.986 | 0.400 | 0.671 |
Within groups | 843.936 | 342 | 2.468 | ||
Total | 845.908 | 344 |
n | Mean | Std. Deviation | Std. Error Mean | |
---|---|---|---|---|
Control Group (CG) | 115 | 5.40 | 2.09 | 0.195 |
Experimental Group 1 (EG1) | 101 | 6.57 | 1.77 | 0.176 |
Experimental Group 2 (EG2) | 129 | 6.30 | 1.76 | 0.154 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Between groups | 83.370 | 2 | 41.685 | 11.737 | 0.000 |
Within groups | 1214.644 | 342 | 3.552 | ||
Total | 1298.014 | 344 |
(I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
CG | EG1 | −1.169 * | 0.257 | 0.000 | −1.774 | −0.564 |
CG | EG2 | −0.895 * | 0.241 | 0.001 | −1.464 | −0.326 |
EG1 | EG2 | 0.273 | 0.250 | 0.519 | −0.315 | 0.863 |
Group | Test | Mean | Std. Deviation | Std. Error Mean |
---|---|---|---|---|
CG | Pre-test | 1.46 | 0.41 | 0.03 |
Post-test | 2.02 | 0.73 | 0.06 | |
EG | Pre-test | 1.43 | 0.69 | 0.05 |
Post-test | 2.51 | 0.41 | 0.03 |
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | t | df | Sig. (2-Tailed) | ||
---|---|---|---|---|---|---|---|---|
Group | Lower | Upper | ||||||
CG | −0.563 | 0.829 | 0.076 | −0.713 | −0.412 | −7.408 | 118 | 0.000 * |
EG | −1.084 | 0.601 | 0.042 | −1.168 | −1.001 | −25.581 | 200 | 0.000 * |
Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | t | df | Sig. (2-Tailed) | ||
---|---|---|---|---|---|---|---|
Test | Lower | Upper | |||||
Pre-test (CG vs. EG) | 0.029 | 0.069 | −0.107 | 0.166 | 0.428 | 319 | 0.669 |
Post-test (CG vs. EG) | −0.492 | 0.063 | −0.635 | -0.367 | −7.783 | 319 | 0.000 * |
% | Pre-Test | Post-Test | ||||||
---|---|---|---|---|---|---|---|---|
GC | GE | GC | GE | GC | GE | GC | GE | |
0 & 1 | 0 & 1 | 2 & 3 | 2 & 3 | 0 & 1 | 0 & 1 | 2 & 3 | 2 & 3 | |
Joy | 83.2 | 81.5 | 16.8 | 18.4 | 65.4 | 51.1 | 34.6 | 48.9 |
Confidence | 75.5 | 83.6 | 24.5 | 16.3 | 48.7 | 43.6 | 51.3 | 56.3 |
Fun | 89.0 | 91.1 | 11.0 | 8.4 | 75.2 | 55.7 | 24.8 | 43.7 |
Interest | 91.3 | 88.4 | 8.7 | 11.6 | 31.3 | 28.4 | 68.7 | 71.6 |
Calm | 79.9 | 81.6 | 20.1 | 18.4 | 76.1 | 55.3 | 23.9 | 44.8 |
Insecurity | 29.5 | 30.5 | 70.5 | 67.9 | 63.8 | 93.7 | 36.2 | 6.3 |
Boredom | 30.1 | 32.6 | 69.9 | 67.3 | 52.3 | 94.7 | 47.7 | 5.3 |
Stress | 30.3 | 27.4 | 69.7 | 72.6 | 44.6 | 70.6 | 55.4 | 29.5 |
Anxiety | 21.0 | 24.2 | 79.0 | 75.8 | 52.9 | 76.3 | 47.1 | 23.7 |
Worry | 23.4 | 25.8 | 76.6 | 74.2 | 23.9 | 59.0 | 76.1 | 41.0 |
“Carrying out these workshops has helped us to see the usefulness of the interdisciplinary nature of the contents. We believe that this type of project helps us to improve the teaching of these contents in the classroom.” Student 22 |
“The experience has really caught our attention and we liked it. Thanks to it, we have lost our fear of science teaching, which until now was a theoretical subject that produced a lot of negative emotions, which in turn limited our own learning.” Student 39 |
“We, as future educators, need to be competent in this type of experience because it helps us to assimilate necessary concepts that we will pass on more enthusiastically to our pupils. In fact, if we do not assimilate them ourselves, we will not be able to transmit them correctly.” Student 6 |
“We have acquired new knowledge. We have internalised it and reviewed other knowledge that we knew but had not worked on for a long time. If we had simply dealt with the subject in a theoretical way, without real examples, we would not have learnt in the same way, as it is monotonous and not motivating for the students.” Student 8 |
“Science can be fun and interesting for our students (even if most of them are “scared” of it). If we explain it in a fun, friendly and playful way, and above all, by doing practical exercises like this one.” Student 32 |
“We realised that we had a negative view of science. It has always been a subject that distressed us. However, with this project, we have found that while teaching it, we have learnt, in a practical way, content that is difficult to understand. It has awakened our interest and we have had fun, learning almost without realising it.” Student 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Borreguero, G.; Naranjo-Correa, F.L.; Mateos-Núñez, M. Cognitive and Emotional Development of STEM Skills in Primary School Teacher Training through Practical Work. Educ. Sci. 2022, 12, 470. https://doi.org/10.3390/educsci12070470
Martínez-Borreguero G, Naranjo-Correa FL, Mateos-Núñez M. Cognitive and Emotional Development of STEM Skills in Primary School Teacher Training through Practical Work. Education Sciences. 2022; 12(7):470. https://doi.org/10.3390/educsci12070470
Chicago/Turabian StyleMartínez-Borreguero, Guadalupe, Francisco Luis Naranjo-Correa, and Milagros Mateos-Núñez. 2022. "Cognitive and Emotional Development of STEM Skills in Primary School Teacher Training through Practical Work" Education Sciences 12, no. 7: 470. https://doi.org/10.3390/educsci12070470
APA StyleMartínez-Borreguero, G., Naranjo-Correa, F. L., & Mateos-Núñez, M. (2022). Cognitive and Emotional Development of STEM Skills in Primary School Teacher Training through Practical Work. Education Sciences, 12(7), 470. https://doi.org/10.3390/educsci12070470