An Augmented Reality-Based Mobile Application Facilitates the Learning about the Spinal Cord
Abstract
:1. Introduction
2. Preliminaries
2.1. Motivation
2.2. Related Work
2.3. Discussion and Research Questions
- (RQ1) Can NitLabEduca improve the teaching–learning process of the spinal cord?
- (RQ2) What is the usability performance of NitLabEduca?
- (RQ3) What is the learning ability factor of NitLabEduca?
3. Methodology
3.1. Research Characterization
3.2. Sampling
3.3. Experimental Procedure
3.4. The Mobile Educational Application NitLabEduca
3.4.1. Implementation Aspects
3.4.2. Features
3.5. Statistical Analysis
4. Results
4.1. Number of Hits
4.2. NitLabEduca Usability
4.3. Complementary Questionnaire
5. Discussion
5.1. Main Findings and Theoretical Discussion
5.2. Limitations and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
UFPI | Federal University of Piauí |
PDAs | Personal Digital Assistants |
SUS | System Usability Scale |
References
- Teri, S.; Acai, A.; Griffith, D.; Mahmoud, Q.; Ma, D.W.L.; Newton, G. Student use and pedagogical impact of a mobile learning application. Biochem. Mol. Biol. Educ. 2014, 42, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.T.; Chang, K.E.; Liu, T.C. The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Comput. Educ. 2016, 94, 252–275. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.K.S. A survey on the use of mobile devices for learning purposes. Int. J. Innov. Learn. 2014, 16, 192–202. [Google Scholar] [CrossRef]
- Seprilia, D.; Handayani, P.; Pinem, A. User Acceptance Factors Affecting the Usage of Mobile Learning in Enriching Outside Classroom Learning at High School Level; IEEE: Jayapura, Indonesia, 2017; Volume 2018, pp. 1–6. [Google Scholar] [CrossRef]
- Dascalu, M.I.; Moldoveanu, A.; Shudayfat, E.A. Mixed reality to support new learning paradigms. In Proceedings of the 18th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 17–19 October 2014; pp. 692–697. [Google Scholar] [CrossRef]
- Weng, C.; Rathinasabapathi, A.; Weng, A.; Zagita, C. Mixed Reality in Science Education as a Learning Support: A Revitalized Science Book. J. Educ. Comput. Res. 2018, 57, 1–31. [Google Scholar] [CrossRef]
- Dumančić, M.; Matijević, M.; Topolovčan, T. How Mobile Learning Can Change Education. Online Int. Interdiscip. Res. J. 2016, 6, 31–40. [Google Scholar] [CrossRef]
- Cook, C.W.; Sonnenberg, C. Technology Additionally, Online Education: Models For Change. Contemp. Issues Educ. Res. 2014, 7, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Manrique-Juan, C.; Grostieta-Dominguez, Z.; Rojas-Ruiz, R.; Alencastre-Miranda, M.; Muñoz-Gómez, L.; Silva-Muñoz, C. A Portable Augmented-Reality Anatomy Learning System Using a Depth Camera in Real Time. Am. Biol. Teach. 2017, 79, 176–183. [Google Scholar] [CrossRef]
- Cheng, K.; Mukherjee, P.; Curthoys, I. Development and use of augmented reality and 3D printing in consulting patient with complex skull base cholesteatoma. Virtual Phys. Prototyp. 2017, 12, 241–248. [Google Scholar] [CrossRef]
- Chen, L.; Day, T.W.; Tang, W.; John, N.W. Recent Developments and Future Challenges in Medical Mixed Reality. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nantes, France, 9–13 October 2017; pp. 123–135. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M.; García, S.; Barcia, J.M. ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy. J. Sci. Educ. Technol. 2015, 24, 119–124. [Google Scholar] [CrossRef]
- Touel, S.; Mekkadem, M.; Kenoui, M.; Benbelkacem, S. Collocated Learning Experience within Collaborative Augmented Environment (Anatomy Course); IEEE: Boumerdes, Algeria, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Azer, S.A.; Azer, S. 3D Anatomy Models and Impact on Learning: A Review of the Quality of the Literature. Health Prof. Educ. 2016, 2, 80–98. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, Z.; Batdi, V. A meta-analytic and thematic comparative analysis of the integration of augmented reality applications into education. Egit. Ve Bilim 2016, 41, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Juan, M.; Alexandrescu, L.; Folguera, F.; Garcia-Garcia, I. A Mobile Augmented Reality System for the Learning of Dental Morphology. Digit. Educ. Rev. 2016, 30, 234–247. [Google Scholar]
- Fasel, J.; Aguiar, D.; Kiss-Bodolay, D.; Montet, X.; Kalangos, A.; Stimec, B.; Ratib, O. Adapting anatomy teaching to surgical trends: A combination of classical dissection, medical imaging, and 3D-printing technologies. Surg. Radiol. Anat. 2016, 38, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Küçük, S.; Kapakin, S.; Göktaş, Y. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anat. Sci. Educ. 2016, 9, 411–421. [Google Scholar] [CrossRef]
- Craig, A. Understanding Augmented Reality: Concepts and Applications; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Yu, J.; Fang, L.; Lu, C. Key technology and application research on mobile augmented reality. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 547–550. [Google Scholar] [CrossRef]
- Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2020, 102168. [CrossRef]
- Birt, J.; Stromberga, Z.; Cowling, M.; Moro, C. Mobile Mixed Reality for Experiential Learning and Simulation in Medical and Health Sciences Education. Information 2018, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Vávra, P.; Roman, J.; Zonča, P.; Ihnát, P.; Němec, M.; Kumar, J.; Habib, N.; El-Gendi, A. Recent Development of Augmented Reality in Surgery: A Review. J. Healthc. Eng. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Wang, S.; Parsons, M.; Stone-McLean, J.; Rogers, P.; Boyd, S.; Hoover, K.; Meruvia-Pastor, O.; Gong, M.; Smith, A. Augmented Reality as a Telemedicine Platform for Remote Procedural Training. Sensors 2017, 17, 2294. [Google Scholar] [CrossRef]
- Gaved, M.; FitzGerald, E.; Ferguson, R.; Adams, A.; Mor, Y.; Thomas, R. Augmented Reality and Mobile Learning: The State of the Art. Int. J. Mob. Blended Learn. 2013, 5, 43–58. [Google Scholar] [CrossRef]
- Mather, C.; Barnett, T.; Broucek, V.; Saunders, A.; Grattidge, D.; Huang, W. Helping Hands: Using Augmented Reality to Provide Remote Guidance to Health Professionals. Stud. Health Technol. Inform. 2017, 241, 57–62. [Google Scholar] [CrossRef]
- Ward, M.; Gayet, B.; Tabchouri, N.; Moisan, F.; Donatelli, G.; Stättner, S.; Fuks, D. Technical advances and future perspectives in liver surgery. Eur. Surg. 2018, 50, 137–141. [Google Scholar] [CrossRef]
- Thompson, S.; Schneider, C.; Bosi, M.; Gurusamy, K.; Ourselin, S.; Davidson, B.; Hawkes, D.; Clarkson, M. In vivo estimation of target registration errors during augmented reality laparoscopic surgery. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 865–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelargos, P.E.; Nagasawa, D.T.; Lagman, C.; Tenn, S.; Demos, J.V.; Lee, S.J.; Bui, T.T.; Barnette, N.E.; Bhatt, N.S.; Ung, N.; et al. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. J. Clin. Neurosci. 2017, 35, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kugelmann, D.; Stratmann, L.; Nühlen, N.; Bork, F.; Hoffmann, S.; Samarbarksh, G.; Pferschy, A.; von der Heide, A.M.; Eimannsberger, A.; Fallavollita, P.; et al. An Augmented Reality magic mirror as additive teaching device for gross anatomy. Ann. Anat. Anat. Anz. 2018, 215, 71–77. [Google Scholar] [CrossRef]
- Bernardo, A. Virtual Reality and Simulation in Neurosurgical Training. World Neurosurg. 2017, 106, 1015–1029. [Google Scholar] [CrossRef]
- Birt, J.; Moore, E.; Cowling, M. Improving paramedic distance education through mobile mixed reality simulation. Australas. J. Educ. Technol. 2017, 33. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.; Almale, B.; Patil, M.; Gujrathi, A.; Dhakne-Palwe, S.; Patil, A.; Gosavi, S. Attitudes and Perceptions of Medical Undergraduates Towards Mobile Learning (M-learning). J. Clin. Diagn. Res. 2016, 10, 6–10. [Google Scholar] [CrossRef]
- Lytridis, C.; Tsinakos, A.; Kazanidis, I. ARTutor—An Augmented Reality Platform for Interactive Distance Learning. Educ. Sci. 2018, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Pedaste, M.; Mitt, G.; Jürivete, T. What Is the Effect of Using Mobile Augmented Reality in K12 Inquiry-Based Learning? Educ. Sci. 2020, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Fallavollita, P.; Seelbach, I.; Von Der Heide, A.M.; Euler, E.; Waschke, J.; Navab, N. Personalized augmented reality for anatomy education. Clin. Anat. 2016, 29, 446–453. [Google Scholar] [CrossRef]
- Martins, A.I.; Rosa, A.F.; Queirós, A.; Silva, A.; Rocha, N.P. European Portuguese Validation of the System Usability Scale (SUS). Procedia Comput. Sci. 2015, 67, 293–300, In Proceedings of the 6th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, Sankt Augustin, Germany, 10–12 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Brooke, J. SUS-A quick and dirty usability scale. Hum. Brain Mapp. 1986. [Google Scholar] [CrossRef] [Green Version]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An Empirical Evaluation of the System Usability Scale. Int. J. Hum. Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Lewis, J.; Sauro, J. The Factor Structure of the System Usability Scale. In Human Centered Design; Springer: Berlin, Germany, 2009; pp. 94–103. [Google Scholar] [CrossRef]
- Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 1–55. [Google Scholar]
- Adebiyi, A.; Sorrentino, P.; Bohlool, S.; Zhang, C.; Arditti, M.; Goodrich, G.; Weiland, J.D. Assessment of feedback modalities for wearable visual aids in blind mobility. PLoS ONE 2017, 12, e0170531. [Google Scholar] [CrossRef]
- Stojanov, I.; Ristevski, B.; Kotevski, Z.; Savoska, S. Application of 3ds Max for 3D Modelling and Rendering; University St. Kliment Ohridski Bitola: Bitola, Macedonia, 2016; pp. 133–144. [Google Scholar] [CrossRef] [Green Version]
- Cieza, E.; Lujan, D. Educational Mobile Application of Augmented Reality Based on Markers to Improve the Learning of Vowel Usage and Numbers for Children of a Kindergarten in Trujillo. Procedia Comput. Sci. 2018, 130, 352–358. [Google Scholar] [CrossRef]
- Dickson, P.E. Using Unity to Teach Game Development. In Proceedings of the ACM Conference on Innovation and Technology in Computer Science Education-ITiCSE ’15, Vilnius, Lithuania, 6–8 July 2015; pp. 75–80. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988; Volume 2. [Google Scholar]
- Brooke, J. SUS: A Retrospective. J. Usability Stud. 2013, 8, 29–40. [Google Scholar]
- Martín-Gutierrez, J.; Trujillo, R.N.; Acosta-Gonzalez, M. Augmented Reality Application Assistant for Spatial Ability Training. HMD vs Computer Screen Use Study. Procedia Soc. Behav. Sci. 2016, 93, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Elliott, S.; Littlefield, J. Educational Psychology: Effective Teaching, Effective Learning; Brown & Benchmark: Madison, WI, USA, 1995. [Google Scholar]
- Matthews, M. Constructivism in Science Education: A Philosophical Examination; Springer: Dutch, The Netherlands, 1998. [Google Scholar]
- Kolb, D. Experiential Learning: Experience As The Source Of Learning And Development; FT Press: Upper Saddle River, NJ, USA, 1984; Volume 1. [Google Scholar]
- Sun, P.; Tsai, R.; Finger, G.; Chen, Y.; Yeh, D. What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Comput. Educ. 2008, 50, 1183–1202. [Google Scholar] [CrossRef]
- Calle Bustos, A.M.; Juan, M.C.; García García, I.; Abad, F. An augmented reality game to support therapeutic education for children with diabetes. PLoS ONE 2017, 12, e0184645. [Google Scholar] [CrossRef] [Green Version]
- Trelease, R. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education. Anat. Sci. Educ. 2016, 9, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Rothman, B.; Gupta, R.; McEvoy, M. Mobile Technology in the Perioperative Arena. Anesth. Analg. 2017, 124, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Willicks, F.; Stehling, V.; Richert, A.; Isenhardt, I. The Students’ Perspective on Mixed Reality in Higher Education: A Status and Requirement Analysis; IEEE: Tenerife, Spain, 2018; Number 43; pp. 656–660. [Google Scholar] [CrossRef]
- Seralidou, E.; Douligeris, C. Exploring the Potential of Smartphones to Support Learning in Greece; IEEE: San Diego, CA, USA, 2016; Number October; pp. 65–69. [Google Scholar] [CrossRef]
- Mayer, R. Cognitive Theory and the Design of Multimedia Instruction: An Example of the Two-Way Street Between Cognition and Instruction. New Dir. Teach. Learn. 2002, 2002. [Google Scholar] [CrossRef]
- Lee, S.; Hsu, Y.; Bair, B.; Toberman, M.; Chien, L. Gender and posture are significant risk factors to musculoskeletal symptoms during touchscreen tablet computer use. J. Phys. Ther. Sci. 2018, 30, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunda, Z.; Dunning, D.; Jones, E.; Jussim, L.; Miller, D.; Nisbett, R.; Petty, R.; Prentice, D. The Case for Motivated Reasoning. Psychol. Assoc. Novemb. 1990, 108, 480–498. [Google Scholar] [CrossRef] [PubMed]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C. Augmented reality marketing: How mobile AR-apps can improve brands through inspiration. J. Retail. Consum. Serv. 2019, 49, 43–53. [Google Scholar] [CrossRef]
- Kong, X.; Nie, L.; Zhang, H.; Wang, Z.; Ye, Q.; Tang, L.; Li, J.; Huang, W. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study. J. Surg. Educ. 2016, 73, 264–269. [Google Scholar] [CrossRef]
- Lim, K.; Loo, Z.; Goldie, S.; Adams, J.; McMenamin, P. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat. Sci. Educ. 2016, 9, 213–221. [Google Scholar] [CrossRef]
SUS Answers | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 |
---|---|---|---|---|---|---|---|---|---|---|
Disagree | 9 | 37 | 1 | 44 | 13 | 41 | 2 | 31 | 9 | 39 |
Totally disagree | 1 | 25 | 2 | 22 | 0 | 12 | 0 | 17 | 1 | 29 |
Neutral | 23 | 16 | 15 | 7 | 21 | 19 | 11 | 17 | 21 | 8 |
Agree | 32 | 1 | 41 | 6 | 39 | 8 | 40 | 13 | 39 | 2 |
Totally agree | 15 | 1 | 21 | 1 | 7 | 0 | 27 | 2 | 10 | 2 |
Item | Mean | Median | SD | SE |
---|---|---|---|---|
1. I think I would use this system often | 2.64 | 3.00 | 0.96 | 0.11 |
2. I find the system unnecessarily complex | 3.05 | 3.00 | 0.83 | 0.09 |
3. I found the system easy to use | 2.98 | 3.00 | 0.86 | 0.10 |
4. I thought it would require the support of a technician to to use the system | 3.00 | 3.00 | 0.89 | 0.10 |
5. The functions of this system were well integrated | 2.50 | 3.00 | 0.88 | 0.10 |
6. I found the system very inconsistent | 2.71 | 3.00 | 0.85 | 0.09 |
7. I imagine most people would learn to use this system quickly | 3.15 | 3.00 | 0.75 | 0.08 |
8. I found the system too complicated to use | 2.60 | 3.00 | 1.07 | 0.12 |
9. I felt very confident with the system | 2.60 | 3.00 | 0.90 | 0.10 |
10. I need to learn a lot of things before continuing to use this system | 3.14 | 3.00 | 0.89 | 0.10 |
Factor | Mean | Median | SE |
---|---|---|---|
Usability | 69 | 71.88 | 1.66 |
Learning | 77 | 75 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, J.; Teles, A.; Teixeira, S. An Augmented Reality-Based Mobile Application Facilitates the Learning about the Spinal Cord. Educ. Sci. 2020, 10, 376. https://doi.org/10.3390/educsci10120376
Fernandes J, Teles A, Teixeira S. An Augmented Reality-Based Mobile Application Facilitates the Learning about the Spinal Cord. Education Sciences. 2020; 10(12):376. https://doi.org/10.3390/educsci10120376
Chicago/Turabian StyleFernandes, Jacks, Ariel Teles, and Silmar Teixeira. 2020. "An Augmented Reality-Based Mobile Application Facilitates the Learning about the Spinal Cord" Education Sciences 10, no. 12: 376. https://doi.org/10.3390/educsci10120376
APA StyleFernandes, J., Teles, A., & Teixeira, S. (2020). An Augmented Reality-Based Mobile Application Facilitates the Learning about the Spinal Cord. Education Sciences, 10(12), 376. https://doi.org/10.3390/educsci10120376