Simulators in Educational Robotics: A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Robot Soccer Simulator—RoSoS
3.2. RoboSim
3.3. Robot One
3.4. Tactode Simulator
3.5. Pololu 3pi Simulator
3.6. EdUcational Ros rObot PlAtform—EUROPA
3.7. Autonomous Driving Simulator—ADS
3.8. Simulator with MLPNN
3.9. Drone Simulator
3.10. Simulator for PiBot
3.11. AlphaBot2 Simulator
3.12. MSRP Simulator
3.13. Khepera IV Simulator
3.14. OBR Simulator
3.15. MiniSim
3.16. SRM
3.17. LaRoCS + Unesp Simulator
3.18. Summary Table
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sapounidis, T.; Demetriadis, S. Educational robots driven by tangible programming languages: A review on the field. Adv. Intell. Syst. Comput. 2017, 560, 205–214. [Google Scholar]
- Todorovska, K.; Bogdanova, A.M. Educational robots in preschool education. In Proceedings of the CIIT 2020 17th International Conference on Informatics and Information Technologies, Krushevo, North Macedonia, 8–10 May 2020; pp. 17–19. [Google Scholar]
- Damaševičius, R.; Narbutaite, L.; Plauska, I.; Blažauskas, T. Advances in the use of educational robots in project-based teaching. TEM J. 2017, 6, 342–348. [Google Scholar] [CrossRef]
- Bungert, K.; Bruckschen, L.; Müller, K.; Bennewitz, M. Robots in Education: Influence on Learning Experience and Design Considerations; The International Academic Forum (IAFOR): London, UK, 2020. [Google Scholar]
- Sapounidis, T.; Alimisis, D. Educational Robotics for STEM: A Review of Technologies and Some Educational Considerations. In Science and Mathematics Education for 21st Century Citizens: Challenges and Ways Forward; Nova Science Publishers: Hauppauge, NY, USA, 2020; pp. 167–190. ISBN 978-1-53618-334-4. [Google Scholar]
- Robins, B.; Dautenhahn, K.; Ferrari, E.; Kronreif, G.; Prazak-Aram, B.; Marti, P.; Iacono, I.; Gelderblom, G.J.; Bernd, T.; Caprino, F.; et al. Scenarios of robot-assisted play for children with cognitive and physical disabilities. Interact. Stud. Stud. Soc. Behav. Commun. Biol. Artif. Syst. 2012, 13, 189–234. [Google Scholar] [CrossRef][Green Version]
- Conchinha, C.; Osório, P.; De Freitas, J.C. Playful learning: Educational robotics applied to students with learning disabilities. In Proceedings of the 2015 International Symposium on Computers in Education (SIIE), Setúbal, Spain, 25–27 November 2016; pp. 167–171. [Google Scholar] [CrossRef]
- Valadao, C.; Bastos, T.F.; Bortole, M.; Perim, V.; Celino, D.; Rodor, F.; Goncalves, A.; Ferasoli, H. Educational robotics as a learning aid for disabled children. In Proceedings of the 2011 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living, BRC 2011, Vitoria, Brazil, 6–8 January 2011; pp. 80–85. [Google Scholar] [CrossRef]
- Bargagna, S.; Castro, E.; Cecchi, F.; Cioni, G.; Dario, P.; Dell’Omo, M.; Di Lieto, M.C.; Inguaggiato, E.; Martinelli, A.; Pecini, C.; et al. Educational Robotics in Down Syndrome: A Feasibility Study. Technol. Knowl. Learn. 2019, 24, 315–323. [Google Scholar] [CrossRef]
- Chiara, M.; Lieto, D.; Pecini, C.; Castro, E.; Inguaggiato, E.; Cecchi, F.; Dario, P.; Sgandurra, G.; Cioni, G. Smart Learning with Educational Robotics. Smart Learn. Educ. Robot. 2019, 229–250. [Google Scholar] [CrossRef]
- González-García, S.; Rodríguez-Arce, J.; Loreto-Gómez, G.; Montaño-Serrano, V.M. Teaching forward kinematics in a robotics course using simulations: Transfer to a real-world context using LEGO mindstormsTM. Int. J. Interact. Des. Manuf. 2020, 14, 773–787. [Google Scholar] [CrossRef]
- Fonseca Ferreira, N.M.; Araujo, A.; Couceiro, M.S.; Portugal, D. Intensive summer course in robotics—Robotcraft. Appl. Comput. Informatics 2020. [Google Scholar] [CrossRef]
- RobotCraft. Available online: https://robotcraft.ingeniarius.pt/about/venue (accessed on 19 October 2020).
- Hugues, L.; Bredeche, N. Simbad: An autonomous robot simulation package for education and research. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2006; Volume 4095, pp. 831–842. [Google Scholar]
- Caccavelli, J.; Pedre, S.; De Cristóforis, P.; Katz, A.; Bendersky, D. A new programming interface for educational robotics. In Proceedings of the Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 161, pp. 68–77. [Google Scholar]
- Kortemeyer, G. Game Development for Teaching Physics. In Proceedings of the Journal of Physics: Conference Series; Institute of Physics Publishing: Johannesburg, South Africa, 2019; Volume 1286, p. 012048. [Google Scholar]
- Fernandez, B.G.; Del Toro, X.; Santofimia, M.J.; Dorado, J.; Villanueva, F.J.; Villa, D.; Lopez, J.C. Robotics vs. game-console-based platforms to learn computer architecture. IEEE Access 2020, 8, 95153–95169. [Google Scholar] [CrossRef]
- Schneider, B.; Sharma, K.; Cuendet, S.; Zufferey, G.; Dillenbourg, P.; Pea, R. Using Mobile Eye-Trackers to Unpack the Perceptual Benefits. ACM Trans. Comput. Interact. 2016, 23, 39. [Google Scholar]
- Sapounidis, T.; Demetriadis, S.; Papadopoulos, P.M.; Stamovlasis, D. Tangible and graphical programming with experienced children: A mixed methods analysis. Int. J. Child Comput. Interact. 2019, 19, 67–78. [Google Scholar] [CrossRef]
- Kurniawan, O.; Lee, N.T.S.; Datta, S.; Sockalingam, N.; Leong, P.K. Effectiveness of Physical Robot Versus Robot Simulator in Teaching Introductory Programming. In Proceedings of the 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Wollongong, Australia, 4–7 December 2019; pp. 486–493. [Google Scholar] [CrossRef]
- Lamb, R.; Lin, J.; Firestone, J.B. Virtual reality laboratories: A way forward for schools? Eurasia J. Math. Sci. Technol. Educ. 2020, 16. [Google Scholar] [CrossRef][Green Version]
- Estriegana, R.; Medina-Merodio, J.A.; Barchino, R. Student acceptance of virtual laboratory and practical work: An extension of the technology acceptance model. Comput. Educ. 2019, 135, 1–14. [Google Scholar] [CrossRef]
- Gucwa, K.J.; Cheng, H.H. Making robot challenges with virtual robots. In Proceedings of the Conference on Innovation and Technology in Computer Science Education, Bologna, Italy, 3–5 July 2017; pp. 273–278. [Google Scholar] [CrossRef]
- Michel, O. Khepera Simulator version 2.0 User Manual; French National Centre for Scientific Research: Paris, France, 1996. [Google Scholar]
- Lewis, M.; Wang, J.; Hughes, S. USARSim: Simulation for the Study of Human-Robot Interaction. J. Cogn. Eng. Decis. Mak. 2007, 1, 98–120. [Google Scholar] [CrossRef]
- TRIK Studio. Available online: https://trikset.com/en/products/trik-studio (accessed on 17 December 2020).
- MATLAB—MathWorks—MATLAB & Simulink. Available online: https://www.mathworks.com/products/matlab.html (accessed on 28 November 2020).
- Processing.org. Available online: https://processing.org/ (accessed on 8 November 2020).
- Hughes, J.; Shimizu, M.; Visser, A. A Review of Robot Rescue Simulation Platforms for Robotics Education. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Sydney, Australia, 2019; Volume 11531, pp. 86–98. [Google Scholar]
- Robot Simulator CoppeliaSim: Create, Compose, Simulate, Any Robot—Coppelia Robotics. Available online: https://www.coppeliarobotics.com/ (accessed on 18 October 2020).
- Vrochidou, E.; Manios, M.; Papakostas, G.A.; Aitsidis, C.N.; Panagiotopoulos, F. Open-Source Robotics: Investigation on Existing Platforms and Their Application in Education. In Proceedings of the 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 13–15 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154. [Google Scholar] [CrossRef][Green Version]
- Nogueira, L. Comparative Analysis between Gazebo and V-REP Robotic Simulators Lucas. In Proceedings of the 2011 International Conference on Materials for Renewable Energy & Environment, Shanghai, China, 20–22 May 2011; Volume 2, pp. 1678–1683. [Google Scholar] [CrossRef]
- Open Roberta Lab. Available online: https://lab.open-roberta.org/ (accessed on 20 November 2020).
- Learn How to Use Tinkercad|Tinkercad. Available online: https://www.tinkercad.com/learn/circuits (accessed on 20 November 2020).
- LEGO® MINDSTORMS® Education EV3—Blocks/Javascript Editor. Available online: https://makecode.mindstorms.com/ (accessed on 20 November 2020).
- Snap4Arduino 6.2. Available online: http://snap4arduino.rocks/run/ (accessed on 20 November 2020).
- OzoBlockly|Ozobot. Available online: https://ozobot.com/create/ozoblockly (accessed on 21 November 2020).
- Teixeira, J.V.; Da, M.; Hounsell, S. Educational Robotic Simulators: A Systematic Literature Review. Nuevas Ideas en Inf. Educ. TISE 2015, 20, 340–350. [Google Scholar]
- Technology, I.; Technology, I. Role and review of educational robotic platforms in preparing engineers for industry. Maejo Int. J. Sci. Technol. 2017, 11, 17–34. [Google Scholar]
- Martins, F.N.; Gomes, I.S.; Santos, C.R.F. RoSoS—A free and open-source robot soccer simulator for educational robotics. In Proceedings of the Communications in Computer and Information Science; Springer: Uberlândia, Brazil, 2016; Volume 619, pp. 87–102. [Google Scholar]
- GitHub—Ivanseidel/Robot-Soccer-Simulator: An Open-Source Soccer Simulator for Virtual Robots Tournaments. Available online: https://github.com/ivanseidel/Robot-Soccer-Simulator (accessed on 19 December 2020).
- UC Davis Center for Integrated Computing and STEM Education»RoboPlay Challenge Competition. Available online: https://c-stem.ucdavis.edu/roboplay/challenge/ (accessed on 21 November 2020).
- Cheng, H.H. Learning Robot Programming with Linkbot for the Absolute Beginner, 7th ed.; UC Davis Center for Integrated Computing and STEM Education: Davis, CA, USA, 2018. [Google Scholar]
- Silva Barbosa, A.; Barros Costa, E.; Rocha Olivi, L.; da Fonseca Braga, A. Robot One: A cross-platform and multi-language simulator developed for educational robotics. Galoa Events Proc. 2019, 1, 108240. [Google Scholar]
- GitHub—AlexanderSilvaB/Robot-One: “Robot One” is a Robotics Simulator Created by Alexander Silva Barbosa as a Graduation Work at the Federal University of Juiz de for a—UFJF. Available online: https://github.com/AlexanderSilvaB/Robot-One (accessed on 19 December 2020).
- Unity Real-Time Development Platform|3D, 2D VR & AR Engine. Available online: https://unity.com/ (accessed on 18 October 2020).
- Alves, M.; Sousa, A.; Cardoso, Â. Web Based Robotic Simulator for Tactode Tangible Block Programming System. In Proceedings of the Advances in Intelligent Systems and Computing; Springer: Porto, Portugal, 2020; Volume 1092, pp. 490–501. [Google Scholar]
- AST (Abstract Syntax Tree). AST (Abstract Syntax Tree) is a graph…|by Dinis Cruz|Medium. Available online: https://medium.com/@dinis.cruz/ast-abstract-syntax-tree-538aa146c53b (accessed on 9 November 2020).
- De, A.; Do, N. Robotic Simulator for the Tactode Tangible Block Programming System. 2019. Available online: https://repositorio-aberto.up.pt/bitstream/10216/123177/2/361366.pdf (accessed on 1 January 2021).
- De Lima, P.V.S.G.; Bezerra, M.H.R.A.; De Sousa Tavares, A.C.; Jośe Roberto Fonseca, J.; Teixeira, J.M.X.N.; Cajueiro, J.P.C.; Melo, G.N.; Henriques, D.B. Improving Early Robotics Education Using a Line-Following Robot Simulator. In Proceedings of the 15th Latin American Robotic Symposium 6th Brazilian Robotic Symposium 9th Workshop on Robotics in Education LARS/SBR/WRE 2018, Paraiba, Brazil, 6–10 November 2018; pp. 554–561. [Google Scholar] [CrossRef]
- GitHub—Maracatronics/3pisimulator: A Pololu’s 3pi Simulator Fully Compatible with Arduino’s IDE Code. Available online: https://github.com/maracatronics/3pisimulator (accessed on 19 December 2020).
- Karalekas, G.; Vologiannidis, S.; Kalomiros, J. EUROPA-a ROS-based open platform for educational robotics. In Proceedings of the 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2019, Metz, France, 18–21 September 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; Volume 1, pp. 452–457. [Google Scholar]
- Buy a Raspberry Pi 3 Model B+—Raspberry Pi. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (accessed on 19 October 2020).
- ROS/Introduction—ROS Wiki. Available online: http://wiki.ros.org/ROS/Introduction (accessed on 18 October 2020).
- Costa, V.; Cebola, P.; Tavares, P.; Morais, V.; Sousa, A. Teaching Mobile Robotics Using the Autonomous Driving Simulator of the Portuguese Robotics Open. In Proceedings of the Advances in Intelligent Systems and Computing; Springer: Porto, Portugal, 2020; Volume 1092, pp. 455–466. [Google Scholar]
- Portuguese Robotics Open—INESC TEC. Available online: https://www.inesctec.pt/en/events/portuguese-robotics-open#about (accessed on 21 November 2020).
- GitHub—ee09115/conde_simulator: Autonomous Driving Simulator for the Portuguese Robotics Open. Available online: https://github.com/ee09115/conde_simulator (accessed on 19 December 2020).
- Bocca, L.F.; Leite, J.B.; Mantovani, S.C.A. Simulator of mobile robots controlled by Artificial Neural Networks to learning courses in robotics. In Proceedings of the 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE), Porto, Portugal, 8–10 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Bermúdez, A.; Casado, R.; Fernández, G.; Guijarro, M.; Olivas, P. Drone challenge: A platform for promoting programming and robotics skills in K-12 education. Int. J. Adv. Robot. Syst. 2019, 16, 1–19. [Google Scholar] [CrossRef]
- Drone Challenge—Escuela Superior de Ingeniería Informática. Available online: http://blog.uclm.es/esiidronechallenge/ (accessed on 21 November 2020).
- Simulink—Simulation and Model-Based Design—MATLAB & Simulink. Available online: https://www.mathworks.com/products/simulink.html (accessed on 19 October 2020).
- Vega, J.; Cañas, J.M. PiBot: An open low-cost robotic platform with camera for STEM education. Electronics 2018, 7, 430. [Google Scholar] [CrossRef][Green Version]
- Base/src/drivers/gazebo/plugins/pibot at Master JdeRobot/base GitHub. Available online: https://github.com/JdeRobot/base/tree/master/src/drivers/gazebo/plugins/pibot (accessed on 19 December 2020).
- Maloney, J.; Resnick, M.; Rusk, N.; Silverman, B.; Eastmond, E. The scratch programming language and environment. ACM Trans. Comput. Educ. 2010, 10, 1–15. [Google Scholar] [CrossRef]
- Rafael, A.; Santos, C.; Duque, D.; Fernandes, S.; Sousa, A.; Reis, L.P. Development of an AlphaBot2 Simulator for RPi Camera and Infrared Sensors. In Proceedings of the Advances in Intelligent Systems and Computing; Springer: Porto, Portugal, 2020; Volume 1092, pp. 502–514. [Google Scholar]
- GitHub—Ssscassio/alphabot2-simulator: Alphabot2 simulator using ROS and Gazebo Simulator. Available online: https://github.com/ssscassio/alphabot2-simulator (accessed on 19 December 2020).
- Papelis, Y. Experimental Validation of a Ground Robot Simulation Model During line Following Task Experimental Validation of a Ground Robot Simulation Model during line Following Task; MODSIM: Norfolk, VA, USA, 2017; pp. 1–11. [Google Scholar]
- Available online: https://www.parallax.com/sites/default/files/downloads/28985-Ping-Kit-for-Stingray-Documentation.pdf (accessed on 18 October 2020).
- Peralta, E.; Fabregas, E.; Farias, G.; Vargas, H.; Dormido, S. Development of a Khepera IV Library for the V-REP Simulator. IFAC PapersOnLine 2016, 49, 81–86. [Google Scholar] [CrossRef]
- Inventor|Mechanical Design & 3D CAD Software|Autodesk. Available online: https://www.autodesk.com/products/inventor/overview?plc=INVPROSA&term=1-YEAR&support=ADVANCED&quantity=1 (accessed on 19 October 2020).
- Fabro, J.A.; Junior, E.T.P.; Dias, A.F.G.P.; Skora, L.E. Programming teaching using flowcharts in a simulated environment focused on introducing practical OBR. In Proceedings of the 2019 Latin American Robotic Symposium 2019 Brazilian Robotic Symposium 2019 Workshop on Robotics in Education LARS/SBR/WRE, Rio Grande, Brazil, 22–26 October 2019; pp. 453–458. [Google Scholar] [CrossRef]
- OBR—Olimpíada Brasileira de Robótica 2020. Available online: http://www.obr.org.br/ (accessed on 21 November 2020).
- Aroca, R.V.; Pazelli, T.F.; Tonidandel, F.; Filho, A.C.A.; Simes, A.S.; Colombini, E.L.; Burlamaqui, A.M.F.; Goncalves, L.M.G. Brazilian Robotics Olympiad: A successful paradigm for science and technology dissemination. Int. J. Adv. Robot. Syst. 2016, 13, 1–8. [Google Scholar] [CrossRef][Green Version]
- Rahul, R.; Whitchurch, A.; Rao, M. An open source graphical robot programming environment in introductory programming curriculum for undergraduates. In Proceedings of the 2014 IEEE International Conference on MOOC, Innovation and Technology in Education (MITE 2014), Patiala, India, 19–20 December 2014; pp. 96–100. [Google Scholar] [CrossRef]
- Minibloq: Download. Available online: http://blog.minibloq.org/p/download.html (accessed on 19 December 2020).
- Barbosa, A.S.; De Oliveira, A.P.; Silva, A.R.; Boas, A.S.C.A.V.; Boas, E.R.V.; Felipe De Almeida, F.D.S.A.; E Souza, J.V.A.; Boas, M.A.V. Design and development of a manipulator for educational Robotics. In Proceedings of the 15th Latin American Robotic Symposium 6th Brazilian Robotic Symposium 9th Workshop on Robotics in Education LARS/SBR/WRE 2018, Paraiba, Brazil, 6–10 November 2018; pp. 522–527. [Google Scholar] [CrossRef]
- Available online: http://sistemaolimpo.org/midias/uploads/00e350e39d80891c6e832bb76eda42b8.pdf (accessed on 31 December 2020).
- Portal Unicamp|Unicamp. Available online: https://www.unicamp.br/unicamp/ (accessed on 20 December 2020).
- Unesp—Universidade Estadual Paulista—Portal. Available online: https://www2.unesp.br/ (accessed on 20 December 2020).
- Parrot Developers. Available online: https://developer.parrot.com/ (accessed on 20 December 2020).
Keywords | Inclusion Criteria | Exclusion Criteria |
---|---|---|
“Simulator for educational robotics” | Papers published between 2013 and 2020 | Papers published before 2013 |
“Educational robotics” and “simulator developed” | Papers published between 2013 and 2020 | Papers published before 2013 |
“Technology for education” and “robotic simulator” | All items were retrieved | No exclusion criteria |
“Robot challenges” and “simulator” | Papers published between 2013 and 2020 | Papers published before 2013 |
“Autonomous driving”, “educational robotics” and “simulator” | Papers published between 2013 and 2020 | Papers published before 2013 |
Name | Develop Year | Type of Robot | Users’ Age | Programming Language | Scope | Used | User’s Level | Based on a Real Robot | Development Platform | Operating System |
---|---|---|---|---|---|---|---|---|---|---|
RoSoS * | 2016 | Wheeled | 6~7 | Processing | Competition | 1, 2 | Beginner | No | Processing | W, L, M |
RoboSim | 2017 | Modular | 10~18 | C/C++ | Competition | 1 | Intermediate | Yes | - | W, M |
Robot One * | 2019 | Multiple | >18 | Many | Education | 2 | Expert | No | Unity3D | W, L |
Tactode | 2019 | Multiple | 6~11 | Puzzle/Tangible | Education | - | Beginner | No | - | n/s |
Pololu * | 2018 | Wheeled | n/s | C/C++ | Education | 2 | Beginner | Yes | - | W |
EUROPA | 2019 | Wheeled | >12 | Python | Education | 3 | Intermediate | Yes | Gazebo | n/s |
ADS * | 2019 | Wheeled | >18 | n/s | Competition | 1, 2 | Intermediate | Yes | Gazebo | L |
MLPNN | 2020 | Wheeled | >18 | MATLAB | Research | - | Expert | No | MATLAB | W, L |
Drone Simulator | 2019 | Drone | >12 | MATLAB | Research | 1, 3 | Expert | No | MATLAB/Gazebo | W, L |
PiBot * | 2018 | Wheeled | >12 | Python | Education | 4 | Intermediate | Yes | Gazebo | W, L, M |
AlphaBot2 * | 2019 | Wheeled | >12 | n/s | Research | - | Intermediate | Yes | Gazebo | W, L |
MSRP | 2017 | Wheeled | >18 | n/s | Education | - | Expert | Yes | Unity3D | n/s |
KheperaIV | 2016 | Wheeled | n/s | C/C++ | Education | - | Intermediate | Yes | V-REP | n/s |
OBR simulator | 2018 | Wheeled | 6~18 | Flowchart | Competition | 1, 5 | Intermediate | Yes | V-REP | W, L |
MiniSim * | 2014 | Wheeled | 6~10 | Python/Block | Education | - | Beginner | No | - | W, L |
SRM | 2018 | Arm | >18 | MATLAB | Education | 2 | Expert | No | MATLAB/V-REP | W, L |
LaRoCS + Unesp | 2018 | Drone | n/s | n/s | Competition | - | Intermediate | Yes | V-REP | W, L, M |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tselegkaridis, S.; Sapounidis, T. Simulators in Educational Robotics: A Review. Educ. Sci. 2021, 11, 11. https://doi.org/10.3390/educsci11010011
Tselegkaridis S, Sapounidis T. Simulators in Educational Robotics: A Review. Education Sciences. 2021; 11(1):11. https://doi.org/10.3390/educsci11010011
Chicago/Turabian StyleTselegkaridis, Sokratis, and Theodosios Sapounidis. 2021. "Simulators in Educational Robotics: A Review" Education Sciences 11, no. 1: 11. https://doi.org/10.3390/educsci11010011