Student Participation in Online ContentRelated Discussion and Its Relation to Students’ Background Knowledge
Abstract
:1. Introduction
1.1. Analysing Online Discussion
1.2. Research Questions
 What are the network role counts for students in online discussions of a blended university course?
 What are the structural similarities between each student’s background knowledge and the aggregated body of knowledge when collected and analyzed with the new method introduced in this paper?
 Is there a significant relationship between the structural measures of background knowledge and online discussions in a blended university course?
2. Materials and Methods
Isaac Newton [Laws of Mechanics, Falling Apple Story, Robert Hooke, Law of Gravity]
Isaac Newton was an English scholar and philosopher. He wrote Philosophiae Naturalis Principia Mathematica, where he published three laws of mechanics—that is, Newton’s laws of motion. The first law was the law of inertia, the second law was the basic law of dynamics, and the third law was force and counterforce. In the book, the general law of gravity is also presented. It is believed that Isaac Newton was inspired to investigate gravity when he saw an apple in the garden falling to the ground. He was also in correspondence with Robert Hooke, from whom Newton heard the hypothesis of the sun’s attraction, which is inversely proportional to the square of the distance. This led Newton to investigate the matter, and eventually got his theory published.
2.1. Role Analysis of Online Discussion
2.2. Structural Analysis of Background Knowledge
2.3. Correlation Analysis
3. Results
3.1. Roles
3.2. Similarities
3.3. Correlation of Similarities and Roles
4. Discussion
4.1. Role Analysis
4.2. Similarity Analysis
4.3. Correlation Analysis
4.4. Limitations and Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. The Guiding Questions Used During the Online Discussions
1st Period 
Time span: 1572–1704 Theme: Scientific revolution 
Article: L. Rosenfeld (1965), Newton and the law of gravitation [50] 
Guiding questions:

2nd Period 
Time span: 1704–1789 Theme: Enlightenment and the science of enlightenment 
Article: E. McMullin (2002), The Origins of the Field Concept in Physics [51] 
Guiding questions:

3rd Period 
Time span: 1789–1848 Industrialisation and liberal educational ideal 
Article: D. Sherry (2011), Thermoscopes, thermometers, and the foundations of measurement [52] 
Guiding questions:

4th Period 
Time span: 1848–1900 Theme: Technologizing society and its science 
Article: O. Darrigol (1999), Baconian Bees in the Electromagnetic Fields: ExperimenterTheorists In NineteenthCentury Electrodynamics [53] 
Guiding questions:

5th Period 
Time span: 1900–1914 Theme: Modern science and technologicalization I 
Article: H. Kragh (2011), Resisting the Bohr Atom: The Early British Opposition [54] 
Guiding questions:

6th Period 
Time span: 1914–1928 Theme: Modern science and technologicalization II 
Article: K. Camilleri (2006), Heisenberg and the waveparticle duality [55] 
Guiding questions:

References
 Dillenbourg, P.; Eurelings, A.; Hakkarainen, K. Introduction. In European Perspectives on ComputerSupported Collaborative Learning; Dillenbourg, P., Eurelings, A., Hakkarainen, K., Eds.; University of Maastricht: Maastricht, The Netherlands, 2001. [Google Scholar]
 Stahl, G.; Koschmann, T.; Daniel, S. ComputerSupported Collaborative Learning. In The Cambridge Handbook of the Learning Sciences; Sawyer, R.K., Ed.; Cambridge University Press: Oxford, UK, 2014; Chapter 24; pp. 479–500. [Google Scholar]
 Scardamalia, M.; Bereiter, C. Computer Support for KnowledgeBuilding Communities. J. Learn. Sci. 1994, 3, 265–283. [Google Scholar] [CrossRef]
 Scardamalia, M.; Bereiter, C. Knowledge Building and Knowledge Creation. In The Cambridge Handbook of the Learning Sciences; Sawyer, R.K., Ed.; Cambridge University Press: Oxford, UK, 2014; Chapter 20; pp. 397–417. [Google Scholar]
 Stahl, G.K. Group Cognition: Computer Support for Building Collaborative Knowledge; Acting with Technology; MIT Press: Cambridge, MA, USA, 2006; p. 510. [Google Scholar]
 PenaShaffa, J.B.; Nicholls, C. Analyzing student interactions and meaning construction in computer bulletin board discussions. Comput. Educ. 2004, 42, 243–265. [Google Scholar] [CrossRef]
 Martínez, A.; Dimitriadis, Y.; GómezSánchez, E.; RubiaAvi, B.; JorrínAbellán, I.; Marcos, J.A. Studying participation networks in collaboration using mixed methods. Int. J. Comput. Support. Collab. Learn. 2006, 1, 383–408. [Google Scholar] [CrossRef]
 Schellens, T.; Valcke, M. Collaborative learning in asynchronous discussion groups: What about the impact on cognitive processing? Comput. Hum. Behav. 2005, 21, 957–975. [Google Scholar] [CrossRef]
 Sinha, S.; Rogat, T.K.; AdamsWiggins, K.R.; HmeloSilver, C.E. Collaborative group engagement in a computersupported inquiry learning environment. Int. J. Comput. Support. Collab. Learn. 2015, 10, 273–307. [Google Scholar] [CrossRef]
 Järvelä, S.; Malmberg, J.; Koivuniemi, M. Recognizing socially shared regulation by using the temporal sequences of online chat and logs in CSCL. Learn. Instruct. 2016, 42, 1–11. [Google Scholar] [CrossRef]
 Järvelä, S.; Järvenoja, H.; Malmberg, J. Capturing the dynamic and cyclical nature of regulation: Methodological Progress in understanding socially shared regulation in learning. Int. J. Comput. Support. Collab. Learn. 2019, 14, 425–441. [Google Scholar] [CrossRef][Green Version]
 Noroozi, O.; Teasley, S.D.; Biemans, H.J.; Weinberger, A.; Mulder, M. Facilitating learning in multidisciplinary groups with transactive CSCL scripts. Int. J. Comput. Support. Collab. Learn. 2013, 8, 189–223. [Google Scholar] [CrossRef]
 Verdú, N.; Sanuy, J. The role of scaffolding in CSCL in general and in specific environments. J. Comput. Assist. Learn. 2014, 30, 337–348. [Google Scholar] [CrossRef][Green Version]
 Lucas, M.; Gunawardena, C.; Moreira, A. Assessing social construction of knowledge online: A critique of the interaction analysis model. Comput. Hum. Behav. 2014, 30, 574–582. [Google Scholar] [CrossRef]
 Jeong, A.C. The Sequential Analysis of Group Interaction and Critical Thinking in Online. Am. J. Distance Educ. 2003, 17, 25–43. [Google Scholar] [CrossRef]
 Heo, H.; Lim, K.Y.; Kim, Y. Exploratory study on the patterns of online interaction and knowledge coconstruction in projectbased learning. Comput. Educ. 2010, 55, 1383–1392. [Google Scholar] [CrossRef]
 Wecker, C.; Fischer, F. Where is the evidence? A metaanalysis on the role of argumentation for the acquisition of domainspecific knowledge in computersupported collaborative learning. Comput. Educ. 2014, 75, 218–228. [Google Scholar] [CrossRef]
 Jeong, H.; HmeloSilver, C.E.; Jo, K. Ten years of ComputerSupported Collaborative Learning: A metaanalysis of CSCL in STEM education during 2005–2014. Educ. Res. Rev. 2019, 28, 100284. [Google Scholar] [CrossRef]
 Schellens, T.; Valcke, M. Fostering knowledge construction in university students through asynchronous discussion groups. Comput. Educ. 2006, 46, 349–370. [Google Scholar] [CrossRef]
 Koponen, I.T.; Nousiainen, M. An agentbased model of discourse pattern formation in small groups of competing and cooperating members. J. Artif. Soc. Soc. Simul. 2018, 21. [Google Scholar] [CrossRef][Green Version]
 Wang, Q.; Woo, H.L.; Zhao, J. Investigating critical thinking and knowledge construction in an interactive learning environment. Interact. Learn. Environ. 2009, 17, 95–104. [Google Scholar] [CrossRef]
 Boelens, R.; De Wever, B.; Voet, M. Four key challenges to the design of blended learning: A systematic literature review. Educ. Res. Rev. 2017, 22, 1–18. [Google Scholar] [CrossRef][Green Version]
 Eryilmaz, E.; van der Pol, J.; Ryan, T.; Clark, P.M.; Mary, J. Enhancing student knowledge acquisition from online learning conversations. Int. J. Comput. Support. Collab. Learn. 2013, 8, 113–144. [Google Scholar] [CrossRef]
 Engelmann, T.; Hesse, F.W. How digital concept maps about the collaborators’ knowledge and information influence computersupported collaborative problem solving. Int. J. Comput. Support. Collab. Learn. 2010, 5, 299–319. [Google Scholar] [CrossRef]
 Arvaja, M. Contextual perspective in analysing collaborative knowledge construction of two small groups in webbased discussion. Int. J. Comput. Support. Collab. Learn. 2007, 2, 133–158. [Google Scholar] [CrossRef]
 Marzano, R.J. Building Background Knowledge for Academic Achievement: Research on What Works in Schools; Association for Supervision and Curriculum Development: Alexandria, VA, USA, 2004; p. 217. [Google Scholar]
 Zambrano R., J.; Kirschner, F.; Sweller, J.; Kirschner, P.A. Effects of prior knowledge on collaborative and individual learning. Learn. Instruct. 2019, 63, 101214. [Google Scholar] [CrossRef]
 De Wever, B.; Schellens, T.; Valcke, M.; Van Keer, H. Content analysis schemes to analyze transcripts of online asynchronous discussion groups: A review. Comput. Educ. 2006, 46, 6–28. [Google Scholar] [CrossRef]
 Puntambekar, S.; Erkens, G.; HmeloSeilver, C. Introduction. In Analyzing Interactions in CSCSL: Methods, Approaches and Issues; Puntambekar, S., Erkens, G., HmeloSeilver, C., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
 Wasserman, S. Social Network Analysis: Methods and Applications; Structural Analysis in the Social Sciences; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
 De Laat, M.; Lally, V.; Lipponen, L.; Simons, R.J. Investigating patterns of interaction in networked learning and computersupported collaborative learning: A role for Social Network Analysis. Int. J. Comput. Support. Collab. Learn. 2007, 2, 87–103. [Google Scholar] [CrossRef]
 Smith Risser, H.; Bottoms, S.A. “Newbies” and “Celebrities”: Detecting social roles in an online network of teachers via participation patterns. Int. J. Comput. Support. Collab. Learn. 2014, 9, 433–450. [Google Scholar] [CrossRef]
 Dado, M.; Bodemer, D. A review of methodological applications of social network analysis in computersupported collaborative learning. Educ. Res. Rev. 2017, 22, 159–180. [Google Scholar] [CrossRef]
 Barabási, A. The network takeover. Nat. Phys. 2011, 8, 14–16. [Google Scholar] [CrossRef]
 Knoke, D.; Yang, S. Social Network Analysis; SAGE Publications, Inc.: Los Angeles, CA, USA; London, UK, 2008. [Google Scholar]
 Cesareni, D.; Cacciamani, S.; Fujita, N. Role taking and knowledge building in a blended university course. Int. J. Comput. Support. Collab. Learn. 2016, 11, 9–39. [Google Scholar] [CrossRef][Green Version]
 Itzkovitz, S.; Milo, R.; Kashtan, N.; Ziv, G.; Alon, U. Subgraphs in random networks. Phys. Rev. E 2003, 68, 026127. [Google Scholar] [CrossRef][Green Version]
 Milo, R.; ShenOrr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network motifs: Simple building blocks of complex networks. Science 2002, 298, 824–827. [Google Scholar] [CrossRef][Green Version]
 McDonnell, M.D.; Yaveroğlu, Ö.N.; Schmerl, B.A.; Iannella, N.; Ward, L.M. MotifRoleFingerprints: The Building Blocks of Motifs, ClusteringCoefficients and Transitivities in Directed Networks. PLoS ONE 2014, 9, e114503. [Google Scholar] [CrossRef] [PubMed][Green Version]
 Estrada, E. The Structure of Complex Networks: Theory and Applications; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
 Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
 Jaccard, P. The Distribution of the Flora in the Alpine Zone. 1. N. Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
 Koponen, I.T.; Nousiainen, M. Formation of reciprocal appreciation patterns in small groups: An agentbased model. Complex Adapt. Syst. Model. 2016, 4, 24. [Google Scholar] [CrossRef][Green Version]
 Hiltz, S.R.; Goldman, R. What Are Asynchronous Learning Networks. In Learning Together Online, Research in Asynchronous Learning Networks; Hiltz, S.R., Goldman, R., Eds.; Lawrene Erlbaum Associates: Mahwah, NJ, USA, 2005. [Google Scholar]
 Wise, A.F.; Hausknecht, S.N.; Zhao, Y. Attending to others’ posts in asynchronous discussions: Learners’ online “listening” and its relationship to speaking. Int. J. Comput. Support. Collab. Learn. 2014, 9, 185–209. [Google Scholar] [CrossRef]
 Lommi, H.; Koponen, I.T. Network cartography of university students’ knowledge landscapes about the history of science: Landmarks and thematic communities. Appl. Netw. Sci. 2019, 4. [Google Scholar] [CrossRef]
 De Domenico, M.; Biamonte, J. Spectral Entropies as InformationTheoretic Tools for Complex Network Comparison. Phys. Rev. X 2016, 6, 041062. [Google Scholar] [CrossRef][Green Version]
 Holme, P.; Saramäki, J. Temporal networks. Phys. Rep. 2012, 519, 97–125. [Google Scholar] [CrossRef][Green Version]
 Kovanen, L.; Karsai, M.; Kaski, K.; Kertész, J.; Saramäki, J. Temporal motifs. In Temporal Networks; Springer: Berlin/Heidelberg, Germany, 2013; pp. 119–133. [Google Scholar]
 Rosenfeld, L. Newton and the Law of Gravitation. Arch. Hist. Exact Sci. 1965, 2, 365–386. [Google Scholar] [CrossRef]
 McMullin, E. The Origins of the Field Concept in Physics. Phys. Perspect. 2002, 4, 13–39. [Google Scholar] [CrossRef]
 Sherry, D. Thermoscopes, thermometers, and the foundations of measurement. Stud. Hist. Philos. Sci. Part A 2011, 42, 509–524. [Google Scholar] [CrossRef]
 Darrigol, O. Baconian bees in the electromagnetic fields: Experimentertheorists in nineteenthcentury electrodynamics. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 1999, 30, 307–345. [Google Scholar] [CrossRef]
 Kragh, H. Resisting the Bohr Atom: The Early British Opposition. Phys. Perspect. 2011, 13, 4–35. [Google Scholar] [CrossRef]
 Camilleri, K. Heisenberg and the waveparticle duality. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2006, 37, 298–315. [Google Scholar] [CrossRef]
Period  Time Span  Theme 

1st  1572–1704  Scientific revolution 
2nd  1704–1789  Enlightenment and the science of enlightenment 
3rd  1789–1848  Industrialization and liberal educational ideal 
4th  1848–1900  Technologizing society and its science 
5th  1900–1914  Modern science and technologicalization I 
6th  1914–1928  Modern science and technologicalization II 
Role  MotifRoles  

r = 1 m = 1  r = 2 m = 2  r = 3 m = 3  
1sink  ${A}^{\top}(AI)\mathbf{1}$  $(({A}^{\top}{)}^{2}R)\mathbf{1}$  $({A}^{\top}RR\circ A)\mathbf{1}$  
r = 4 m = 2  r = 5 m = 4  r = 6 m = 7  
1source  $({A}^{2}R)\mathbf{1}$  $A({A}^{\top}I)\mathbf{1}$  $(ARA\circ R)\mathbf{1}$  
r = 7 m = 3  r = 8 m = 7  r = 9 m = 8  
1recip  $(RAR\circ A)\mathbf{1}$  $(R{A}^{\top}R\circ A)\mathbf{1}$  $R(RI)\mathbf{1}$  
r = 10 m = 4  r = 11 m = 5  r = 12 m = 6  
2sink  $\frac{1}{2}{A}^{\top}\mathbf{1}\circ ({A}^{\top}I)\mathbf{1}$  $(({A}^{\top}A)\circ {A}^{\top})\mathbf{1}$  $\frac{1}{2}(({A}^{\top}R)\circ ({A}^{\top})\mathbf{1}$  
r = 13 m = 1  r = 14 m = 5  r = 15 m = 11  
2source  $\frac{1}{2}A\mathbf{1}\circ (AI)\mathbf{1}$  $({A}^{2}\circ A)\mathbf{1}$  $\frac{1}{2}((AR)\circ A)\mathbf{1}$  
r = 16 m = 2  r = 17 m = 5  r = 18 m = 9  r = 19 m = 10  
relay  ${A}^{\top}\mathbf{1}\circ A\mathbf{1}R\mathbf{1}$  $((A{A}^{\top})\circ {A}^{\top})\mathbf{1}$  $({A}^{2}\circ {A}^{\top})\mathbf{1}$  $((AR)\circ {A}^{\top})\mathbf{1}$  
r = 20 m = 7  r = 21 m = 10  r = 22 m = 11  r = 23 m = 12  
relay & sink  $(R\mathbf{1})\circ (({A}^{\top}I)\mathbf{1})$  $((RA)\circ {A}^{\top})\mathbf{1}$  $(({A}^{\top}A)\circ R)\mathbf{1}$  $({R}^{2}\circ {A}^{\top})\mathbf{1}$  
r = 24 m = 3  r = 25 m = 6  r = 26 m = 10  r = 27 m = 12  
relay & source  $(R\mathbf{1})\circ ((AI)\mathbf{1})$  $((RA)\circ A)\mathbf{1}$  $(({A}^{2}\circ R))\mathbf{1}$  $((AR)\circ R)\mathbf{1}$  
r = 28 m = 8  r = 29 m = 12  r = 30 m = 13  
all  $\frac{1}{2}R\mathbf{1}\circ ((RI)\mathbf{1})$  $((RA)\circ R)\mathbf{1}$  $\frac{1}{2}({R}^{2}\circ R)\mathbf{1}$ 
Student  1st Period  2nd Period  3rd Period  4th Period  5th Period  6th Period 

A  1source  1recip  1sink  1sink  1source  1sink 
B  2sink  1source  all  2source  all  all 
C  2sink  all  all  all  2sink  2source 
D  2source  1recip  1sink  1sink  1recip  1recip 
E  1source  1recip  1recip  2source  
F  2sink  1sink  1source  1recip  1recip  
G  1sink  1recip  1recip  all  
H  1recip  all  1source  all  2source  2source 
I  all  1source  
J  1recip  1recip  
K  1sink  1recip  1sink 
Kendall$\mathit{\tau}$  Spearman r  

Role  p1  p2  p3  p4  p5  p6  p1  p2  p3  p4  p5  p6 
1  −0.31  −0.57 *  0.09  −0.32  −0.36  0.12  −0.43  −0.75 *  0.21  −0.56  −0.62  0.22 
2  −0.59 *  −0.46  0.63 *  0.32  −0.21  −0.53  −0.74 *  −0.58  0.76 *  0.36  −0.21  −0.67 
3  −0.44  −0.57 *  0.26  −0.32  −0.54  −0.84  −0.67  −0.75 *  0.45  −0.56  −0.68  −0.89 * 
4  −0.31  −0.55 *  0.20  −0.22  0.15  0.32  −0.48  −0.70 *  0.43  −0.37  0.15  0.35 
5  −0.57 *  −0.49  0.51  0.32  0.30  −0.32  −0.76 *  −0.62  0.67 *  0.36  0.52  −0.36 
6  −0.44  −0.51  0.23  −0.11  0.50  0.11  −0.68 *  −0.65  0.44  −0.15  0.59  −0.05 
7  −0.33  −0.55 *  0.26  −0.22  0.30  −0.12  −0.62  −0.70 *  0.45  −0.37  0.33  −0.22 
8  −0.54 *  −0.51  0.29  −0.11  0.45  0.11  −0.73 *  −0.65  0.47  −0.15  0.58  −0.05 
9  −0.42  −0.55 *  0.26  −0.22  0.26  −0.12  −0.66  −0.70 *  0.45  −0.37  0.34  −0.22 
Kendall$\mathit{\tau}$  Spearman r  

Role  p1  p2  p3  p4  p5  p6  p1  p2  p3  p4  p5  p6 
1  −0.11  −0.44  −0.19  −0.18  −0.45  −0.71  −0.18  −0.64  −0.13  −0.32  −0.63  −0.77 
2  −0.47  −0.30  0.52  0.91  −0.22  −0.18  −0.63  −0.40  0.65  0.95  −0.26  −0.32 
3  −0.29  −0.44  0.04  −0.18  −0.77  −0.71  −0.52  −0.64  0.21  −0.32  −0.87  −0.77 
4  −0.11  −0.42  −0.04  0.00  0.36  0.71  −0.25  −0.57  0.18  0.00  0.45  0.77 
5  −0.44  −0.34  0.37  0.91  0.60  0.18  −0.66  −0.45  0.53  0.95  0.78  0.32 
6  −0.29  −0.37  0.00  0.18  0.89 *  0.91  −0.55  −0.49  0.19  0.32  0.95 *  0.95 
7  −0.14  −0.42  0.04  0.00  0.60  0.71  −0.45  −0.57  0.21  0.00  0.67  0.77 
8  −0.40  −0.37  0.07  0.18  0.84  0.91  −0.61  −0.49  0.24  0.32  0.89 *  0.95 
9  −0.25  −0.42  0.04  0.00  0.63  0.71  −0.51  −0.57  0.21  0.00  0.71  0.77 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkkila, M.; Lommi, H. Student Participation in Online ContentRelated Discussion and Its Relation to Students’ Background Knowledge. Educ. Sci. 2020, 10, 106. https://doi.org/10.3390/educsci10040106
Turkkila M, Lommi H. Student Participation in Online ContentRelated Discussion and Its Relation to Students’ Background Knowledge. Education Sciences. 2020; 10(4):106. https://doi.org/10.3390/educsci10040106
Chicago/Turabian StyleTurkkila, Miikka, and Henri Lommi. 2020. "Student Participation in Online ContentRelated Discussion and Its Relation to Students’ Background Knowledge" Education Sciences 10, no. 4: 106. https://doi.org/10.3390/educsci10040106