Analytics Framework for Comparing National Performance Achievements in International Mathematical Olympiads
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- Input/output orientation of the model: the model is configured so as to determine how much the input/output consumed/produced could decrease/increase if resources are used efficiently;
- Constant/variable returns to scale (CRS/VRS) assumption: CRS reflects the fact that output will change by the same proportion by which the inputs are changed (e.g., a doubling of all inputs will result in double the outputs); VRS reflects the fact that production technology may exhibit increasing, constant, or decreasing returns to scale.
4. Data
- Participating country’s population;
- GDP per capita.
- Total score accumulated resulting in the award of gold medals;
- Total score accumulated resulting in the award of silver medals;
- Total score accumulated resulting in the award of bronze medals.
5. Results and Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Population and GDP per Capita Are Both Collected from the Official Website of World Bank
Countries | GDP_per_Capita | Population | Countries | GDP_per_Capita | Population |
Argentina | 10,729.23258 | 45,808,747 | Mongolia | 4534.918589 | 3,329,282 |
Armenia | 4670.008798 | 2,968,128 | Montenegro | 9367.016884 | 620,173 |
Australia | 59,934.12941 | 25,739,256 | Netherlands | 58,061.00167 | 17,533,405 |
Austria | 53,267.93275 | 8,956,279 | New Zealand | 48,801.68513 | 5,122,600 |
Azerbaijan | 5384.034998 | 10,145,212 | Nicaragua | 2090.753461 | 6,702,379 |
Bangladesh | 2503.04388 | 166,303,494 | North Macedonia | 6720.896285 | 2,065,092 |
Belarus | 7303.696266 | 9,340,314 | Norway | 89,202.75054 | 5,408,320 |
Belgium | 51,767.78857 | 11,587,882 | Panama | 14,516.45805 | 4,381,583 |
Bosnia and Herzegovina | 6916.438315 | 3,263,459 | Paraguay | 5400.103826 | 7,219,641 |
Brazil | 7,518.834284 | 213,993,441 | China | 12,556.33312 | 1,412,360,000 |
Bulgaria | 11,634.97102 | 6,899,125 | Peru | 6692.248375 | 33,359,416 |
Canada | 52,051.35146 | 38,246,108 | Philippines | 3548.828323 | 111,046,910 |
Colombia | 6131.225922 | 51,265,841 | Poland | 17,840.92105 | 37,781,024 |
Costa Rica | 12,508.61563 | 5,139,053 | Portugal | 24,262.18094 | 10,299,423 |
Croatia | 17,398.76598 | 3,899,000 | Puerto Rico | 31,429.86612 | 3,263,584 |
Czech Republic | 26,378.49996 | 10,703,446 | Korea. Rep. | 34,757.72007 | 51,744,876 |
Denmark | 67,803.0471 | 5,856,733 | Moldova | 5314.531461 | 2,573,928 |
Ecuador | 5934.875496 | 17,888,474 | Romania | 14,861.90917 | 19,115,146 |
El Salvador | 4408.520365 | 6,518,500 | Russian Federation | 12,172.78516 | 143,446,060 |
Estonia | 27,280.65844 | 1,329,254 | Saudi Arabia | 23,585.88563 | 35,340,680 |
Finland | 53,982.61427 | 5,541,696 | Serbia | 9214.993546 | 6,844,078 |
France | 43,518.53851 | 67,499,343 | Singapore | 72,794.00302 | 5,453,566 |
Georgia | 5042.385528 | 3,708,610 | Slovak Republic | 21,087.8461 | 5,447,247 |
Germany | 50,801.78671 | 83,129,285 | Slovenia | 29,200.81988 | 2,107,007 |
Greece | 20,276.54467 | 10,664,568 | South Africa | 6994.211654 | 60,041,996 |
Hong Kong SAR | 49,660.63424 | 7,413,100 | Spain | 30,115.70589 | 47,326,687 |
Hungary | 18,772.67329 | 9,709,886 | Sweden | 60,238.98656 | 10,415,811 |
India | 2277.434347 | 1,393,409,033 | Switzerland | 93,457.4404 | 8,697,723 |
Indonesia | 4291.812554 | 276,361,788 | Syrian Arab Republic | 1265.60619 | 18,275,704 |
Iraq | 5048.387813 | 41,179,351 | Taiwan | 32,123 | 23,859,912 |
Iran, Islamic Rep. | 2756.749977 | 85,028,760 | Tajikistan | 897.087902 | 9,749,625 |
Israel | 51,430.07968 | 9,364,000 | Thailand | 7233.388858 | 69,950,844 |
Italy | 35,551.28499 | 59,066,225 | Tunisia | 3924.343925 | 11,935,764 |
Japan | 39,285.16311 | 125,681,593 | Turkiye | 9586.61245 | 85,042,736 |
Kazakhstan | 10,041.48984 | 19,002,586 | Turkmenistan | 7612.03518 | 6,117,933 |
Latvia | 20,642.16792 | 1,883,162 | Ukraine | 4835.571777 | 43,814,581 |
Lithuania | 23,433.39091 | 2,795,321 | United Kingdom | 47,334.35531 | 67,326,569 |
Macao SAR, China | 45,421.62663 | 658,391 | United States | 69,287.53659 | 331,893,745 |
Malaysia | 11,371.09902 | 32,776,195 | Uzbekistan | 1983.064723 | 34,915,100 |
Mexico | 9926.422768 | 130,262,220 | Vietnam | 3694.019046 | 98,168,829 |
References
- Henseke, G. Country performance at the International Mathematical Olympiad. In Thuenen-Series of Applied Economic Theory; No. 108; University of Rostock, Institute of Economics: Rostock, Germany, 2009. [Google Scholar]
- Li, Y.; Lei, X.; Dai, Q.; Liang, L. Performance Evaluation of Participating Nations at the 2012 London Summer Olympics by a Two-Stage Data Envelopment Analysis. Eur. J. Oper. Res. 2015, 243, 964–973. [Google Scholar] [CrossRef]
- Sekitani, K.; Zhao, Y. Performance Benchmarking of Achievements in the Olympics: An Application of Data Envelopment Analysis with Restricted Multipliers. Eur. J. Oper. Res. 2021, 294, 1202–1212. [Google Scholar] [CrossRef]
- Gómez-Déniz, E.; Dávila-Cárdenes, N.; Leiva-Arcas, A.; Martínez-Patiño, M.J. Measuring Efficiency in the Summer Olympic Games Disciplines: The Case of the Spanish Athletes. Mathematics 2021, 9, 2688. [Google Scholar] [CrossRef]
- Dincă, M.S.; Dincă, G.; Andronic, M.L.; Pasztori, A.M. Assessment of the European Union’s Educational Efficiency. Sustainability 2021, 13, 3116. [Google Scholar] [CrossRef]
- Arnold, R.; Fletcher, D.; Molyneux, L. Performance Leadership and Management in Elite Sport: Recommendations, Advice and Suggestions from National Performance Directors. Eur. Sport Manag. Q. 2012, 12, 317–336. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Parker, B.; Tavares, G. Evaluation of Research in Efficiency and Productivity: A Survey and Analysis of the First 30 Years of Scholarly Literature in DEA. Socio-Econ. Plan. Sci. 2008, 42, 151–157. [Google Scholar] [CrossRef]
- Cook, W.D.; Seiford, L. Data Envelopment Analysis (DEA)—Thirty Years On. Eur. J. Oper. Res. 2009, 192, 1–17. [Google Scholar] [CrossRef]
- Liu, J.S.; Lu, L.Y.Y.; Lu, W.-M.; Lin, B.J.Y. A Survey of DEA Applications. Omega 2013, 41, 893–902. [Google Scholar] [CrossRef]
- Kao, C. Network Data Envelopment Analysis: A Review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Yang, G. A Survey and Analysis of the First 40 Years of Scholarly Literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 2018, 61, 4–8. [Google Scholar] [CrossRef]
- Dedoussis, V.; Konstas, C.; Kassimis, A.; Sofianopoulou, S. Efficiency evaluation of hydroelectric power plants using data envelopment analysis. J. Appl. Oper. Res. 2010, 2, 94–99. [Google Scholar]
- Sofianopoulou, S. Manufacturing Cells Efficiency Evaluation Using Data Envelopment Analysis. J. Manuf. Technol. Manag. 2006, 17, 224–238. [Google Scholar] [CrossRef]
- Sofianopoulou, S. Efficiency evaluation of Greek commercial banks using DEA. J. Appl. Oper. Res. 2012, 4, 183–193. [Google Scholar]
- Lozano, S.; Villa, G.; Guerrero, F.; Cortés, P. Measuring the Performance of Nations at the Summer Olympics Using Data Envelopment Analysis. In Operational Research Applied to Sports; Wright, M., Ed.; Palgrave Macmillan UK: London, UK, 2015; pp. 144–164. ISBN 978-1-137-53467-5. [Google Scholar]
- Lins, M.P.E.; Gomes, E.G.; Soares de Mello, J.C.C.B.; Soares de Mello, A.J.R. Olympic ranking based on a zero sum gains DEA model. Eur. J. Oper. Res. 2003, 148, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liang, L.; Chen, Y.; Morita, H. Models for measuring and benchmarking olympics achievements. Omega 2008, 36, 933–940. [Google Scholar] [CrossRef]
- de Mello, J.C.C.B.S.; Angulo-Meza, L.; Lacerda, F.G. A Dea Model with a Non Discritionary Variablefor Olympic Evaluation. Pesqui. Oper. 2012, 32, 21–30. [Google Scholar] [CrossRef] [Green Version]
- de Mello, J.C.C.B.S.; Angulo-Meza, L.; Lacerda, F.G.; Neto, L.B. Performance Team Evaluation in 2008 Beijing Olympic Games. In Proceedings of the ICIEOM 2009—XV International Conference on Industrial Engineering and Operations Management, Salvador, Brazil, 6–9 October 2009. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Meng, W.; Liu, W. Measuring the Performance of Nations at the Olympic Games Using DEA Models with Different Preferences. J. Oper. Res. Soc. 2009, 60, 983–990. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B.; Xia, Q.; Zhou, H. Ranking and benchmarking of the asian games achievements based on dea: The case of Guangzhou 2010. Asia Pac. J. Oper. Res. 2013, 30, 1350028. [Google Scholar] [CrossRef]
- Anderson, T.R.; Sharp, G.P. A New Measure of Baseball Batters Using DEA. Ann. Oper. Res. 1997, 73, 141–155. [Google Scholar] [CrossRef]
- Espitia-Escuer, M.; García-Cebrián, L.I. Performance in Sports Teams: Results and Potential in the Professional Soccer League in Spain. Manag. Decis. 2006, 44, 1020–1030. [Google Scholar] [CrossRef]
- Bosca, J.; Liern, V.; Martinez, A.; Sala, R. Increasing Offensive or Defensive Efficiency? An Analysis of Italian and Spanish Football. Omega 2009, 37, 63–78. [Google Scholar] [CrossRef]
- Chen, W.-C.; Johnson, A.L. The Dynamics of Performance Space of Major League Baseball Pitchers 1871–2006. Ann. Oper. Res. 2010, 181, 287–302. [Google Scholar] [CrossRef]
- Moreno, P.; Lozano, S. A Network DEA Assessment of Team Efficiency in the NBA. Ann. Oper. Res. 2014, 214, 99–124. [Google Scholar] [CrossRef]
- Lozano, S.; Villa, G.; Guerrero, F.; Cortés, P. Measuring the Performance of Nations at the Summer Olympics Using Data Envelopment Analysis. J. Oper. Res. Soc. 2002, 53, 501–511. [Google Scholar] [CrossRef]
- Calzada-Infante, L.; Lozano, S. Analysing Olympic Games through Dominance Networks. Phys. A Stat. Mech. Its Appl. 2016, 462, 1215–1230. [Google Scholar] [CrossRef]
- Sitarz, S. Mean Value and Volume-Based Sensitivity Analysis for Olympic Rankings. Eur. J. Oper. Res. 2012, 216, 232–238. [Google Scholar] [CrossRef]
- Ouyang, B.; Wu, R. Evaluation Model of Youth Basketball Training Performance Based on PSO Algorithm. Wirel. Commun. Mob. Comput. 2022, 2022, 1830318. [Google Scholar] [CrossRef]
- Metulini, R.; Gnecco, G. Measuring Players’ Importance in Basketball Using the Generalized Shapley Value. Ann. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Sarlis, V.; Tjortjis, C. Sports Analytics—Evaluation of Basketball Players and Team Performance. Inf. Syst. 2020, 93, 101562. [Google Scholar] [CrossRef]
- Cooper, W.W.; Tone, K. Measures of Inefficiency in Data Envelopment Analysis and Stochastic Frontier Estimation. Eur. J. Oper. Res. 1997, 99, 72–88. [Google Scholar] [CrossRef]
- Allen, R.; Athanassopoulos, A.; Dyson, R.G.; Thanassoulis, E. Weights Restrictions and Value Judgements in Data Envelopment Analysis: Evolution, Development and Future Directions. Ann. Oper. Res. 1997, 73, 13–34. [Google Scholar] [CrossRef]
Features | GDP per Capita | Population | Gold Medal Score | Silver Medal Score | Bronze Medal Score |
---|---|---|---|---|---|
Mean | 23,545.71726 | 73,388,572.98 | 19.66 | 27.59 | 26.59 |
Standard Deviation | 22,712.86862 | 222,441,422.5 | 39.71 | 27.14 | 18.26 |
Min | 897.087902 | 620,173 | 0.00 | 0.00 | 0.00 |
Max | 93,457.4404 | 1,412,360,000 | 208.00 | 100.00 | 79.00 |
Countries | Efficiency Scores | Countries | Efficiency Scores | Countries | Efficiency Scores |
---|---|---|---|---|---|
Argentina | 0.29482 | India | 1 | Puerto Rico | 0.117316 |
Armenia | 1 | Indonesia | 0.717203 | Korea, Rep. | 1 |
Australia | 0.724873 | Iraq | 0.101411 | Moldova | 1 |
Austria | 0.20955 | Iran, Islamic Rep. | 1 | Romania | 0.660937 |
Azerbaijan | 0.201923 | Israel | 1 | Russian Federation | 1 |
Bangladesh | 0.425016 | Italy | 0.804034 | Saudi Arabia | 0.43902 |
Belarus | 0.77323 | Japan | 0.597117 | Serbia | 0.648156 |
Belgium | 0.312652 | Kazakhstan | 0.830758 | Singapore | 0.923645 |
Bosnia and Herzegovina | 0.578776 | Latvia | 0.504322 | Slovak Republic | 0.540708 |
Brazil | 0.530838 | Lithuania | 0.124326 | Slovenia | 0.321556 |
Bulgaria | 0.898728 | Macao SAR, China | 1 | South Africa | 0.277054 |
Canada | 0.9616 | Malaysia | 0.329936 | Spain | 0.077867 |
Colombia | 0.249902 | Mexico | 0.566773 | Sweden | 0.250324 |
Costa Rica | 0.105926 | Mongolia | 1 | Switzerland | 0.304334 |
Croatia | 0.863586 | Montenegro | 1 | Syrian Arab Republic | 0.474759 |
Czech Republic | 0.848428 | Netherlands | 0.185744 | Taiwan | 0.878607 |
Denmark | 0.104658 | New Zealand | 0.21858 | Tajikistan | 1 |
Ecuador | 0.188862 | Nicaragua | 1 | Thailand | 0.76463 |
El Salvador | 0.109485 | North Macedonia | 0.657155 | Tunisia | 0.288751 |
Estonia | 0.619754 | Norway | 0.270472 | Turkiye | 0.584455 |
Finland | 0.090023 | Panama | 0.13681 | Turkmenistan | 0.301805 |
France | 0.575077 | Paraguay | 0.120877 | Ukraine | 1 |
Georgia | 0.498647 | China | 1 | United Kingdom | 0.701677 |
Germany | 0.677041 | Peru | 0.708673 | United States | 0.88371 |
Greece | 0.189314 | Philippines | 0.915146 | Uzbekistan | 0.550591 |
Hong Kong SAR | 0.811838 | Poland | 0.875827 | Vietnam | 1 |
Hungary | 0.740305 | Portugal | 0.342095 |
Countries | IMO 2021 Ranking | CCR VRS | CCR VRS Weight Restricted | Countries | IMO 2021 Ranking | CCR VRS | CCR VRS Weight Restricted |
---|---|---|---|---|---|---|---|
Argentina | 46 | 61 | 59 | Mongolia | 11 | 1 | 15 |
Armenia | 37 | 1 | 3 | Montenegro | 79 | 1 | 7 |
Australia | 18 | 48 | 31 | Netherlands | 47 | 69 | 70 |
Austria | 64 | 66 | 66 | New Zealand | 69 | 64 | 65 |
Azerbaijan | 51 | 62 | 67 | Nicaragua | 81 | 1 | 14 |
Bangladesh | 43 | 46 | 52 | North Macedonia | 45 | 35 | 37 |
Belarus | 24 | 1 | 28 | Norway | 51 | 63 | 62 |
Belgium | 43 | 54 | 56 | Panama | 72 | 72 | 71 |
Bosnia and Herzegovina | 40 | 1 | 42 | Paraguay | 87 | 71 | 73 |
Brazil | 35 | 42 | 47 | China | 1 | 1 | 10 |
Bulgaria | 18 | 1 | 19 | Peru | 30 | 1 | 33 |
Canada | 5 | 1 | 16 | Philippines | 23 | 1 | 18 |
Colombia | 61 | 67 | 64 | Poland | 13 | 1 | 22 |
Costa Rica | 84 | 77 | 76 | Portugal | 54 | 60 | 53 |
Croatia | 21 | 1 | 23 | Puerto Rico | 79 | 76 | 74 |
Czech Republic | 16 | 34 | 24 | Korea, Rep. | 3 | 1 | 6 |
Denmark | 67 | 78 | 77 | Moldova | 51 | 1 | 1 |
Ecuador | 73 | 65 | 69 | Romania | 27 | 37 | 36 |
El Salvador | 71 | 74 | 75 | Russian Federation | 2 | 1 | 11 |
Estonia | 50 | 40 | 39 | Saudi Arabia | 38 | 51 | 51 |
Finland | 69 | 80 | 79 | Serbia | 31 | 50 | 38 |
France | 27 | 43 | 43 | Singapore | 15 | 1 | 17 |
Georgia | 41 | 41 | 49 | Slovak Republic | 39 | 47 | 46 |
Germany | 12 | 45 | 35 | Slovenia | 64 | 59 | 55 |
Greece | 64 | 70 | 68 | South Africa | 60 | 52 | 61 |
Hong Kong SAR | 21 | 31 | 26 | Spain | 63 | 79 | 80 |
Hungary | 32 | 1 | 30 | Sweden | 57 | 68 | 63 |
India | 26 | 1 | 9 | Switzerland | 48 | 56 | 57 |
Indonesia | 33 | 1 | 32 | Syrian Arab Republic | 68 | 53 | 50 |
Iraq | 89 | 73 | 78 | Taiwan | 9 | 1 | 21 |
Iran, Islamic Rep. | 29 | 1 | 5 | Tajikistan | 59 | 1 | 2 |
Israel | 7 | 1 | 12 | Thailand | 16 | 1 | 29 |
Italy | 7 | 1 | 27 | Tunisia | 56 | 57 | 60 |
Japan | 25 | 38 | 40 | Turkiye | 35 | 1 | 41 |
Kazakhstan | 20 | 32 | 25 | Turkmenistan | 58 | 55 | 58 |
Latvia | 48 | 44 | 48 | Ukraine | 6 | 1 | 4 |
Lithuania | 76 | 75 | 72 | United Kingdom | 9 | 39 | 34 |
Macao SAR, China | 54 | 1 | 13 | United States | 4 | 33 | 20 |
Malaysia | 41 | 58 | 54 | Uzbekistan | 61 | 49 | 45 |
Mexico | 34 | 36 | 44 | Vietnam | 14 | 1 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canellidis, V.; Sofianopoulou, S. Analytics Framework for Comparing National Performance Achievements in International Mathematical Olympiads. Educ. Sci. 2022, 12, 838. https://doi.org/10.3390/educsci12110838
Canellidis V, Sofianopoulou S. Analytics Framework for Comparing National Performance Achievements in International Mathematical Olympiads. Education Sciences. 2022; 12(11):838. https://doi.org/10.3390/educsci12110838
Chicago/Turabian StyleCanellidis, Vassilios, and Stella Sofianopoulou. 2022. "Analytics Framework for Comparing National Performance Achievements in International Mathematical Olympiads" Education Sciences 12, no. 11: 838. https://doi.org/10.3390/educsci12110838
APA StyleCanellidis, V., & Sofianopoulou, S. (2022). Analytics Framework for Comparing National Performance Achievements in International Mathematical Olympiads. Education Sciences, 12(11), 838. https://doi.org/10.3390/educsci12110838