The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events
Abstract
:1. Introduction
- What are the factors that support or hinder the use of e-learning among undergraduates in Sri Lanka?
- How do the COVID-19 pandemic and its consequences (curfew, lockdown, isolation, stay home, and other social distancing measures) affect the use of e-leaning among undergraduates in Sri Lanka?
2. Literature Review and Hypotheses Development
2.1. Theoretical Framework
2.2. Hypothesis Development
2.2.1. Core Predictors
Behavioural Intention
Precipitating Events (Effect of COVID-19)
Attitudes towards E-Learning
Perceived Ease Use
Perceived Usefulness
2.2.2. External Factors
Facilitating Conditions
Subjective Norms
Self-Efficacy
Relevance
Computer Anxiety
Experience
3. Material and Methods
3.1. Survey Participants and Data Collection
3.2. Survey Instrument
3.3. Data Analysis
4. Results
4.1. The Assessment of the Measurement Model
4.2. Hypotheses Testing
5. Discussion and Implications
6. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations International Children’s Emergency Fund (UNICEF). Keeping the World’s Children Learning through COVID-19|UNICEF. Available online: https://www.unicef.org/coronavirus/keeping-worlds-children-learning-through-covid-19 (accessed on 27 April 2020).
- Bao, W. COVID-19 and online teaching in higher education: A case study of Peking University. Hum. Behav. Emerg. Technol. 2020, 2, 113–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, G. Peking University Spring Semester Online Courses. Available online: http://news.pku.edu.cn/xwzh/979e47acd7bf4c9592945323a2292f4d.htm (accessed on 28 April 2020).
- UNICEF and Microsoft Launch Global Learning Platform to Help Address COVID-19 Education Crisis. Available online: https://www.unicef.org/press-releases/unicef-and-microsoft-launch-global-learning-platform-help-address-covid-19-education (accessed on 28 April 2020).
- Xu, D.; Wang, H. Integration of Knowledge Management and E-Learning. In Encyclopedia of Knowledge Management, 2nd ed.; IGI Global: online encyclopedia, 2011; pp. 442–451. [Google Scholar]
- Alsabawy, A.Y.; Cater-Steel, A.; Soar, J. Determinants of perceived usefulness of e-learning systems. Comput. Hum. Behav. 2016, 64, 843–858. [Google Scholar] [CrossRef]
- Islam, A.K.M.N. E-learning system use and its outcomes: Moderating role of perceived compatibility. Telemat. Inform. 2016, 33, 48–55. [Google Scholar] [CrossRef]
- Palvia, S.; Aeron, P.; Gupta, P.; Mahapatra, D.; Parida, R.; Rosner, R.; Sindhi, S. Online Education: Worldwide Status, Challenges, Trends, and Implications. J. Glob. Inf. Technol. Manag. 2018, 21, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, F.; Ward, R. Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Comput. Hum. Behav. 2016, 56, 238–256. [Google Scholar] [CrossRef]
- Šumak, B.; Heričko, M.; Pušnik, M. A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Comput. Hum. Behav. 2011, 27, 2067–2077. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Yahoo News. Virus Forced Schools Online, But Many Students Didn’t Follow. Available online: https://news.yahoo.com/virus-forced-schools-online-many-134007269.html (accessed on 30 April 2020).
- Samsudeen, S.N.; Mohamed, R. University students’ intention to use e-learning systems. Interact. Technol. Smart Educ. 2019, 16, 219–238. [Google Scholar] [CrossRef]
- Mutisya, D.N.; Makokha, G.L. Challenges affecting adoption of e-learning in public universities in Kenya. E-Learn. Digit. Media 2016, 13, 140–157. [Google Scholar] [CrossRef] [Green Version]
- Chawinga, W.D.; Zozie, P.A. Increasing access to higher education through open and distance learning: Empirical findings From Mzuzu University, Malawi. Int. Rev. Res. Open Distance Learn. 2016, 17, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-T.; Hajiyev, J.; Su, C.-R. Examining the students’ behavioral intention to use e-learning in Azerbaijan? The General Extended Technology Acceptance Model for E-learning approach. Comput. Educ. 2017, 111, 128–143. [Google Scholar] [CrossRef]
- Chao, C.-M. Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Front. Psychol. 2019, 10, 1652. [Google Scholar] [CrossRef] [Green Version]
- Aguti, B.; Wills, G.B.; Walters, R.J. An evaluation of the factors that impact on the effectiveness of blended e-learning within universities. In Proceedings of the International Conference on Information Society (i-Society 2014), London, UK, 10–12 November 2014; pp. 117–121. [Google Scholar]
- Ramírez-Correa, P.E.; Arenas-Gaitán, J.; Rondán-Cataluña, F.J. Gender and Acceptance of E-Learning: A Multi-Group Analysis Based on a Structural Equation Model among College Students in Chile and Spain. PLoS ONE 2015, 10, e0140460. [Google Scholar] [CrossRef] [Green Version]
- Hrtoňová, N.; Kohout, J.; Rohlíková, L.; Zounek, J. Factors influencing acceptance of e-learning by teachers in the Czech Republic. Comput. Hum. Behav. 2015, 51, 873–879. [Google Scholar] [CrossRef]
- Link, T.M.; Marz, R. Computer literacy and attitudes towards e-learning among first year medical students. BMC Med. Educ. 2006, 6, 34. [Google Scholar] [CrossRef]
- Park, S.Y.; Nam, M.-W.; Cha, S.-B. University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model. Br. J. Educ. Technol. 2012, 43, 592–605. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, Z. An overview of e-learning in China: History, challenges and opportunities. Res. Comp. Int. Educ. 2018, 13, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, attitude, intention, and behavior: An introduction to theory and research by Martin Fishbien, Icek Ajzen. Philos. Rhetor. 1977, 10, 130–132. [Google Scholar]
- Agudo-Peregrina, Á.F.; Hernández-García, Á.; Pascual-Miguel, F.J. Behavioral intention, use behavior and the acceptance of electronic learning systems: Differences between higher education and lifelong learning. Comput. Hum. Behav. 2014, 34, 301–314. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Van Raaij, E.M.; Schepers, J.J.L. The acceptance and use of a virtual learning environment in China. Comput. Educ. 2008, 50, 838–852. [Google Scholar] [CrossRef]
- Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Paechter, M.; Maier, B.; Macher, D. Students’ expectations of, and experiences in e-learning: Their relation to learning achievements and course satisfaction. Comput. Educ. 2010, 54, 222–229. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hsieh, Y.C.; Ma, C.Y. A model of organizational employees’ e-learning systems acceptance. Knowl.-Based Syst. 2011, 24, 355–366. [Google Scholar] [CrossRef]
- Sukendro, S.; Habibi, A.; Khaeruddin, K.; Indrayana, B.; Syahruddin, S.; Makadada, F.A.; Hakim, H. Using an extended Technology Acceptance Model to understand students’ use of e-learning during Covid-19: Indonesian sport science education context. Heliyon 2020, 6, e05410. [Google Scholar] [CrossRef]
- Mailizar, M.; Burg, D.; Maulina, S. Examining university students’ behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Educ. Inf. Technol. 2021, 1–21. [Google Scholar]
- Budu, K.W.A.; Yinping, M.; Mireku, K.K. Investigating The Effect of Behavioral Intention on E-learning Systems Usage: Empirical Study on Tertiary Education Institutions in Ghana. Mediterr. J. Soc. Sci. 2018, 9, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Moghavvemi, S.; Salleh, N.A.M.; Sulaiman, A.; Abessi, M. Effect of external factors on intention–behaviour gap. Behav. Inf. Technol. 2015, 34, 1171–1185. [Google Scholar] [CrossRef]
- Krueger, N.F. The Cognitive Infrastructure of Opportunity Emergence. Entrep. Theory Pract. 2000, 24, 5–24. [Google Scholar] [CrossRef]
- Shapero, A.; Sokol, L. The Social Dimensions of Entrepreneurship. In Encyclopedia of Entrepreneurship; Kent, C.A., Sexton, D.L., Vesper, K.H., Eds.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982; pp. 72–90. [Google Scholar]
- Glasman, L.R.; Albarracín, D. Forming attitudes that predict future behavior: A meta-analysis of the attitude-behavior relation. Psychol. Bull. 2006, 132, 778–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Aulamie, A.; Mansour, A.; Daly, H.; Adjei, O. The effect of interinsic motivation on learners’ behavioural intention to use e-learning systems. In Proceedings of the 2012 International Conference on Information Technology Based Higher Education and Training (ITHET), Istanbul, Turkey, 21–23 June 2012; pp. 1–4. [Google Scholar]
- Wangpipatwong, S. Factors Influencing the Intention to Use E-Learning: A Case Study of Bangkok University. In Proceedings of the ED-MEDIA 2008-World Conference on Educational Multimedia, Hypermedia & Telecommunications, Vienna, Austria, 30 June 2008; Volume 2008, pp. 6093–6098. [Google Scholar]
- Park, S.Y. An Analysis of the Technology Acceptance Model in Understanding University Students’ Behavioral Intention to Use e-Learning. J. Educ. Technol. Soc. 2009, 12, 150–162. [Google Scholar]
- Salloum, S.A.; Shaalan, K. Factors Affecting Students’ Acceptance of E-Learning System in Higher Education Using UTAUT and Structural Equation Modeling Approaches. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018, AISI 2018, Cairo, Egypt, 1–3 September 2018; pp. 469–480. [Google Scholar]
- Taylor, S.; Todd, P.A. Understanding Information Technology Usage: A Test of Competing Models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Islam, M.T.; Selim, A.S.M. Information and Communication Technologies for the Promotion of Open and Distance Learning in Bangladesh. J. Agric. Rural Dev. 1970, 4, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh; Thong; Xu Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157. [CrossRef] [Green Version]
- Masádeh, R.; Alananzeh, O.; Tarhini, A.; Algudah, O. The effect of promotional mix on hotel performance during the political crisis in the Middle East. J. Hosp. Tour. Technol. 2018, 9, 33–49. [Google Scholar] [CrossRef]
- Tarhini, A.; Masa’deh, R.; Al-Busaidi, K.A.; Mohammed, A.B.; Maqableh, M. Factors influencing students’ adoption of e-learning: A structural equation modeling approach. J. Int. Educ. Bus. 2017, 10, 164–182. [Google Scholar] [CrossRef]
- Salarzadeh Jenatabadi, H.; Moghavvemi, S.; Wan Mohamed Radzi, C.W.J.B.; Babashamsi, P.; Arashi, M. Testing students’ e-learning via Facebook through Bayesian structural equation modeling. PLoS ONE 2017, 12, e0182311. [Google Scholar]
- Bandura, A. Self-efficacy mechanism in human agency. Am. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: The Exercise of Control; W H Freeman/Times Books/Henry Holt & Co.: New York, NY, USA, 1997; ISBN1 0-7167-2626-2. ISBN2 0-7167-2850-8. [Google Scholar]
- Shen, J.; Eder, L.B. Intentions to Use Virtual Worlds for Education. J. Inf. Syst. Educ. 2009, 20, 234. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Cambre, M.A.; Cook, D.L. Computer Anxiety: Definition, Measurement, and Correlates. J. Educ. Comput. Res. 1985, 1, 37–54. [Google Scholar] [CrossRef]
- Piccoli, G.; Ahmad, R.; Ives, B. Web-Based Virtual Learning Environments: A Research Framework and a Preliminary Assessment of Effectiveness in Basic IT Skills Training. MIS Q. 2001, 25, 401. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Caputi, P.; Crittenden, N.; Jayasuriya, R.; Rawstorne, P. A review of the construct of computer experience. Comput. Hum. Behav. 1999, 15, 227–242. [Google Scholar] [CrossRef]
- Igbaria, M.; Guimaraes, T.; Davis, G.B. Testing the Determinants of Microcomputer Usage via a Structural Equation Model. J. Manag. Inf. Syst. 1995, 11, 87–114. [Google Scholar] [CrossRef]
- Al-alak, B.; Alnawas, I.A.M. Measuring the acceptance and adoption of e-learning by academic staff. Knowl. Manag. E-Learn. An. Int. J. 2011, 3, 201–221. [Google Scholar]
- University Grants Commission (UGC). Student Enrolment. Available online: https://www.ugc.ac.lk/downloads/statistics/stat_2019/Chapter3.pdf (accessed on 21 October 2020).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 9780203771587. [Google Scholar]
- Kline, R.B. Convergence of Structural Equation Modeling and Multilevel Modeling. In The SAGE Handbook of Innovation in Social Research Methods; Williams, M., Vogt, W.P., Eds.; SAGE Publications Ltd.: London, UK, 2011; pp. 562–589. [Google Scholar]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Yaghmaie, F. Development of a scale for measuring user computer experience. J. Res. Nurs. 2007, 12, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–151. [Google Scholar] [CrossRef]
- Richter, N.F.; Schubring, S.; Hauff, S.; Ringle, C.M.; Sarstedt, M. When predictors of outcomes are necessary: Guidelines for the combined use of PLS-SEM and NCA. Ind. Manag. Data Syst. 2020, 120, 2243–2267. [Google Scholar] [CrossRef]
- Calvo-Mora, A.; Blanco-Oliver, A.; Roldán, J.L.; Periáñez-Cristóbal, R. TQM factors and organisational results in the EFQM excellence model framework: An explanatory and predictive analysis. Ind. Manag. Data Syst. 2020, 120, 2297–2317. [Google Scholar] [CrossRef]
- Chen, X.; Weerathunga, P.R.; Nurunnabi, M.; Kulathunga, K.M.M.C.B.; Samarathunga, W.H.M.S. Influences of Behavioral Intention to Engage in Environmental Accounting Practices for Corporate Sustainability: Managerial Perspectives from a Developing Country. Sustainability 2020, 12, 5266. [Google Scholar] [CrossRef]
- Yustyarani, W.; Yuliana, I. Influence Of Intellectual Capital, Income Diversification on Firm Value of Companies with Profitability Mediation: Indonesian Banking. J. Din. Akunt. 2020, 12, 77–89. [Google Scholar] [CrossRef]
- Hair, J.F.; Howard, M.C.; Nitzl, C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. J. Bus. Res. 2020, 109, 101–110. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.; Mahapatra, B. The Consequences of Unintended Pregnancy for Maternal and Child Health in Rural India: Evidence from Prospective Data. Matern. Child Health J. 2013, 17, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Arkon, OH, USA, 1992; ISBN 0962262846. [Google Scholar]
- Dascalu, M.-D.; Ruseti, S.; Dascalu, M.; McNamara, D.S.; Carabas, M.; Rebedea, T.; Trausan-Matu, S. Before and during COVID-19: A Cohesion Network Analysis of students’ online participation in moodle courses. Comput. Hum. Behav. 2021, 121, 106780. [Google Scholar] [CrossRef]
Variable | Particulars | Frequency | Percentage |
---|---|---|---|
Gender | Male | 349 | 33.6 |
Female | 690 | 66.4 | |
Year of study | First | 290 | 27.9 |
Second | 92 | 8.9 | |
Third | 285 | 27.4 | |
Fourth or Final | 372 | 35.8 | |
Area of Study | Agriculture | 112 | 10.8 |
Applied Sciences | 132 | 12.7 | |
Arts | 128 | 12.3 | |
Engineering | 33 | 2.2 | |
Management | 506 | 48.7 | |
Medicine | 26 | 2.5 | |
Technology | 112 | 10.8 |
Latent Constructs | Indicators | Loadings | Mean | Median | Std. Dev. | Excess Kurtosis | Skewness |
---|---|---|---|---|---|---|---|
Self-Efficacy (SE) | SE1 | 0.891 *** | 5.25 | 5 | 1.528 | −0.137 | −0.67 |
SE2 | 0.882 *** | 5.113 | 5 | 1.607 | −0.225 | −0.674 | |
SE3 | 0.868 *** | 4.804 | 5 | 1.565 | −0.583 | −0.331 | |
Relevance (RE) | RE1 | 0.881 *** | 5.594 | 6 | 1.495 | 0.486 | −1.033 |
RE2 | 0.892 *** | 5.709 | 6 | 1.448 | 0.594 | −1.11 | |
RE3 | 0.893 *** | 5.369 | 6 | 1.409 | 0.163 | −0.744 | |
RE4 | 0.812 *** | 5.406 | 6 | 1.495 | 0.122 | −0.839 | |
RE5 | 0.843 *** | 5.696 | 6 | 1.373 | 0.88 | −1.084 | |
Computer Anxiety (CA) | CA1 | 0.961 *** | 2.869 | 2 | 1.653 | −0.607 | 0.58 |
CA2 | 0.968 *** | 2.818 | 2 | 1.69 | −0.571 | 0.667 | |
CA3 | 0.835 *** | 2.914 | 3 | 1.676 | −0.757 | 0.515 | |
Experience (EX) | EX1 | 0.844 *** | 5.473 | 6 | 1.549 | 0.267 | −0.934 |
EX2 | 0.865 *** | 5.332 | 6 | 1.634 | −0.211 | −0.819 | |
EX3 | 0.904 *** | 5.603 | 6 | 1.496 | 0.588 | −1.085 | |
EX3 | 0.906 *** | 5.441 | 6 | 1.478 | 0.368 | −0.938 | |
Subjective Norms (SN) | SN1 | 0.854 *** | 5.312 | 5 | 1.365 | −0.053 | −0.607 |
SN2 | 0.883 *** | 5.088 | 5 | 1.506 | −0.129 | −0.581 | |
SN3 | 0.904 *** | 5.145 | 5 | 1.427 | −0.205 | −0.527 | |
SN4 | 0.910 *** | 5.269 | 5 | 1.376 | 0.106 | −0.637 | |
Perceived Usefulness (PU) | PU1 | 0.886 *** | 5.267 | 5 | 1.424 | −0.001 | −0.645 |
PU2 | 0.934 *** | 5.435 | 6 | 1.344 | 0.282 | −0.76 | |
PU3 | 0.931 *** | 5.361 | 6 | 1.356 | 0.192 | −0.695 | |
PU4 | 0.926 *** | 5.334 | 5 | 1.383 | 0.373 | −0.764 | |
PU5 | 0.906 *** | 5.655 | 6 | 1.338 | 0.795 | −1.004 | |
Perceived Ease of Use (PE) | PE1 | 0.880 *** | 5.457 | 6 | 1.358 | 0.451 | −0.851 |
PE2 | 0.915 *** | 5.301 | 5 | 1.323 | 0.051 | −0.583 | |
PE3 | 0.910 *** | 5.199 | 5 | 1.357 | −0.066 | −0.531 | |
PE4 | 0.909 *** | 5.262 | 5 | 1.414 | −0.077 | −0.619 | |
Facilitating Condition (FC) | FC1 | 0.694 *** | 4.461 | 5 | 1.808 | −0.916 | −0.279 |
FC2 | 0.348 * | 4.038 | 4 | 1.768 | −0.891 | −0.05 | |
FC3 | 0.379 * | 5.158 | 3 | 1.75 | −0.413 | −0.735 | |
FC4 | 0.855 *** | 5.417 | 6 | 1.575 | 0.118 | −0.921 | |
FC5 | 0.864 *** | 5.269 | 6 | 1.627 | −0.282 | −0.771 | |
FC6 | 0.812 *** | 5.149 | 5 | 1.486 | −0.155 | −0.62 | |
FC7 | 0.820 *** | 5.189 | 5 | 1.502 | −0.046 | −0.691 | |
FC8 | 0.836 *** | 5.101 | 5 | 1.544 | −0.164 | −0.685 | |
FC9 | 0.832 *** | 4.977 | 5 | 1.502 | −0.225 | −0.53 | |
FC10 | 0.786 *** | 4.972 | 5 | 1.74 | −0.386 | −0.686 | |
Attitudes Towards e-learning (AT) | AT1 | 0.948 *** | 5.48 | 6 | 1.413 | 0.424 | −0.898 |
AT2 | 0.955 *** | 5.473 | 6 | 1.384 | 0.509 | −0.894 | |
AT3 | 0.959 *** | 5.555 | 6 | 1.349 | 0.536 | −0.899 | |
AT4 | 0.936 *** | 5.441 | 6 | 1.355 | 0.093 | −0.723 | |
Behavioural Intention to Use e-learning (BI) | BI1 | 0.937 *** | 5.279 | 5 | 1.383 | 0.089 | −0.697 |
BI2 | 0.942 *** | 5.291 | 5 | 1.35 | 0.056 | −0.637 | |
BI3 | 0.904 *** | 5.56 | 6 | 1.39 | 0.555 | −0.966 | |
Precipitating Events (CV) | CV1 | 0.923 *** | 5.357 | 6 | 1.653 | 0.192 | −0.974 |
CV2 | 0.943 *** | 5.436 | 6 | 1.559 | 0.49 | −1.025 | |
CV3 | 0.918 *** | 5.262 | 6 | 1.643 | −0.052 | −0.841 | |
Actual use of e-learning (AU) | AU1 | 0.395 ** | 3.727 | 4 | 1.337 | 1.158 | −0.56 |
AU2 | 0.840 *** | 5.216 | 5 | 1.547 | 0.986 | −0.984 | |
AU3 | 0.692 *** | 4.556 | 5 | 1.823 | −1.169 | −0.157 | |
AU4 | 0.901 *** | 4.783 | 5 | 1.939 | −1.12 | −0.382 |
Latent Constructs | Cronbach’s Alpha | rho_A | CR | AVE |
---|---|---|---|---|
AT | 0.964 | 0.964 | 0.974 | 0.902 |
AU | 0.744 | 0.775 | 0.855 | 0.665 |
BI | 0.919 | 0.919 | 0.949 | 0.861 |
CA | 0.912 | 0.928 | 0.945 | 0.853 |
CV | 0.919 | 0.921 | 0.949 | 0.861 |
EX | 0.903 | 0.907 | 0.932 | 0.775 |
FC | 0.927 | 0.930 | 0.940 | 0.663 |
PE | 0.925 | 0.925 | 0.947 | 0.816 |
PU | 0.952 | 0.953 | 0.963 | 0.841 |
RE | 0.915 | 0.918 | 0.937 | 0.748 |
SN | 0.910 | 0.914 | 0.937 | 0.788 |
SE | 0.855 | 0.858 | 0.912 | 0.775 |
Latent Constructs | AT | AU | BI | CA | CV | EX | FC | PE | PU | RE | SN | SE | DV Met |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AT | 0.950 | Yes | |||||||||||
AU | 0.352 | 0.816 | Yes | ||||||||||
BI | 0.892 | 0.359 | 0.928 | Yes | |||||||||
CA | −0.299 | −0.164 | −0.304 | 0.924 | Yes | ||||||||
CV | 0.483 | 0.392 | 0.490 | −0.161 | 0.928 | Yes | |||||||
EX | 0.704 | 0.345 | 0.709 | −0.357 | 0.422 | 0.880 | Yes | ||||||
FC | 0.747 | 0.323 | 0.734 | −0.281 | 0.420 | 0.678 | 0.814 | Yes | |||||
PE | 0.826 | 0.328 | 0.802 | −0.324 | 0.465 | 0.753 | 0.757 | 0.903 | Yes | ||||
PU | 0.845 | 0.346 | 0.804 | −0.282 | 0.465 | 0.720 | 0.715 | 0.870 | 0.917 | Yes | |||
RE | 0.795 | 0.316 | 0.757 | −0.235 | 0.436 | 0.678 | 0.646 | 0.757 | 0.806 | 0.865 | Yes | ||
SN | 0.728 | 0.289 | 0.696 | −0.225 | 0.394 | 0.594 | 0.663 | 0.747 | 0.720 | 0.655 | 0.888 | Yes | |
SE | 0.626 | 0.276 | 0.639 | −0.266 | 0.408 | 0.637 | 0.621 | 0.680 | 0.651 | 0.653 | 0.506 | 0.880 | Yes |
Latent Constructs | AT | AU | BI | CA | CV | EX | FC | PE | PU | RE | SN | SE | DV Met |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AU | 0.415 | ||||||||||||
BI | 0.448 | 0.429 | Yes | ||||||||||
CA | 0.317 | 0.190 | 0.331 | Yes | |||||||||
CV | 0.512 | 0.470 | 0.533 | 0.174 | Yes | ||||||||
EX | 0.753 | 0.410 | 0.777 | 0.394 | 0.462 | Yes | |||||||
FC | 0.788 | 0.387 | 0.793 | 0.302 | 0.453 | 0.740 | Yes | ||||||
PE | 0.775 | 0.388 | 0.769 | 0.351 | 0.504 | 0.822 | 0.815 | Yes | |||||
PU | 0.782 | 0.406 | 0.760 | 0.302 | 0.496 | 0.774 | 0.760 | 0.826 | Yes | ||||
RE | 0.845 | 0.378 | 0.824 | 0.256 | 0.475 | 0.743 | 0.697 | 0.821 | 0.763 | Yes | |||
SN | 0.775 | 0.351 | 0.759 | 0.245 | 0.428 | 0.652 | 0.719 | 0.813 | 0.770 | 0.714 | Yes | ||
SE | 0.687 | 0.336 | 0.719 | 0.301 | 0.459 | 0.722 | 0.695 | 0.763 | 0.720 | 0.734 | 0.571 | Yes |
Latent Constructs | AT | AU | BI | PE | PU |
---|---|---|---|---|---|
AT | 4.195 | ||||
AU | |||||
BI | 2.373 | ||||
CA | 1.154 | 1.163 | |||
CV | 1.330 | ||||
EX | 2.514 | 2.659 | |||
FC | 2.191 | 2.227 | |||
PE | 4.093 | 3.030 | 4.216 | ||
PU | 4.300 | 3.234 | |||
RE | 2.329 | 2.780 | |||
SN | 2.371 | 2.502 | 2.378 | ||
SE | 2.102 | 2.130 |
Hypotheses | Path | Path Coefficients | S.E. | T-Stat. | p-Values | f2 | Decision |
---|---|---|---|---|---|---|---|
H1 | BI → AU | 0.158 | 0.047 | 3.061 | 0.001 ** | 0.031 | Accept |
H2 | BI * CV → AU | −0.028 | 0.026 | 1.079 | 0.281 | 0.001 | Reject |
CV → AU | 0.278 | 0.044 | 6.302 | 0.000 *** | 0.072 | ||
H3 | AT → BI | 0.682 | 0.033 | 20.792 | 0.000 *** | 0.586 | Accept |
H4a | PE → BI | 0.149 | 0.039 | 3.804 | 0.000 *** | 0.023 | Accept |
H4b | PE → AT | 0.284 | 0.041 | 6.843 | 0.000 *** | 0.072 | Accept |
H4c | PE → PU | 0.511 | 0.039 | 12.929 | 0.000 *** | 0.331 | Accept |
H5a | PU → BI | 0.073 | 0.037 | 1.947 | 0.052 | 0.005 | Reject |
H5b | PU → AT | 0.472 | 0.044 | 10.840 | 0.000 *** | 0.217 | Accept |
H6a | FC → AU | 0.088 | 0.043 | 2.016 | 0.054 | 0.004 | Reject |
H6b | FC → PE | 0.305 | 0.032 | 9.552 | 0.000 *** | 0.163 | Accept |
H7a | SN → BI | 0.036 | 0.027 | 1.316 | 0.188 | 0.003 | Reject |
H7b | SN → AT | 0.177 | 0.030 | 5.878 | 0.000 *** | 0.055 | Accept |
H7c | SN → PU | 0.092 | 0.025 | 3.751 | 0.000 *** | 0.019 | Accept |
H8a | SE → PU | 0.017 | 0.025 | 0.680 | 0.497 | 0.001 | Reject |
H8b | SE → PE | 0.126 | 0.032 | 4.013 | 0.000 *** | 0.030 | Accept |
H9a | RE → PU | 0.305 | 0.032 | 9.686 | 0.000 *** | 0.180 | Accept |
H9b | RE → PE | 0.301 | 0.029 | 10.484 | 0.000 *** | 0.151 | Accept |
H10a | CA → PU | 0.003 | 0.015 | 0.190 | 0.849 | 0.001 | Reject |
H10b | CA→ PE | −0.046 | 0.017 | 2.673 | 0.008 *** | 0.007 | Accept |
H11a | EX → PU | 0.064 | 0.028 | 2.331 | 0.020 ** | 0.008 | Accept |
H11b | EX → PE | 0.245 | 0.031 | 7.962 | 0.000 *** | 0.093 | Accept |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weerathunga, P.R.; Samarathunga, W.H.M.S.; Rathnayake, H.N.; Agampodi, S.B.; Nurunnabi, M.; Madhunimasha, M.M.S.C. The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events. Educ. Sci. 2021, 11, 436. https://doi.org/10.3390/educsci11080436
Weerathunga PR, Samarathunga WHMS, Rathnayake HN, Agampodi SB, Nurunnabi M, Madhunimasha MMSC. The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events. Education Sciences. 2021; 11(8):436. https://doi.org/10.3390/educsci11080436
Chicago/Turabian StyleWeerathunga, Prageeth Roshan, W. H. M. S. Samarathunga, H. N. Rathnayake, S. B. Agampodi, Mohammad Nurunnabi, and M. M. S. C. Madhunimasha. 2021. "The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events" Education Sciences 11, no. 8: 436. https://doi.org/10.3390/educsci11080436
APA StyleWeerathunga, P. R., Samarathunga, W. H. M. S., Rathnayake, H. N., Agampodi, S. B., Nurunnabi, M., & Madhunimasha, M. M. S. C. (2021). The COVID-19 Pandemic and the Acceptance of E-Learning among University Students: The Role of Precipitating Events. Education Sciences, 11(8), 436. https://doi.org/10.3390/educsci11080436