Investigation of STEM Subject and Career Aspirations of Lower Secondary School Students in the North Calotte Region of Finland, Norway, and Russia
Abstract
:1. Introduction
Teoretical Framework and Research Questions
- Which STEM subjects do students from the participating schools have interest in?
- Do the dimensions of the STEM-CIS indicate students’ orientation towards certain STEM discipline as their future career?
- Are there gender differences in the students’ orientations towards certain STEM disciplines as their future careers?
- Does the pilot version of the STEM-CIS possess adequate reliability and factorial validity?
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kier, M.W.; Blanchard, M.R.; Osborne, J.W.; Albert, J.L. The development of the STEM career interest survey (STEM-CIS). Res. Sci. Educ. 2014, 44, 461–481. [Google Scholar] [CrossRef]
- Tomperi, P.; Ryzhkova, I.; Shestova, Y.; Lyash, O.; Lazareva, I.; Lyash, A.; Kvivesen, M.; Manshadi, S.; Uteng, S. The three-factor model: A study of common features in students’ attitudes towards studying and learning science and mathematics in the three countries of the North Calotte region. LUMAT Int. J. Math Sci. Technol. Educ. 2020, 8, 89–106. [Google Scholar] [CrossRef]
- Mohtar, L.E.; Halim, L.; Rahman, N.A.; Maat, S.M.; Iksan, Z.H.; Osman, K. A model of interest in stem careers among secondary school students. J. Balt. Sci. Educ. 2019, 18, 404–416. [Google Scholar] [CrossRef]
- Archer, L.; Osborne, J.; DeWitt, J.; Dillon, J.; Wong, B.; Willis, B. ASPIRES: Young People’s Science and Career Aspirations, Age 10–14; King’s College: London, UK, 2013; Available online: http://hdl.voced.edu.au/10707/292664 (accessed on 7 January 2022).
- Kolesnikova, E.M.; Kudenko, I.A. Schoolchildren about stem professions: General and gender-specific representations. RUDN J. Sociol. 2021, 21, 239–252. [Google Scholar] [CrossRef]
- Christensen, R.; Knezek, G. Relationship of Middle School Student STEM Interest to Career Intent. J. Educ. Sci. Environ. Health 2016, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lent, R.W.; Miller, M.J.; Smith, P.E.; Watford, B.A.; Lim, R.H.; Hui, K.; Morrison, M.A.; Wilkins, G.; Williams, K. Social cognitive predictors of adjustment to engineering majors across gender and race/ethnicity. J. Vocat. Behav. 2013, 83, 22–30. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Hackett, G. Toward a unifying social cognitive theory of career and academic interest, choice, and performance. J. Vocat. Behav. 1994, 45, 79–122. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Hackett, G. Contextual supports and barriers to career choice: A social cognitive analysis. J. Couns. Psychol. 2000, 47, 36–49. [Google Scholar] [CrossRef]
- Fomina, T.G.; Potanina, A.M.; Morosanova, V.I. The Relationship between School Engagement and Conscious Self-regulation of Learning Activity: The Current State of the Problem and Research Perspectives in Russia and Abroad. RUDN J. Psychol. Pedagog. 2020, 17, 390–411. [Google Scholar] [CrossRef]
- Lin, L.; Lee, T.; Snyder, L.A. Math Self-Efficacy and STEM Intentions: A Person-Centered Approach. Front. Psychol. 2018, 9, 2033. [Google Scholar] [CrossRef] [Green Version]
- Van Aalderen-Smeets, S.I.; van der Molen, J.H.W.; Xenidou-Dervou, I. Implicit STEM ability beliefs predict secondary school students’ STEM self-efficacy beliefs and their intention to opt for a STEM field career. J. Res. Sci. Teach. 2019, 56, 465–485. [Google Scholar] [CrossRef] [Green Version]
- Kuzmanović, B.; Petrović, N. Preference structure of personal and social goals of the high-schoolers. Psihologija 2007, 40, 567–585. [Google Scholar] [CrossRef]
- Massey, E.K.; Gebhardt, W.A.; Garnefski, N. Self-generated goals and goal process appraisals: Relationships with sociodemographic factors and well-being. J. Adolesc. 2009, 32, 501–518. [Google Scholar] [CrossRef] [Green Version]
- Murayama, K.; Elliot, A.J. The Joint Influence of Personal Achievement Goals and Classroom Goal Structures on Achievement-Relevant Outcomes. J. Educ. Psychol. 2009, 101, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; So, W.W.M.; Wan, Z.H.; Li, W.C. STEM stereotypes predict students’ STEM career interest via self-efficacy and outcome expectations. Int. J. STEM Educ. 2021, 8, 36. [Google Scholar] [CrossRef]
- Han, S.W. Curriculum standardization, stratification, and students’ STEM-related occupational expectations: Evidence from PISA 2006. Int. J. Educ. Res. 2015, 72, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, C.M.; Torío-López, S.; García-Pérez, O.; Inda-Caro, M. Parental support, self-efficacy beliefs, outcome expectations and interests in science, technology, engineering and mathematics (STEM). Univ. Psychol. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Chachashvili-Bolotin, S.; Milner-Bolotin, M.; Lissitsa, S. Examination of factors predicting secondary students’ interest in tertiary STEM education. Int. J. Sci. Educ. 2016, 38, 366–390. [Google Scholar] [CrossRef]
- Shin, S.; Rachmatullah, A.; Roshayanti, F.; Ha, M.; Lee, J.K. Career motivation of secondary students in STEM: A cross-cultural study between Korea and Indonesia. Int. J. Educ. Vocat. Guid. 2018, 18, 203–231. [Google Scholar] [CrossRef] [Green Version]
- Mau, W.-C.; Chen, S.-J.; Li, J.; Johnson, E. Gender Difference in STEM Career Aspiration and Social-Cognitive Factors in Collectivist and Individualist Cultures. Adm. Issues J. Educ. Pract. Res. 2020, 10, 30–46. [Google Scholar] [CrossRef]
- Delaney, J.M.; Devereux, P.J. Understanding gender differences in STEM: Evidence from college applications. Econ. Educ. Rev. 2019, 72, 219–238. [Google Scholar] [CrossRef]
- Ceci, S.J.; Williams, W.M. Understanding current causes of women’s underrepresentation in science. Proc. Natl. Acad. Sci. USA 2011, 108, 3157–3162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekman, A.B.; Steinberg, M.; Brown, E.R.; Belanger, A.L.; Clark, E.K. A goal congruity model of role entry, engagement, and exit: Understanding communal goal processes in STEM gender gaps. Personal. Soc. Psychol. Rev. 2017, 21, 142–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, J.G.; Dasgupta, N.; Hunsinger, M.; McManus, M.A. STEMing the Tide: Using Ingroup Experts to Inoculate Women’s Self-Concept in Science, Technology, Engineering, and Mathematics (STEM). J. Personal. Soc. Psychol. 2011, 100, 255–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Master, A. Gender Stereotypes Influence Children’s STEM Motivation. Child Dev. Perspect. 2021, 15, 203–210. [Google Scholar] [CrossRef]
- Moss-Racusin, C.A.; Sanzari, C.; Caluori, N.; Rabasco, H. Gender Bias Produces Gender Gaps in STEM Engagement. Sex Roles 2018, 79, 651–670. [Google Scholar] [CrossRef]
- Williams, W.M.; Ceci, S.J. When scientists choose motherhood. Am. Sci. 2012, 100, 138–145. [Google Scholar] [CrossRef]
- Lent, R. Social cognitive career theory. In Career Development and Counseling: Putting Theory and Research to Work; Brown, S.D., Lent, R.W., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 115–146. [Google Scholar]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Unfried, A.; Faber, M.; Stanhope, D.S.; Wiebe, E. The development and validation of a measure of student attitudes toward science, technology, engineering, and math (S-STEM). J. Psychoeduc. Assess. 2015, 33, 622–639. [Google Scholar] [CrossRef] [Green Version]
- Roller, S.A.; Lampley, S.A.; Dillihunt, M.L.; Benfield, M.P.J.; Gholston, S.E.; Turner, M.W.; Davis, A.M. Development and initial validation of the student interest and choice in STEM (SIC-STEM) Survey 2.0 instrument for assessment of the social cognitive career theory constructs. J. Sci. Educ. Technol. 2020, 29, 646–657. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Epskamp, S. SemPlot: Unified Visualizations of Structural Equation Models. Struct. Equ. Model. Multidiscip. J. 2015, 22, 474–483. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Routledge: London, UK, 2016. [Google Scholar]
- Mair, P. Modern Psychometrics with R; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- DeWitt, J.; Archer, L. Who Aspires to a Science Career? A comparison of survey responses from primary and secondary school students. Int. J. Sci. Educ. 2015, 37, 2170–2192. [Google Scholar] [CrossRef] [Green Version]
- Master, A.H.; Meltzoff, A.N. Cultural stereotypes and sense of belonging contribute to gender gaps in STEM. Int. J. Gend. Sci. Technol. 2020, 12, 152–198. [Google Scholar]
Finland | Norway | Russia | |
---|---|---|---|
Number of students | 108 | 273 | 319 |
Males | 49 | 129 | 129 |
Females | 56 | 144 | 190 |
Unspecified gender | 3 | – | – |
Age of students: | |||
13 years old | 5% | 18% | 14% |
14 years old | 38% | 36% | 26% |
15 years old | 44% | 36% | 40% |
16 years old | 13% | 10% | 20% |
Have you participated in any event where you received practical information about STEM careers? | |||
Yes, often | 4% | 9% | 4% |
Yes, once or twice | 13% | 36% | 12% |
Never | 83% | 52% | 84% |
Has an engineer/scientist/mathematician visited your class, or have you visited any workplace where they work? | |||
Yes, often | 3% | 11% | 11% |
Yes, once or twice | 22% | 41% | 37% |
Never | 75% | 48% | 52% |
Country (N) | Test Statistics | B α = 0.68 | C α = 0.67 | G α = 0.70 | P α = 0.73 | M α = 0.72 | T α = 0.79 | E α = 0.87 | Total α = 0.86 |
---|---|---|---|---|---|---|---|---|---|
NOR (273) | Meanrank | 312.72 | 328.72 | 324.90 | 300.61 | 300.32 | 299.99 | 348.48 | 296.65 |
FIN (108) | 340.95 | 419.93 | 343.31 | 374.54 | 382.06 | 331.31 | 324.80 | 364.61 | |
RUS (319) | 386.06 | 345.63 | 374.84 | 385.06 | 382.76 | 400.22 | 360.93 | 391.81 | |
χ2 | 20.310 | 16.520 | 9.454 | 28.144 | 28.154 | 38.791 | 2.848 | 33.249 | |
p | 0.000 | 0.000 | 0.009 | 0.000 | 0.000 | 0.000 | 0.241 | 0.000 | |
η2 | 0.029 | 0.024 | 0.014 | 0.040 | 0.040 | 0.055 | - | 0.048 | |
Mean | 2.910 | 2.882 | 2.813 | 3.099 | 3.036 | 3.347 | 2.921 | 3.001 | |
SD | 1.013 | 1.041 | 0.987 | 1.079 | 1.085 | 1.018 | 0.997 | 0.698 |
Subject | Mean (SD) Males n = 307 | Mean (SD) Females n = 385 | Mann–Whitney U | −Z | Asymp. Sig. | Effect Size r2 |
---|---|---|---|---|---|---|
Biology | 2.80 (1.03) | 3.01 (0.98) | 53,863.500 | 2.038 | 0.021 | 0.006 |
Physics | 3.28 (1.14) | 2.97 (0.98) | 47,767.500 | 4.391 | 0.000 | 0.028 |
Mathematics | 3.15 (1.08) | 2.96 (1.07) | 53,316.000 | 2.236 | 0.013 | 0.007 |
Technology | 3.57 (1.06) | 3.17 (0.95) | 46,131.500 | 5.061 | 0.000 | 0.037 |
Engineering | 3.10 (0.99) | 2.79 (0.96) | 48,744.500 | 4.136 | 0.000 | 0.025 |
Country (N) | Test Statistics | B α = 0.73 | C α = 0.83 | G α = 0.77 | P α = 0.75 | M α = 0.82 | T α = 0.81 | E α= 0.92 | Total α = 0.89 |
---|---|---|---|---|---|---|---|---|---|
NOR (273) | Meanrank | 268.43 | 332.47 | 246.57 | 302.21 | 312.72 | 264.69 | 335.95 | 275.16 |
FIN (108) | 474.76 | 513.18 | 456.02 | 469.47 | 447.31 | 326.63 | 366.81 | 470.34 | |
RUS (319) | 378.67 | 310.86 | 403.72 | 351.55 | 350.06 | 432.02 | 357.43 | 374.40 | |
χ2 | 95.321 | 86.540 | 127.963 | 54.877 | 35.335 | 105.731 | 2.697 | 80.392 | |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.260 | 0.000 | |
η2 | 0.136 | 0.124 | 0.183 | 0.079 | 0.051 | 0.151 | - | 0.115 | |
Mean | 3.724 | 3.413 | 3.813 | 3.632 | 3.549 | 3.587 | 3.119 | 3.548 | |
SD | 0.902 | 1.07 | 0.907 | 0.938 | 1.015 | 1.029 | 0.966 | 0.678 |
Subject | Mean (SD) Males n = 307 | Mean (SD) Females n = 385 | Mann–Whitney U | −Z | Asymp. Sig. | Effect Size r2 |
---|---|---|---|---|---|---|
Biology | 3.67 (0.92) | 3.78 (0.86) | 54,636.000 | 1.739 | 0.041 | 0.004 |
Physics | 3.74 (0.92) | 3.55 (0.93) | 51,831.000 | 2.832 | 0.003 | 0.012 |
Technology | 3.73 (1.10) | 3.48 (0.96) | 49,010.500 | 3.921 | 0.000 | 0.022 |
Engineering | 3.26 (0.98) | 3.02 (0.93) | 50,853.000 | 3.287 | 0.001 | 0.016 |
Country (N) | Test Statistics | B α = 0.64 | C α = 0.60 | G α = 0.61 | P α = 0.69 | M α = 0.69 | T α = 0.82 | E α= 0.85 | Total α = 0.86 |
---|---|---|---|---|---|---|---|---|---|
NOR (273) | Meanrank | 361.65 | 375.32 | 359.01 | 329.55 | 293.41 | 282.70 | 349.12 | 324.86 |
FIN (108) | 383.62 | 433.47 | 409.91 | 395.38 | 426.42 | 371.90 | 312.09 | 407.19 | |
RUS (319) | 329.74 | 301.17 | 323.10 | 353.23 | 373.55 | 401.28 | 364.68 | 353.25 | |
χ2 | 7.319 | 42.450 | 16.202 | 8.523 | 42.267 | 54.188 | 5.922 | 12.956 | |
p | 0.026 | 0.000 | 0.000 | 0.014 | 0.000 | 0.000 | 0.052 | 0.002 | |
η2 | 0.010 | 0.061 | 0.023 | 0.012 | 0.060 | 0.078 | - | 0.019 | |
Mean | 2.863 | 2.819 | 2.845 | 3.115 | 3.461 | 3.393 | 2.971 | 3.067 | |
SD | 0.966 | 0.973 | 0.923 | 1.01 | 0.977 | 1.01 | 0.971 | 0.654 |
Subject | Mean (SD) Males n = 307 | Mean (SD) Females n = 385 | Mann–Whitney U | −Z | Asymp. Sig. | Effect Size r2 |
---|---|---|---|---|---|---|
Biology | 2.77 (0.96) | 2.95 (0.95) | 53,893.000 | 2.025 | 0.022 | 0.006 |
Physics | 3.31 (1.05) | 2.97 (0.93) | 46,823.000 | 4.760 | 0.000 | 0.033 |
Mathematics | 3.55 (1.00) | 3.41 (0.95) | 53,691.500 | 2.097 | 0.018 | 0.006 |
Technology | 3.62 (1.05) | 3.22 (0.94) | 45,312.000 | 5.386 | 0.000 | 0.042 |
Engineering | 3.14 (0.98) | 2.85 (0.94) | 48,217.000 | 4.334 | 0.000 | 0.027 |
Country (N) | Test Statistics | B α = 0.73 | C α = 0.76 | G α = 0.72 | P α = 0.76 | M α = 0.73 | T α = 0.80 | E α = 0.82 | Total α = 0.88 |
---|---|---|---|---|---|---|---|---|---|
NOR (273) | Mean rank | 371.80 | 366.03 | 387.84 | 344.06 | 334.27 | 277.49 | 330.68 | 341.04 |
FIN (108) | 398.95 | 435.86 | 425.63 | 415.68 | 420.70 | 372.84 | 373.81 | 425.42 | |
RUS (319) | 315.87 | 308.32 | 273.11 | 333.94 | 340.63 | 405.42 | 359.57 | 333.23 | |
χ2 | 19.160 | 35.857 | 51.672 | 14.011 | 15.969 | 63.291 | 5.022 | 17.781 | |
p | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.081 | 0.000 | |
η2 | 0.027 | 0.051 | 0.074 | 0.020 | 0.023 | 0.091 | - | 0.025 | |
Mean | 2.835 | 2.841 | 2.707 | 3.009 | 3.356 | 3.380 | 3.126 | 3.036 | |
SD | 1.027 | 1.042 | 0.943 | 1.056 | 1.028 | 0.979 | 0.987 | 0.695 |
Subject | Mean (SD) Males n = 307 | Mean (SD) Females n = 385 | Mann–Whitney U | −Z | Asymp. Sig. | Effect Size r2 |
---|---|---|---|---|---|---|
Biology | 2.68 (1.04) | 2.97 (0.99) | 49,887.000 | 3.580 | 0.000 | 0.019 |
Physics | 3.18 (1.13) | 2.89 (0.97) | 48,740.000 | 4.019 | 0.000 | 0.023 |
Technology | 3.52 (1.04) | 3.26 (0.91) | 49,481.500 | 3.768 | 0.000 | 0.021 |
Engineering | 3.27 (0.98) | 3.02 (0.96) | 51,452.000 | 3.027 | 0.001 | 0.013 |
Country (N) | Test Statistics | B α = 0.50 | C α = 0.50 | G α = 0.59 | P α = 0.60 | M α = 0.60 | T α = 0.64 | E α = 0.71 | Total α = 0.87 |
---|---|---|---|---|---|---|---|---|---|
NOR (273) | Mean rank | 360.86 | 364.55 | 377.42 | 334.06 | 323.50 | 313.43 | 339.63 | 344.78 |
FIN (108) | 356.66 | 367.60 | 343.19 | 346.02 | 359.31 | 340.03 | 340.09 | 350.41 | |
RUS (319) | 339.55 | 332.69 | 328.25 | 366.08 | 370.63 | 385.77 | 363.33 | 355.18 | |
χ2 | 1.814 | 4.715 | 8.991 | 3.860 | 8.440 | 20.158 | 2.486 | 1.019 | |
p | 0.404 | 0.095 | 0.011 | 0.0145 | 0.015 | 0.000 | 0.288 | 0.601 | |
η2 | - | - | 0.013 | - | 0.012 | 0.029 | - | - | |
Mean | 2.529 | 2.493 | 2.442 | 2.752 | 2.914 | 3.006 | 2.878 | 2.716 | |
SD | 0.994 | 0.989 | 0.984 | 1.084 | 1.097 | 1.033 | 1.041 | 0.751 |
Subject | Mean (SD) Males n = 307 | Mean (SD) Females n = 385 | Mann–Whitney U | −Z | Asymp. Sig. | Effect Size r2 |
---|---|---|---|---|---|---|
Biology | 2.38 (1.19) | 2.65 (0.96) | 49,531.500 | 3.725 | 0.000 | 0.020 |
Chemistry | 2.41 (1.02) | 2.57 (0.95) | 53,704.000 | 2.098 | 0.018 | 0.006 |
Technology | 3.15 (1.08) | 2.89 (0.98) | 50,679.500 | 3.303 | 0.001 | 0.016 |
Engineering | 2.99 (1.05) | 2.79 (1.02) | 52,595.500 | 2.556 | 0.006 | 0.009 |
Country (N) | Test Statistics | Biol | Chem | Geo | Phys | Math | Tech | Eng | Total α = 0.88 |
---|---|---|---|---|---|---|---|---|---|
NOR (273) | Mean rank | 329.53 | 329.50 | 326.94 | 310.09 | 337.56 | 302.90 | 328.75 | 311.86 |
FIN (108) | 269.81 | 320.28 | 270.31 | 288.32 | 249.68 | 255.30 | 288.69 | 247.38 | |
RUS (319) | 395.76 | 378.70 | 397.81 | 406.13 | 395.71 | 423.47 | 390.04 | 418.48 | |
χ2 | 39.293 | 12.681 | 41.674 | 49.058 | 47.200 | 87.855 | 28.182 | 74.611 | |
p | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
η2 | 0.056 | 0.018 | 0.060 | 0.070 | 0.068 | 0.126 | 0.040 | 0.107 | |
Mean | 3.00 | 3.00 | 3.00 | 3.20 | 3.10 | 3.30 | 3.10 | 3.096 | |
SD | 1.16 | 1.13 | 1.14 | 1.17 | 1.21 | 1.13 | 1.11 | 0.881 |
Subject | Mean (SD) Males n = 307 | Mean (SD) Females n = 385 | Mann–Whitney U | −Z | Asymp. Sig. | Effect Size r2 |
---|---|---|---|---|---|---|
Biology | 2.84 (1.17) | 3.19 (1.13) | 49,413.500 | 3.867 | 0.000 | 0.022 |
Geography | 2.90 (1.18) | 3.09 (1.11) | 54,212.500 | 1.955 | 0.026 | 0.006 |
Technology | 3.47 (1.15) | 3.10 (1.08) | 47,787.000 | 4.521 | 0.000 | 0.030 |
Engineering | 3.23 (1.11) | 3.01 (1.09) | 52,778.500 | 2.549 | 0.006 | 0.009 |
Subject | Sex | Mean | SD | SE | Kruskal–Wallis H Test |
---|---|---|---|---|---|
Biology | Males | 3.22 | 1.22 | 0.07 | χ2 = 1.039 p = 0.595 |
Females | 3.33 | 1.20 | 0.06 | ||
Chemistry | Males | 3.44 | 1.50 | 0.09 | χ2 = 0.631 p = 0.730 |
Females | 3.50 | 1.51 | 0.08 | ||
Geography | Males | 3.21 | 1.35 | 0.08 | χ2 = 0.643 p = 0.725 |
Females | 3.20 | 1.37 | 0.07 | ||
Physics | Males | 3.25 | 1.48 | 0.08 | χ2 = 1.327 p = 0.515 |
Females | 3.35 | 1.39 | 0.07 | ||
Mathematics | Males | 3.25 | 1.49 | 0.09 | χ2 = 0.409 p = 0.815 |
Females | 3.19 | 1.42 | 0.07 | ||
ICT | Males | 2.97 | 1.57 | 0.09 | χ2 = 20.645 p = 0.000 η2 = 0.030 |
Females | 3.47 | 1.39 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomperi, P.; Kvivesen, M.; Manshadi, S.; Uteng, S.; Shestova, Y.; Lyash, O.; Lazareva, I.; Lyash, A. Investigation of STEM Subject and Career Aspirations of Lower Secondary School Students in the North Calotte Region of Finland, Norway, and Russia. Educ. Sci. 2022, 12, 192. https://doi.org/10.3390/educsci12030192
Tomperi P, Kvivesen M, Manshadi S, Uteng S, Shestova Y, Lyash O, Lazareva I, Lyash A. Investigation of STEM Subject and Career Aspirations of Lower Secondary School Students in the North Calotte Region of Finland, Norway, and Russia. Education Sciences. 2022; 12(3):192. https://doi.org/10.3390/educsci12030192
Chicago/Turabian StyleTomperi, Päivi, Mona Kvivesen, Saeed Manshadi, Stig Uteng, Yulia Shestova, Oleg Lyash, Irina Lazareva, and Asya Lyash. 2022. "Investigation of STEM Subject and Career Aspirations of Lower Secondary School Students in the North Calotte Region of Finland, Norway, and Russia" Education Sciences 12, no. 3: 192. https://doi.org/10.3390/educsci12030192
APA StyleTomperi, P., Kvivesen, M., Manshadi, S., Uteng, S., Shestova, Y., Lyash, O., Lazareva, I., & Lyash, A. (2022). Investigation of STEM Subject and Career Aspirations of Lower Secondary School Students in the North Calotte Region of Finland, Norway, and Russia. Education Sciences, 12(3), 192. https://doi.org/10.3390/educsci12030192