Development of STEM Instructional Resources for Teaching Optics to Teachers-in-Training: Influence on Learning and Teacher Self-Efficacy
Abstract
:1. Introduction
1.1. Cognitive and Affective Aspects in Teacher Training
1.2. Misconceptions in Physics
1.3. Teacher Self-Efficacy and Implications for Teaching Processes
1.4. New Approaches to Education: STEM Education
2. Materials and Methods
2.1. Objectives
- Specific Objective 1 (SO1): To validate from a didactic point of view the usefulness of the didactic tools developed for the learning of the selected optics contents.
- Specific Objective 2 (SO2): To verify whether the concepts of light and color learned by the trainee teachers through different teaching methodologies last or are forgotten with the passage of time.
- Specific Objective 3 (SO3): To test whether levels of teacher self-efficacy improve as a function of the teaching methodologies applied with trainee teachers.
2.2. Hypotheses
2.3. Sample
2.4. Measuring Instrument
2.5. Validation of the Evaluation Instrument: Calibration Indices of the Misconceptions Test
2.6. Validation of the Self-Efficacy Instrument: Calibration Indices
3. Results
3.1. Level of Knowledge Variable
3.2. Results for the Level of Teacher Self-Efficacy Variable
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jenkins, E.W.; Pell, G. The Relevance of Science Education Project (ROSE) in England: A Summary of Findings; Centre for Studies in Science and Mathematics Education: Leeds, UK, 2006. [Google Scholar]
- Rocard, M.; Csermely, P.; Jorde, D.; Lenzen, D.; Walwerg-Henriksson, H.; Hemmo, V. Science Education Now: A Renewed Pedagogy for the Future of Europe; European Commission Community Research: Brussels, Belgium, 2007. [Google Scholar]
- Beauchamp, G.; Parkinson, J. Pupils’ attitudes towards school science as they transfer from an ICT-rich primary school to a secondary school with fewer ICT resources: Does ICT matter? Educ. Inf. Tech. 2008, 13, 103–118. [Google Scholar] [CrossRef]
- Murphy, C.; Beggs, J. Children perceptions of school science. Sch. Sci. Rev. 2003, 84, 109–116. [Google Scholar]
- Osborne, J.; Simon, S.; Collins, S. Attitudes towards science: A review of the literature and its implications. Int. J. Sci. Educ. 2003, 25, 1049–1079. [Google Scholar] [CrossRef] [Green Version]
- Ramsden, J.M. Mission impossible? Can anything be done about attitudes to science? Int. J. Sci. Educ. 1998, 20, 125–137. [Google Scholar] [CrossRef]
- Parkinson, J.; Hendley, D.; Tanner, H.; Stables, A. Pupils’ attitudes to science in key stage 3 of the National Curriculum: A study of pupils in South Wales. Res. Sci. Tech. Educ. 1998, 16, 165–176. [Google Scholar] [CrossRef]
- Dávila, M.A. Las emociones y sus causas en el aprendizaje de Física y Química, en el alumnado de Educación Secundaria. REurEDC 2017, 14, 570–586. [Google Scholar]
- Vázquez, A.; Manassero, M.A. El declive de las actitudes hacia la ciencia de los estudiantes: Un indicador inquietante para la educacion cientifica. REurEDC 2008, 5, 274–292. [Google Scholar] [CrossRef]
- Fuentes, M.; González, J. Necesidades formativas del profesorado de Secundaria para la implementación de experiencias gamificadas en STEM. Rev. Educ. Dist. 2017, 17, 54. [Google Scholar]
- González-Tirado, R.M.; González-Maura, V. Diagnóstico de necesidades y estrategias de formación docente en las universidades. Rev. Iber. Educ. 2007, 43, 6. [Google Scholar]
- UNESCO. ICT Competency Standards for Teachers: Competency Standards Modules; UNESCO: Paris, France, 2008; Available online: http://portal.unesco.org/ci/en/ev.php-URL_ID=25731&URL_DO=DO_TOPIC&URL_SECTION=201.html (accessed on 1 March 2022).
- Campos, J.A. La Formación del Profesorado Novel en la Universidad de Barcelona; ICE-Octaedro: Barcelona, Spain, 2012. [Google Scholar]
- Bozu, Z.; Imbernon, F. La profesión docente en momentos de cambios. ¿Qué nos dicen los estudios internacionales? Profesorado. Rev. Curríc. Form. Prof. 2016, 20, 467–492. [Google Scholar]
- Martínez, G.; Cañada, F.; Naranjo, F.L.; Dávila, M.A. Autorreflexión de emociones sentidas en el laboratorio de física para mejorar la competencia científica de maestros en formación. In La Enseñanza de las Ciencias en el Actual Contexto Educativo; Membiela, P., Casado, N., Cebreiros, M.I., Vidal, M., Eds.; Educación Editora: Ourense, Spain, 2017; pp. 181–185. [Google Scholar]
- Van Zee, E.H.; Hammer, D.; Bell, M.; Roy, P.; Peter, J. Learning and teaching science as inquiry: A case study of elementary school teachers’ investigations of light. Sci. Educ. 2005, 89, 1007–1042. [Google Scholar] [CrossRef]
- Guisasola, J.; Morentin, M. ¿Comprenden la naturaleza de la ciencia los futuros maestros y maestras de Educación Primaria? Rev. Electr. Ens. Cienc. 2007, 6, 246–262. [Google Scholar]
- Mellado, V.; Borrachero, A.B.; Brígido, M.; Melo, L.V.; Dávila, M.A.; Cañada, F.; Conde, M.C.; Costillo, E.; Cubero, J.; Esteban, R.; et al. Las emociones en la ensenanza de las ciencias. Ensenanza Cienc. 2014, 32, 11–36. [Google Scholar]
- Avraamidou, L. Prospective elementary teachers’ science teaching orientations and experiences that impacted their development. Int. J. Sci. Educ. 2013, 35, 1698–1724. [Google Scholar] [CrossRef]
- Mullis, I.V.S.; Jenkins, L.B. The Science Report Card: Elements of Risk and Recovery. Trends and Achievement Based on the 1986 National Assessment. In National Government Publication; Princeton, N.J., Ed.; Educational; Testing Service: Princeton, NJ, USA, 1988. [Google Scholar]
- Appleton, K. Student teachers’ confidence to teach science: Is more science knowledge necessary to improve self-confidence? Int. J. Sci. Educ. 1995, 17, 357–369. [Google Scholar] [CrossRef]
- Westerback, M.E. Studies on attitude toward teaching science and anxiety about teaching science in preservice elementary teachers. J. Res. Sci. Teach. 1982, 19, 603–616. [Google Scholar] [CrossRef]
- Tosun, T. The beliefs of preservice elementary teachers toward science and science teaching. Sch. Sci. Math. 2000, 100, 374–379. [Google Scholar] [CrossRef]
- Van Aalderen-Smeets, S.I.; Walma van der Molen, J.H.; Asma, L.J.F. Primary teachers’ attitudes toward science: A new theoretical framework. Sci. Educ. 2012, 96, 158–182. [Google Scholar] [CrossRef]
- Rennie, L.J.; Goodrum, D.; Hackling, M. Science teaching and learning in Australian schools: Results of a national study. Res. Sci. Educ. 2001, 31, 455–498. [Google Scholar] [CrossRef]
- Jarvis, T.; Pell, A. Primary teachers’ changing attitudes and cognition during a two-year science in-service programme and their effect on pupils. Int. J. Sci. Educ. 2004, 26, 1787–1811. [Google Scholar] [CrossRef]
- Plonczak, I. Science for all: Empowering elementary school teachers. Educ. Citiz. Soc. Just. 2008, 3, 167–181. [Google Scholar] [CrossRef]
- Van Driel, J.H.; Beijaard, D.; Verloop, N. Professional development and reform in science education: The role of teachers’ practical knowledge. J. Res. Sci. Teach. 2001, 38, 137–158. [Google Scholar] [CrossRef]
- Weinburgh, M. The effect of Tenebrio obscurus on elementary preservice teachers’ content knowledge, attitudes, and self-efficacy. J. Sci. Teach. Educ. 2007, 18, 801–815. [Google Scholar] [CrossRef]
- Haney, J.J.; Czerniak, C.M.; Lumpe, A.T. Teacher beliefs and intentions regarding the implementation of science education reform strands. J. Res. Sci. Teach. 1996, 33, 971–993. [Google Scholar] [CrossRef]
- Tobin, K.; Tippins, D.J.; Gallard, A.J. Research on instructional strategies for teaching science. In Handbook of Research on Science Teaching and Learning; Gabel, D., Ed.; MacMillan Publishing Company: New York, NY, USA, 1994; pp. 45–93. [Google Scholar]
- Abell, S.K.; Roth, M. Constraints to teaching elementary science: A case study of a science enthusiast student teacher. Sci. Educ. 1992, 76, 581–595. [Google Scholar] [CrossRef]
- Duit, R.; Schecker, H.; Höttecke, D.; Niedderer, H. Teaching Physics. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: New York, NY, USA, 2014; Volume 2, pp. 434–456. [Google Scholar]
- Harding, J. Science in a masculine strait-jacket. In Gender, Science and Mathematics; Parker, L.H., Rennie, L., Fraser, B., Eds.; Springer Science & Business Media: Perth, Australia, 1996; Volume 2, pp. 3–15. [Google Scholar]
- Andersson, B.; Kärrqvist, C. How Swedish pupils, aged 12–15 years, understand light and its properties. Eur. J. Sci. Educ. 1983, 5, 387–402. [Google Scholar] [CrossRef]
- Colin, P.; Chauvet, F.; Viennot, L. Reading images in optics: Students’ difficulties and teachers views. Int. J. Sci. Educ. 2002, 24, 313–332. [Google Scholar] [CrossRef]
- Osborne, J.F.; Black, P.; Meadows, J.; Smith, M. Young children’s (7–11) ideas about light and their development. Int. J. Sci. Educ. 1993, 15, 83–93. [Google Scholar] [CrossRef]
- Tural, G. Active learning environment with lenses in geometric optics. Asia-Pac. Forum Sci. Learn. Teach. 2015, 16, 1–18. [Google Scholar]
- Uzun, S.; Alev, N.; Karal, I.S. A cross-age study of an understanding of light and sight concepts in physics. Sci. Educ. Int. 2013, 24, 129–149. [Google Scholar]
- Kaltakci-Gurel, D.; Eryilmaz, A.; McDermott, L.C. Identifying pre-service physics teachers’ misconceptions and conceptual difficulties about geometrical optics. Europ. J. Phys. 2016, 37, 045705. [Google Scholar] [CrossRef]
- Özcan, Ö. Investigating students’ mental models about the nature of light in different contexts. Eur. J. Phys. 2015, 36, 65042. [Google Scholar] [CrossRef] [Green Version]
- Heywood, D. Primary Trainee Teachers’ Learning and Teaching About Light: Some pedagogic implications for initial teacher training. Int. J. Sci. Educ. 2005, 27, 1447–1475. [Google Scholar] [CrossRef]
- Goldberg, F.M.; McDermott, L.C. Student difficulties in understanding image formation by a plane mirror. Phys. Teach. 1986, 24, 472–481. [Google Scholar] [CrossRef]
- Feher, E.; Rice, K. A comparison of teacher-student conceptions in optics. In Proceedings of the Second International Seminar: Misconceptions and Educational Strategies in Science and Mathematics; Novak, J.D., Ed.; Cornell University Press: Ithaca, NY, USA, 1987; pp. 108–117. [Google Scholar]
- Huang, H.-W.; Hwang, B.-T. Students’ conceptual developments on shadow formation and their relations to formal and concrete operation stages. Proc. Natl. Sci. Counc. Prob. China Part D Math. Sci. Technol. Educ. 1992, 2, 27–38. [Google Scholar]
- Abd-El-Khalick, F.; Lederman, N.G. Improving science teachers’ conceptions of nature of science: A critical review of the literature. Int. J. Sci. Educ. 2000, 22, 665–701. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Volk, T.; Lumpe, A. Influence of an Extensive Inquiry-Based Field Experience on Pre-Service Elementary Student Teachers’ Science Teaching Beliefs. J. Sci. Teach. Educ. 2009, 20, 199–218. [Google Scholar] [CrossRef]
- Czerniak, C.M.; Schriver, M.L. An examination of preservice science teachers’ beliefs and behaviors as related to self-efficacy. J. Sci. Teach. Educ. 1994, 5, 77–86. [Google Scholar] [CrossRef]
- King, K.; Shumow, L.; Lietz, S. Science education in an urban elementary school: Case studies of teacher beliefs and classroom practices. Sci. Educ. 2001, 85, 89–110. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy mechanism in human agency. Am. Psych. 1982, 37, 122. [Google Scholar] [CrossRef]
- Watters, J.J.; Ginns, I.S.; Neumann, P.; Schweitzer, R. Enhancing Preservice Teacher Education Students’ Sense of Science Teaching Self Efficacy. In Australian Teacher Education Association; Australian Teacher Education Association: Brisbane, Australia, 1994; p. 28. [Google Scholar]
- Ramey-Gassert, L.; Shroyer, M.G.; Staver, J.R. A qualitative study of factors influencing science teaching self-efficacy of elementary level teachers. Sci. Educ. 1996, 80, 283–315. [Google Scholar] [CrossRef]
- Grossman, P.L. The Making of a Teacher: Teacher Knowledge and Teacher Education; Teachers College Press: New York, NY, USA, 1990. [Google Scholar]
- Angelini, M.L.; García-Carbonell, A. Percepciones sobre la Integración de Modelos Pedagógicos en la Formación del Profesorado: La Simulación y Juego y el Flipped Classroom. EKS 2015, 16, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Molas, N.; Rosselló, M. Revolución en las aulas: Llegan los profesores del siglo XXI. La introducción de las TIC en las aulas y el nuevo rol docente. DIM 2010, 19, 1–9. [Google Scholar]
- Dávila, M.A.; Borrachero, A.B.; Cañada, F.; Martínez, G.; Sánchez, J. Evolución de las emociones que experimentan los estudiantes del grado de maestro en educación primaria, en didáctica de la materia y la energía. REurEDC 2015, 12, 550–564. [Google Scholar] [CrossRef]
- Lozada, E.P.; Falcón, N. Diseño de prototipos experimentales orientados al aprendizaje de la óptica. REurEDC 2009, 6, 452–465. [Google Scholar]
- UNESCO. Manual de Entrenamiento, Aprendizaje Activo de Óptica y Fotónica. Aprendizaje Active en Óptica; UNESCO: Paris, France, 2006. [Google Scholar]
- Rivero, H. Cómo Mejorar mi Clase de Física Nivel Superior; Editorial Trillas: Tlaxcala, Mexico, 2004. [Google Scholar]
- Kapucu, S. Guided Inquiry-based electricity experiments: Pre-service elementary science teachers’ difficulties. J. Educ. Future 2016, 10, 71–93. [Google Scholar]
- Banerjee, A. Teaching science using guided ınquiry as the central theme: A professional development model for high school science teachers. Sci. Educat. 2010, 19, 1–9. [Google Scholar]
- Liang, L.L.; Richardson, G.M. Enhancing prospective teachers’ science teaching efficacy beliefs through scaffolded, student-directed inquiry. J. Elem. Sci. Educ. 2009, 21, 51–66. [Google Scholar] [CrossRef]
- Gil, D. Contribución de la historia y de la filosofía de las ciencias al desarrollo de un modelo de enseñanza-aprendizaje como investigación. Ens. Cienc. 1993, 11, 197–212. [Google Scholar]
- Díaz-Barriga, F. Aportaciones de las perspectivas constructivista y reflexiva en la formación docente en el bachillerato. Perf. Educ. 2002, 24, 6–25. [Google Scholar]
- García, P.; Angulo, F. Un modelo didáctico para la formación inicial del profesorado de Ciencias. Rev. Interuniv. Form. Prof. 2003, 17, 37–49. [Google Scholar]
- National Research Council. STEM Learning Is Everywhere: Summary of a Convocation on Building Learning Systems; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Furner, J.M.; Kumar, D.D. The mathematics and science integration argument: A stand for teacher education. EURASIA J. Math. Sci. Tech. Educ. 2007, 3, 185–189. [Google Scholar] [CrossRef]
- Stohlmann, M.; Moore, T.J.; Roehrig, G.H. Considerations for teaching integrated STEM education. J-PEER. 2012, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Von Garnier, C. La Metamorfosis Necesaria en la Escuela; Ituci siglo XXI: Sevilla, Spain, 2010. [Google Scholar]
- Riskowski, J.L.; Todd, C.D.; Wee, B.; Dark, M.; Harbor, J. Exploring the Effectiveness of an Interdisciplinary Water Resources Engineering Module in an Eighth Grade Science Course. Int. J. Eng. Educ. 2009, 25, 181–195. [Google Scholar]
- Sanders, M.E. STEM, STEM education, STEMmania. Tech. Teach. 2008, 68, 20–26. [Google Scholar]
- Crismond, D.P.; Adams, R.S. The informed design teaching and learning matrix. J. Eng. Educ. 2012, 101, 738–797. [Google Scholar] [CrossRef]
- Borrego, M.; Henderson, C. Increasing the use of evidence-based teaching in STEM higher education: A comparison of eight change strategies. J. Eng. Educ. 2014, 103, 220–252. [Google Scholar]
- Martínez, G.; Naranjo, F.L.; Pérez, Á.L.; Suero, M.I.; Pardo, P.J. Comparative study of the effectiveness of three learning environments: Hyper-realistic virtual simulations, traditional schematic simulations and traditional laboratory. Phys. Educ. Res. 2011, 7, 20111. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.; Naranjo, F.L.; Pérez, Á.L.; Suero, M.I.; Pardo, P.J. Use of computer generated hyper-realistic images on optics teaching: The case study of an optical system formed by two opposed parabolic mirrors. J. Sci. Educ. 2013, 14, 25–29. [Google Scholar]
- Martínez, G.; Naranjo, F.L.; Pérez, Á.L.; Suero, M.I. Development of hyperrealistic simulations to teach concepts about colors. Color Res. Appl. 2016, 41, 330–332. [Google Scholar] [CrossRef]
- Naranjo, F.L.; Martínez, G.; Pérez, Á.L.; Pardo, P.J.; Suero, M.I. Teaching rainbows with simulations: Revisiting Minnaert’s lab experiment. Appl. Opt. 2017, 56, G54–G69. [Google Scholar]
- Naranjo, F.L.; Martínez, G.; Pérez, Á.L.; Pardo, P.J.; Suero, M.I. Spectral simulations for the teaching of metamer color pairs at various educational levels. Óptica. Pura Y Apl. 2018, 52, 4. [Google Scholar]
- Martínez, G.; Pérez, Á.L.; Suero, M.I.; Pardo, P.J. Detection of misconceptions about color and an experimentally tested proposal to combat them. Int. J. Sci. Educ. 2013, 35, 1299–1324. [Google Scholar] [CrossRef]
- Martínez, G.; Naranjo, F.L.; Mateos, M. Design and development of stem workshops to improve scientific/technological literacy in primary education. In Proceedings of the INTED 2018, Valencia, Spain, 5–7 March 2018; IATED, Ed.; IATED: Valencia, Spain, 2018; pp. 2433–2439. [Google Scholar]
- POV-Ray. The Persistence of Vision Raytracer. 2018. Available online: http://www.povray.org/ (accessed on 1 March 2022).
- Courtial, J.; Nelson, J. Ray-optical negative refraction and pseudoscopic imaging with Dove-prism arrays. New J. Phys. 2008, 10, 23028. [Google Scholar] [CrossRef] [Green Version]
- Danner, A.J. Photorealistic ray tracing aids understanding of metamaterials. SPIE Newsroom 2009. [Google Scholar] [CrossRef]
- Dolling, G.; Wegener, M.; Linden, S.; Hormann, C. Photorealistic images of objects in effective negative-index materials. Opt. Express 2006, 14, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, F.L.; Martínez, G.; Pérez, Á.L.; Suero, M.I.; Pardo-Fernández, P.J. A new online tool to detect color misconceptions. Color Res. Appl. 2016, 41, 325–329. [Google Scholar] [CrossRef]
- Brígido, M.; Borrachero, A.B.; Bermejo, M.L.; Dávila, M.A. Programa de intervención para la mejora de las creencias de autoeficacia en las clases de ciencias. Int. J. Dev. Educ. Psychol. 2014, 5, 73–80. [Google Scholar]
- Martínez, G.; Naranjo, F.; Mateos, M. Análisis de las creencias de autoeficacia de docentes de Educación primaria en formación en la impartición de Contenidos curriculares de óptica. In Investigación, Innovación Docente y TIC. Nuevos Horizontes Educativos; Alonso, S., Romero, J.M., Rodríguez, C., Sola, J.M., Dykinson, S.L., Eds.; Dykinson: Madrid, Spain, 2019. [Google Scholar]
- Ding, C.S.; Hershberger, S.L. Assessing content validity and content equivalence using structural equation modeling. Struc. Equ. Mod. 2002, 9, 283–297. [Google Scholar] [CrossRef]
- Ding, L.; Chabay, R.; Sherwood, B.; Beichner, R. Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Phys. Rev. Spec.-Top. Phys. Educ. Res. 2006, 2, 10105. [Google Scholar] [CrossRef] [Green Version]
- McColgan, M.W.; Finn, R.A.; Broder, D.L.; Hassel, G.E. Assessing students’ conceptual knowledge of electricity and magnetism. Phys. Rev. Phys. Educ. Res. 2017, 13, 20121. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Beichner, R. Approaches to data analysis of multiple-choice questions. Phys. Rev. Spec.-Top. Phys. Educ. Res. 2009, 5, 20103. [Google Scholar] [CrossRef] [Green Version]
- Melo-Niño, L.V.; Sánchez, R.; Cañada, F.; Martínez, G. Learning difficulties on Archimedes’ Principle in the floating context. Rev. Bras. Ens. Fís. 2016, 38, e4401. [Google Scholar]
- Welch, S.; Comer, J. Quantitative Methods for Public Administration: Techniques and Applications. In Quantitative Methods for Public Administration: Techniques and Applications, 3rd ed.; Waveland Press Inc.: Long Grove, CA, USA, 2006. [Google Scholar]
- George, D.; Mallery, P. IBM SPSS Statistics 23 Step by Step: A Simple Guide and Reference, 14th ed.; Routledge: Boston, MA, USA, 2016. [Google Scholar]
- Perales, F.J.; Nievas, F. Ideas previas en óptica geométrica: Un estudio descriptivo. Rev. Invent. Esc. 1991, 13, 77–84. [Google Scholar]
- Kaltakci-Gurel, D.; Eryilmaz, A.; McDermott, L.C. Development and application of a four-tier test to assess pre-service physics teachers’ misconceptions about geometrical optics. Res. Sci. Tech. Educ. 2017, 35, 238–260. [Google Scholar] [CrossRef] [Green Version]
- Mateos, M.; Martínez, G.; Naranjo, F.L. Learning Science in Primary Education with STEM Workshops: Analysis of Teaching Effectiveness from a Cognitive and Emotional Perspective. Sustainability 2020, 12, 3095. [Google Scholar] [CrossRef] [Green Version]
- Sokoloff, D.; Thornton, R. Using Interactive Lecture Demostrations to create and active learnig environment. Phys. Teach. 1997, 35, 340–347. [Google Scholar] [CrossRef]
- Laws, P. Calculus-based physics without lectures. Phys. Today 1991, 44, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Alborch, A.; Pandiella, S.; Benegas, J.; Aprendizaje Activo en Optica (Programa ALOP). Relato de una experiencia en la escuela secundaria. Anu. Dig. Invent. Educ. 2015. Available online: http://revistas.bibdigital.uccor.edu.ar/index.php/adiv/article/view/3997 (accessed on 1 March 2022).
- Kline, J.T. Integrative learning and interdisciplinary studies. Peer Rev. 2005, 7, 8–10. [Google Scholar]
- Czerniak, C.M.; Chiarelott, L. Teacher education for effective science instruction—A social cognitive perspective. J. Teach. Educ. 1990, 41, 49–58. [Google Scholar] [CrossRef]
- Kazempour, M. I Can’t Teach Science! A Case Study of an Elementary Pre-Service Teacher’s Intersection of Science Experiences, Beliefs, Attitude, and Self-Efficacy. Int. J. Environ. Sci. Educ. 2014, 9, 77–96. [Google Scholar]
- Kazempour, M.; Sadler, T.D. Pre-service teachers’ science beliefs, attitudes, and self-efficacy: A multi-case study. Teach. Educ. 2015, 26, 247–271. [Google Scholar] [CrossRef]
- Ramey-Gassert, L.; Shroyer, M.G. Enhancing science teaching self-efficacy in preservice elementary teachers. J. Elem. Sci. Educ. 1992, 4, 26–34. [Google Scholar] [CrossRef]
- Martínez, G.; Naranjo, F.L.; Mateos, M.; Sánchez, J. Recreational Experiences for Teaching Basic Scientific Concepts in Primary Education: The Case of Density and Pressure. Eurasia J. Math. Sci. Technol. Educ. 2018, 14, 1–16. [Google Scholar]
- Duran, E.; Ballone-Duran, L. Project ASTER: A model staff development program and its impact on early childhood teachers’ self-efficacy. J. Elem. Sci. Educ. 2005, 17, 1–12. [Google Scholar] [CrossRef]
- Jimoyiannis, A. Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Comp. Educ. 2010, 55, 1259–1269. [Google Scholar] [CrossRef]
- Martínez, G.; Mateos, M.; Naranjo, F.L. La didáctica de las áreas STEM en la formación del profesorado. Desarrollo de propuestas de intervención en el aula de educación secundaria. In La Enseñanza de las Ciencias Desde la Pedagogía Social. El Paradigma Educativo STEM Como Modelo Para Educación Integral Ingenieros y Ciudadanos; Feltrero, R., Ed.; Global Knowledge Academics: Madrid, Spain, 2020; pp. 141–153. [Google Scholar]
- Finkelstein, N.D.; Adams, W.; Keller, C.J.; Kohl, P.B.; Perkins, K.K.; Podolefsky, N.S.; Reid, S.; LeMaster, R. When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Phys. Rev. Spec.-Top. Phys. Educ. Res. 2005, 1, 010103. [Google Scholar] [CrossRef] [Green Version]
- Bolívar-Botia, A. Conocimiento didáctico del contenido y didácticas específicas. Prof. Rev. Curr. Form. Prof. 2011, 9, 1–39. [Google Scholar]
- Marcelo, C. Formación del Profesorado Para el Cambio Educativo; PPU: Barcelona, Spain, 1994. [Google Scholar]
- Alves-Filho, J.P.; Pietrocola, M.; Pinheiro, T.F. Nova transposição didática gera novas atividades experimentais. Enc. Pesq. Ens. Fís. 2000, 2, 76–155. [Google Scholar]
- Shulman, L.S. Knowledge and Teaching: Foundations of the New Reform. Harv. Educ. Rev. 1987, 57, 1–22. [Google Scholar] [CrossRef]
- Garritz, A.; Mellado, V. El conocimiento didáctico del contenido y la afectividad. In Conocimiento Didáctico del Contenido. Una perspectiva Iberoamericana; Garritz, A., Daza, S.F., Lorenzo, G., Eds.; Editorial Academia Española: Saarbrücken, Germany, 2014; pp. 229–264. [Google Scholar]
- Kind, V. Pedagogical content knowledge in science education: Perspectives and potential for progress. Stud. Sci. Educ. 2009, 45, 169–204. [Google Scholar] [CrossRef] [Green Version]
- Salovey, P.; Woolery, A.; Mayer, J.D. Emotional intelligence: Conceptualization and measurement. In Blackwell Handbook of Social Psychology: Interpersonal Processes; Fletcher, G.J.O., Clark, M.S., Eds.; Blackwell Publisher: Malden, MA, USA, 2001; pp. 279–307. [Google Scholar]
- Prieto, L. Autoeficacia del Profesor Universitario: Eficacia Percibida y Práctica Docente; Narcea Ediciones: Madrid, Spain, 2007. [Google Scholar]
- Brígido, M.; Borrachero, A.B.; Bermejo, M.L.; Mellado, V. Prospective primary teachers’ self-efficacy and emotions in science teaching. Eur. J. Teach. Educ. 2013, 36, 200–217. [Google Scholar] [CrossRef]
- Wolters, C.A.; Daugherty, S.G. Goals structures and teachers’ sense of efficacy: Their relation and association to teaching experience and academic level. J. Educ. Psych. 2007, 99, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.K.; Sass, D.A. Construct validation of the Behavior and Instructional Management Scale. Teach. Teach. Educ. 2010, 26, 1124–1135. [Google Scholar] [CrossRef]
- Rodríguez, S.; Núñez, J.C.; Valle, A.; Blas, R.; Rosario, P. Autoeficacia docente, motivación del profesor y estrategias de enseñanza. Escr. Psico. 2009, 3, 1–7. [Google Scholar]
- Gurcay, D. Preservice physics teachers’ beliefs regarding their teacher efficacy and classroom management. Procedia-Soc. Behav. Sci. 2015, 197, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Saracaloğlu, A.S.; Yenıce, N. Investigating the self-efficacy beliefs of science and elementary teachers with respect to some variables. JTPE 2009, 5, 2. [Google Scholar]
- Saprudin, S.; Liliasari, L.; Prihatmanto, A.S. Pre-Service Physics Teachers’ Concept Mastery and the Challenges of Game Development on Physics Learning. J. Phys. 2017, 895, 012109. [Google Scholar] [CrossRef] [Green Version]
- Monasterio, R. Óptica Experimental con Materiales Casero o de Bajo Costo. Conferencia Interamericana Sobre Educación en Física; Universidad Simón Bolívar: Caracas, Venezuela, 2001. [Google Scholar]
- Jaime, E.A.; Escudero, C. El trabajo experimental como posible generador de conocimiento en enseñanza de la física. Ens. Cienc. 2011, 29, 371–380. [Google Scholar]
- Park, S.; Oliver, J.S. Revisiting the conceptualisation of Pedagogical Content Knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Res. Sci. Educ. 2008, 38, 261–284. [Google Scholar] [CrossRef]
- Vaillant, D. Mejorando la formación y el desarrollo profesional docente en Latinoamérica. Rev. Pens. Educ. 2007, 41, 207–222. [Google Scholar]
- Day, C.; Gu, Q. Profesores: Vidas Nuevas, Verdades Antiguas; Narcea Ediciones: Madrid, Spain, 2012. [Google Scholar]
- Zaragoza-Casterad, J.; Generelo-Lanaspa, E.; Julián-Clemente, J.A. Innovación docente en el marco universitario: Una experiencia en el contexto de la formación inicial del maestro especialista en Educación Física. REIFOP 2008, 8, 1–9. [Google Scholar]
- Tejada, J. Profesionalización docente en la universidad: Implicaciones desde la formación. RUSC 2013, 10, 170–184. [Google Scholar]
- Corlu, M.S.; Capraro, R.M.; Capraro, M.M. Introducing STEM education: Implications for educating our teachers in the age of innovation. Eğitim Ve Bilim 2014, 39, 74–85. [Google Scholar]
Degree | Group | Gender | Percentage | Frequency | Total |
---|---|---|---|---|---|
Degree in Primary Education | Control | Male | 27.9% | 24 | 86 |
Female | 72.1% | 62 | |||
Experimental | Male | 32.2% | 28 | 87 | |
Female | 67.8% | 59 |
Which if the options below describe the behavior of a lens? |
|
A wall looks white in daylight. What color will the wall look if you illuminate it simultaneously with a green light and a red light at night? |
|
In the formation of the rainbow, when the light reaches a raindrop… |
|
Number | Statements |
---|---|
I1. | Explain the phenomenon of the reflection of light. |
I2. | Explain the phenomenon of the refraction of light. |
I3. | State the laws of reflection and refraction and differentiate between them. |
I4. | Give examples from everyday life involving the phenomena of reflection and/or refraction. |
I5. | Explain why putting a pencil in a glass of water makes it look broken. |
I6. | Explain why we see objects in certain colors. |
I7. | Explain the concept of primary and secondary colors. |
I8. | Differentiate between additive and subtractive color mixing. |
I9. | Explain how rainbows form. |
I10. | Explain what light scattering is and give an example. |
I11. | Carry out a practical exercise in the laboratory to simulate a rainbow. |
I12. | Explain why the sky is blue. |
I13. | Explain how light propagates, in what kind of media, and at what speed. |
I14. | Define and explain the behavior of a converging lens. |
I15. | Define and explain the behavior of a diverging lens. |
I16. | Give examples of everyday instruments or devices that use lenses. |
I17. | Explain what type of lens can be used to correct myopia, hyperopia, or astigmatism. |
I18. | Differentiate between opaque, translucent, and transparent materials. |
I19. | Give examples of opaque, translucent, and transparent materials. |
I20. | Explain the formation of images in a plane mirror. |
I21. | Distinguish the type of image formed in a plane mirror from that formed in a concave or convex mirror. |
I22. | Plan a didactic unit to explain the concepts related to light and color. |
I23. | Develop an innovative didactic intervention in the classroom to explain all these concepts. |
I24. | Propose activities to assess students’ acquisition of these contents. |
I25. | Use simulations in the classroom to help students understand this content. |
I26. | Design and develop a computer simulation to help students understand these concepts. |
I27. | Develop a concept map to explain to students the differences and applications of the concepts related to light and color. |
I28. | Perform a recreational physics exercise to explain these concepts to the students. |
Coefficient | Obtained Value | Recommended Value |
---|---|---|
Mean difficulty index (P) | 0.49 | [0.30–0.90] |
Mean discrimination index 1 (D1) | 0.36 | ≥0.30 |
Mean discrimination index 2 (D2) | 0.72 | ≥0.50 |
Mean point biserial coefficient (rpb) | 0.32 | ≥0.20 |
Ferguson’s Delta (δ) | 0.91 | ≥0.90 |
KR-20 | 0.72 | ≥0.60 |
Group | N | Mean | Std. Deviation | Std. Error Mean |
---|---|---|---|---|
Control Group | 86 | 4.64 | 0.994 | 0.107 |
Experimental Group | 87 | 4.43 | 0.953 | 0.102 |
t | df | Sig. (Two-tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Pre-test | 1.424 | 171 | 0.156 | 0.21098 | 0.14812 | −0.08140 | 0.50336 |
Group | N | Mean | Std. Deviation | Std. Error Mean |
---|---|---|---|---|
Control Group | 86 | 6.94 | 1.907 | 0.205 |
Experimental Group | 87 | 7.00 | 1.551 | 0.166 |
t | df | Sig. (Two-tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Post-test I | −0.208 | 171 | 0.836 | −0.05485 | 0.26422 | −0.57640 | −0.576402 |
Group | N | Mean | Std. Deviation | Std. Error Mean |
---|---|---|---|---|
Control Group | 86 | 5.75 | 1.263 | 0.136 |
Experimental Group | 87 | 6.98 | 1.517 | 0.163 |
t | df | Sig. (Two-tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Post-test II | −5.763 | 171 | 0.000 * | −1.22711 | 0.21294 | −1.64746 | −1.7464 |
Mean | N | Std. Deviation | Std. Error Mean | ||
---|---|---|---|---|---|
Pre-test vs. Post-test I | Pre-test | 4.64 | 86 | 0.994 | 0.107 |
Post-test I | 6.94 | 86 | 1.907 | 0.205 | |
Pre-test vs. Post-test II | Pre-test | 4.64 | 86 | 0.994 | 0.107 |
Post-test II | 5.75 | 86 | 1.263 | 0.136 | |
Post-test I vs. Post-test II | Post-test I | 6.94 | 86 | 1.907 | 0.205 |
Post-test II | 5.75 | 86 | 1.263 | 0.136 |
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | t | df | Sig. (Two-Tailed) | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Pre–Post I | −2.3071 | 2.16158 | 0.23309 | −2.770 | −1.8437 | −9.89 | 85 | 0.000 * |
Pre–Post II | −1.1161 | 1.42214 | 0.15335 | −1.421 | −0.8112 | −7.27 | 85 | 0.000 * |
Post I–Post II | 1.1910 | 2.40716 | 0.25957 | 0.6749 | 1.7071 | 4.589 | 85 | 0.000 * |
Mean | N | Std. Deviation | Std. Error Mean | ||
---|---|---|---|---|---|
Pre-test vs. Post-test I | Pre-test | 4.43 | 87 | 0.953 | 0.102 |
Post-test I | 7.00 | 87 | 1.551 | 0.166 | |
Pre-test vs. Post-test II | Pre-test | 4.45 | 86 | 0.921 | 0.099 |
Post-test II | 6.98 | 86 | 1.517 | 0.163 | |
Post-test I vs. Post-test II | Post-test I | 6.97 | 86 | 1.543 | 0.166 |
Post-test II | 6.98 | 86 | 1.517 | 0.163 |
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | t | df | Sig. (Two-Tailed) | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Pre–Post I | −2.5730 | 1.87165 | 0.20066 | −2.971 | −2.17410 | −12.823 | 86 | 0.000 * |
Pre–Post II | −2.5259 | 1.70125 | 0.18345 | −2.890 | −2.16120 | −13.769 | 85 | 0.000 * |
Post I–Post II | −0.0055 | 2.13176 | 0.22987 | −0.462 | 0.45147 | −0.024 | 85 | 0.981 |
Positive Value | Negative Value | |||
---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | |
I1 | 34.7 | 85.5 | 65.3 | 14.5 |
I2 | 30.6 | 78.0 | 69.4 | 22.0 |
I3 | 17.9 | 71.7 | 82.1 | 28.3 |
I4 | 33.5 | 83.2 | 66.5 | 16.8 |
I5 | 35.3 | 78.0 | 64.7 | 22.0 |
I6 | 57.8 | 74.6 | 42.2 | 25.4 |
I7 | 69.4 | 92.5 | 30.6 | 7.5 |
I8 | 43.9 | 83.8 | 56.1 | 16.2 |
I9 | 44.5 | 60.1 | 55.5 | 39.9 |
I10 | 23.1 | 42.8 | 76.9 | 57.2 |
I11 | 22.0 | 56.6 | 78.0 | 43.4 |
I12 | 36.4 | 65.3 | 63.6 | 34.7 |
I13 | 31.2 | 70.5 | 68.8 | 29.5 |
I14 | 39.9 | 75.7 | 60.1 | 24.3 |
I15 | 41.6 | 74.0 | 58.4 | 26.0 |
I16 | 73.4 | 96.5 | 26.6 | 3.5 |
I17 | 53.8 | 92.5 | 46.2 | 7.5 |
I18 | 78.0 | 96.0 | 22.0 | 4.0 |
I19 | 76.3 | 98.3 | 23.7 | 1.7 |
I20 | 13.9 | 69.4 | 86.1 | 30.6 |
I21 | 15.0 | 75.1 | 85.0 | 24.9 |
I22 | 40.5 | 74.6 | 59.5 | 25.4 |
I23 | 37.6 | 65.3 | 62.4 | 34.7 |
I24 | 38.2 | 70.5 | 61.8 | 29.5 |
I25 | 41.0 | 75.1 | 59.0 | 24.9 |
I26 | 24.9 | 85.5 | 75.1 | 14.5 |
I27 | 43.9 | 80.9 | 56.1 | 19.1 |
I28 | 33.5 | 78.0 | 66.5 | 22.0 |
Hypothesis | Accepted or Rejected? | Research Implications |
---|---|---|
Hypothesis 1 (H1). Students who use hyper-realistic simulations and STEM experiences to learn basic optics concepts related to light and color have similar average initial scores to students who follow an academic–expositional teaching intervention. | Accepted | It has been confirmed that both the use of traditional methodologies and active methodologies (didactic intervention based on the use of hyper-realistic simulations and STEM experiences) promote short-term learning of the contents, obtaining similar values in the level of knowledge variable. |
Hypothesis 2 (H2). There are no statistically significant differences in the short-term knowledge level variable of students who follow a didactic intervention based on the use of hyper-realistic simulations and STEM experiences compared to students who follow an academic–expositional didactic intervention. | Accepted | |
Hypothesis 3 (H3). There are statistically significant differences in the long-term learning variable between students in the experimental group using STEM simulations and experiences and students in the control group following an academic–expositional teaching intervention. | Accepted | The use of hyper-realistic simulations and the STEM experiences designed promote the acquisition of scientific competence in the trainee teacher, combating the preconceptions found in trainees and significantly increasing the long-term learning of optics compared to more traditional teaching. |
Hypothesis 4 (H4). Hyper-realistic simulations and STEM experiences on light and color facilitate meaningful, long-term learning for trainee primary school teachers. | Accepted | |
Hypothesis 5 (H5). The development and implementation of didactic interventions on basic concepts of optics related to light and color produces a positive evolution in the variable level of teaching self-efficacy in trainee teachers. | Accepted | The use of active methodologies allows for a favorable change in the attitudinal component involved in learning related to an increase in teachers’ self-efficacy beliefs. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Borreguero, G.; Naranjo-Correa, F.L.; Mateos-Núñez, M. Development of STEM Instructional Resources for Teaching Optics to Teachers-in-Training: Influence on Learning and Teacher Self-Efficacy. Educ. Sci. 2022, 12, 186. https://doi.org/10.3390/educsci12030186
Martínez-Borreguero G, Naranjo-Correa FL, Mateos-Núñez M. Development of STEM Instructional Resources for Teaching Optics to Teachers-in-Training: Influence on Learning and Teacher Self-Efficacy. Education Sciences. 2022; 12(3):186. https://doi.org/10.3390/educsci12030186
Chicago/Turabian StyleMartínez-Borreguero, Guadalupe, Francisco Luis Naranjo-Correa, and Milagros Mateos-Núñez. 2022. "Development of STEM Instructional Resources for Teaching Optics to Teachers-in-Training: Influence on Learning and Teacher Self-Efficacy" Education Sciences 12, no. 3: 186. https://doi.org/10.3390/educsci12030186
APA StyleMartínez-Borreguero, G., Naranjo-Correa, F. L., & Mateos-Núñez, M. (2022). Development of STEM Instructional Resources for Teaching Optics to Teachers-in-Training: Influence on Learning and Teacher Self-Efficacy. Education Sciences, 12(3), 186. https://doi.org/10.3390/educsci12030186