The Spatial Spillover Effects of Fiscal Expenditures and Household Characteristics on Household Consumption Spending: Evidence from Taiwan
Abstract
:1. Introduction
2. Literature Review
2.1. Application of the Spatial Econometric Model in Consumption Spending
2.2. Hypotheses Development
2.2.1. Fiscal Expenditure and Consumption Spending per Household
2.2.2. Household Characteristics and Consumption Spending per Household
3. Methodology
3.1. Data and Sample
3.2. Research Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables Related to Fiscal Expenditure
3.2.3. Independent Variables Related to Household Characteristics
3.3. Empirical Model
3.4. Spatial Weight Matrix
4. Results
4.1. Descriptive Statistics
4.2. Spatial Autocorrelation Test Results
4.3. Hausman Test Results
4.4. Spatial Durbin Model Analysis Results
4.5. Decomposition Results of the Spatial Durbin Model with Spatial Fixed Effects
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Research Limitations
5.4. Future Research Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akaike, Hirotugu. 1973. Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory. Edited by Boris Nikolaevich Petrov and Frigyes Csaki. Budapest: Akademiai Kiado, pp. 267–81. [Google Scholar]
- Almosabbeh, Imadeddin Ahmed. 2020. Is the relationship between government spending and private consumption in Egypt symmetric? Margin: The Journal of Applied Economic Research 14: 285–308. [Google Scholar] [CrossRef]
- Anselin, Luc. 1995. Local indicators of spatial association: LISA. Geographical Analysis 27: 93–115. [Google Scholar] [CrossRef]
- Asimakopoulos, Stylianos, Marco Lorusso, and Luca Pieroni. 2021. Can public spending boost private consumption? Canadian Journal of Economics/Revue Canadienne d’Economique 54: 1275–13. [Google Scholar] [CrossRef]
- Bailey, Martin J. 1971. National Income and the Price Level. New York: McGraw-Hill. [Google Scholar]
- Bao, Chao, and Xiaojie Chen. 2017. Spatial econometric analysis on influencing factors of water consumption efficiency in urbanizing China. Journal of Geographical Sciences 27: 1450–62. [Google Scholar] [CrossRef]
- Barro, Robert J. 1981. Output effects of government purchases. Journal of Political Economy 84: 343–50. [Google Scholar] [CrossRef]
- Becker, Gary S. 1965. A theory of the allocation of time. The Economic Journal 75: 493–517. [Google Scholar] [CrossRef]
- Bernardini, Marco, and Gert Peersman. 2018. Private debt overhang and the government spending multiplier: Evidence for the United States. Journal of Applied Econometrics 33: 485–508. [Google Scholar] [CrossRef]
- Bouakez, Hafedh, and Nooman Rebei. 2007. Why does private consumption rise after a government spending shock? Canadian Journal of Economics/Revue Canadienne d’Économique 40: 954–79. [Google Scholar] [CrossRef]
- Brunsdon, Chris, A. Stewart Fotheringham, and Martin E. Charlton. 1996. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis 28: 281–98. [Google Scholar] [CrossRef]
- Carroll, Christopher D., Misuzu Otsuka, and Jiri Slacalek. 2011. How large are housing and financial wealth effects? A new approach. Journal of Money, Credit and Banking 43: 55–79. [Google Scholar] [CrossRef] [Green Version]
- Cliff, Andrew David, and John Keith Ord. 1973. Spatial Autocorrelation. London: Pion. [Google Scholar]
- Cliff, Andrew David, and John Keith Ord. 1981. Spatial Processes-Models and Applications. London: Pion. [Google Scholar]
- Duesenberry, James S. 1949. Income, Saving and the Theory of Consumer Behavior. Cambridge: Harvard University Press. [Google Scholar]
- Elhorst, Paul J. 2010. Applied spatial econometrics: Raising the bar. Spatial Economic Analysis 5: 9–28. [Google Scholar] [CrossRef]
- Evans, Paul, and Georgios Karras. 1996. Private and government consumption with liquidity constraints. Journal of International Money and Finance 15: 255–66. [Google Scholar] [CrossRef]
- Filippini, Massimo, Giuliano Masiero, and Karine Moschetti. 2009. Small area variations and welfare loss in the use of outpatient antibiotics. Health Economics Policy and Law 4: 55–77. [Google Scholar] [CrossRef] [PubMed]
- Friedman, Milton. 1957. A Theory of the Consumption Function. Princeton: National Bureau of Economic Research. [Google Scholar]
- Funashima, Yoshito, and Yoshihiro Ohtsuka. 2019. Spatial crowding-out and crowding-in effects of government spending on the private sector in Japan. Regional Science and Urban Economics 75: 35–48. [Google Scholar] [CrossRef]
- Gupta, Manavi, and Avinash Kishore. 2022. Unemployment and household spending in rural and urban India: Evidence from panel data. Journal of Development Studies 58: 545–60. [Google Scholar] [CrossRef]
- Hausman, Jerry A. 1978. Specification tests in econometrics. Econometrica 46: 1251–71. [Google Scholar] [CrossRef]
- Ho, Tsung Wu. 2001. The government spending and private consumption: A panel cointegration analysis. International Review of Economics & Finance 10: 95–108. [Google Scholar]
- Ho, Tsung Wu. 2004. Cointegration, government spending and private consumption: Evidence from Japan. Japanese Economic Review 55: 162–74. [Google Scholar] [CrossRef]
- Huang, Hao-Chen, Hsin-Hung Liu, Chi-Lu Peng, and Ting-Hsiu Liao. 2022. Do local fiscal expenditures promote the growth of profit-seeking enterprise numbers in neighboring areas? Economies 10: 34. [Google Scholar] [CrossRef]
- Kameda, Taisuke, Ryoichi Namba, and Takayuki Tsuruga. 2021. Decomposing local fiscal multipliers: Evidence from Japan. Japan and the World Economy 57: 101053. [Google Scholar] [CrossRef]
- Karras, Georgios. 1994. Government spending and private consumption: Some International Evidence. Journal of Money, Credit and Banking 26: 9–22. [Google Scholar] [CrossRef]
- Keynes, John Maynard. 1936. The General Theory of Employment, Interest and Money. New York: Harcourt, Brace. [Google Scholar]
- Kozyreva, Polina M., Zhu Di, Alfiya E. Nizamova, and Alexander I. Smirnov. 2021. Justice and inequality in the household consumption in Russia and China: A comparative analysis. Rudn Journal of Sociology-Vestnik Rossiiskogo Universiteta Druzhby Narodov Seriya Sotsiologiya 21: 50–67. [Google Scholar] [CrossRef]
- Lee, Kwan Ok, and Masaki Mori. 2019. Conspicuous consumption and household indebtedness. Real Estate Economics 49: 557–86. [Google Scholar] [CrossRef]
- LeSage, James, and Kelley R. Pace. 2009. Introduction to Spatial Econometrics. New York: CRC Press, Taylor & Francis Group. [Google Scholar]
- Levay, Petra, Josefine Vanhille, Tim Goedemé, and Gerlinde Verbist. 2021. The association between the carbon footprint and the socio-economic characteristics of Belgian households. Ecological Economics 186: 107065. [Google Scholar] [CrossRef]
- Lv, Yulan, Wei Chen, and Jianquan Cheng. 2019. Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach. Energy Policy 133: 110841. [Google Scholar] [CrossRef]
- Moran, Patrick Alfred Pierce. 1950. Notes on continuous stochastic phenomena. Biometrika 7: 17–23. [Google Scholar] [CrossRef]
- Mottaleb, Khondoker A., Dil Bahadur Rahut, and Ashok K. Mishra. 2017. Consumption of food away from home in Bangladesh: Do rich households spend more? Appetite 119: 54–63. [Google Scholar] [CrossRef]
- Özerkek, Yasemin, and Sadullah Çelik. 2010. The link between government spending, consumer confidence and consumption expenditures in emerging market countries. Panoeconomicus 57: 471–85. [Google Scholar] [CrossRef]
- Samadi, Ali Hussein, and Sayed Mohamad Sayedi. 2012. Modeling the relationship between government expenditures and private consumption regarding the compensatory effects of government expenditures in Iran (1959–2007). Journal of Research in Economic Modeling 2: 57–86. [Google Scholar]
- Sawada, Michael. 2004. Global Spatial Autocorrelation Indices- Moran’s I, Geary’s C and the General Cross-Product Statistic. Ottawa: University of Ottawa. [Google Scholar]
- Schwarz, Gideon. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–64. [Google Scholar] [CrossRef]
- Suari-Andreu, Eduard. 2021. Housing and household consumption: An investigation of the wealth and collateral effects. Journal of Housing Economics 54: 101786. [Google Scholar] [CrossRef]
- Tscharaktschiew, Stefan, and Georg Hirte. 2010. How does the household structure shape the urban economy? Regional Science and Urban Economics 40: 498–516. [Google Scholar] [CrossRef] [Green Version]
- Walter, Stephen. 1992. The analysis of regional patterns in health data. II. The power to detect environmental effects. American Journal of Epidemiology 136: 742–59. [Google Scholar] [CrossRef] [PubMed]
Year | Average Consumption Spending per Household | Year | Average Consumption Spending per Household | Year | Average Consumption Spending per Household |
---|---|---|---|---|---|
2000 | 603,772 | 2007 | 649,905 | 2014 | 682,220 |
2001 | 595,870 | 2008 | 635,019 | 2015 | 684,841 |
2002 | 606,897 | 2009 | 646,966 | 2016 | 706,662 |
2003 | 606,895 | 2010 | 646,182 | 2017 | 723,078 |
2004 | 631,186 | 2011 | 661,160 | 2018 | 723,957 |
2005 | 637,384 | 2012 | 662,392 | 2019 | 740,302 |
2006 | 650,354 | 2013 | 683,004 | 2020 | 737,768 |
Variables | Obs. | Mean | Std. Dev. | Min. | 25th Percentile | Median | 75th Percentile | Max. |
---|---|---|---|---|---|---|---|---|
CS | 462 | 662,657.90 | 146,314.08 | 390,512.00 | 558,868 | 635,692 | 738,518 | 1,152,501.00 |
EDE | 462 | 6894.38 | 7291.91 | 541.91 | 2446.65 | 4127.63 | 7720.55 | 46,357.08 |
ESCE | 462 | 14,560.91 | 15,980.28 | 400.57 | 4537.28 | 7299.64 | 18,247.86 | 73,161.88 |
DI | 462 | 875,352.29 | 174,144.36 | 568,409.00 | 746,442 | 836,491 | 967,197 | 1,422,856.00 |
EPH | 462 | 1.42 | 0.18 | 0.94 | 1.30 | 1.44 | 1.55 | 1.88 |
HOP | 462 | 86.79 | 4.42 | 70.03 | 83.80 | 86.58 | 89.98 | 95.94 |
LAP | 462 | 14.58 | 2.82 | 8.55 | 12.58 | 14.78 | 16.41 | 23.12 |
FSCS | 462 | 15.92 | 2.06 | 10.83 | 14.63 | 15.64 | 17.24 | 23.79 |
CS | EDE | EESC | DI | EPH | HOP | LAP | FSCS | |
---|---|---|---|---|---|---|---|---|
CS | 1 | |||||||
EDE | 0.459 ** | 1 | ||||||
EESC | 0.557 ** | 0.897 ** | 1 | |||||
DI | 0.911 ** | 0.405 ** | 0.486 ** | 1 | ||||
EPH | 0.302 ** | 0.132 ** | 0.198 ** | 0.283 ** | 1 | |||
HOP | −0.258 ** | −0.282 ** | −0.287 ** | −0.319 ** | 0.290 ** | 1 | ||
LAP | −0.231 ** | −0.269 ** | −0.371 ** | −0.180 ** | −0.295 ** | 0.153 ** | 1 | |
FSCS | −0.399 ** | −0.149 ** | −0.201 ** | −0.400 ** | −0.133 ** | 0.034 | 0.100 * | 1 |
Year | Moran’s I | Year | Moran’s I | Year | Moran’s I | |||
---|---|---|---|---|---|---|---|---|
I | p-Value | I | p-Value | I | p-Value | |||
2000 | 0.329 | 0.021 | 2007 | 0.417 | 0.006 | 2014 | 0.499 | 0.001 |
2001 | 0.357 | 0.015 | 2008 | 0.557 | 0.000 | 2015 | 0.452 | 0.004 |
2002 | 0.386 | 0.009 | 2009 | 0.595 | 0.000 | 2016 | 0.459 | 0.003 |
2003 | 0.405 | 0.007 | 2010 | 0.542 | 0.001 | 2017 | 0.467 | 0.003 |
2004 | 0.475 | 0.002 | 2011 | 0.550 | 0.000 | 2018 | 0.449 | 0.004 |
2005 | 0.579 | 0.000 | 2012 | 0.483 | 0.002 | 2019 | 0.384 | 0.012 |
2006 | 0.417 | 0.005 | 2013 | 0.429 | 0.005 | 2020 | 0.391 | 0.010 |
Hausman Test | ||
---|---|---|
p-Value | ||
SDM with spatial fixed-effects vs. SDM with random-effects | 36.89 | 0.0000 |
SDM with time fixed-effects vs. SDM with random-effects | 127.95 | 0.0000 |
SDM with spatial and time fixed-effects vs. SDM with random-effects | 16.67 | 0.0022 |
Variables | Model 1 SDM with Spatial Fixed Effects | Model 2 SDM with Time Fixed Effects | Model 3 SDM with Spatial and Time Fixed Effects | Model 4 SDM with Random Effects | ||||
---|---|---|---|---|---|---|---|---|
Coefficient | p | Coefficient | p | Coefficient | p | Coefficient | p | |
EDE | −0.31 | 0.470 | −0.58 | 0.298 | −0.63 | 0.132 | −0.35 | 0.428 |
EESC | 0.15 | 0.736 | 0.77 * | 0.011 | 0.40 | 0.351 | 0.46 | 0.262 |
DI | 0.54 *** | 0.000 | 0.78 *** | 0.000 | 0.54 *** | 0.000 | 0.59 *** | 0.000 |
EPH | 97,673.82 *** | 0.000 | −62,410.52 *** | 0.000 | 100,764.50 *** | 0.000 | 71,187.76 ** | 0.002 |
HOP | −139.18 | 0.780 | 1121.95 | 0.034 | −579.36 | 0.256 | −287.73 | 0.570 |
LAP | 3839.11 ** | 0.003 | −3968.27 ** | 0.001 | 1682.71 | 0.304 | 2306.16 | 0.089 |
FSCS | −1047.41 | 0.326 | 3351.63 ** | 0.001 | −741.96 | 0.478 | −752.29 | 0.486 |
W × EDE | 0.92 | 0.139 | −0.45 | 0.589 | −0.12 | 0.848 | 0.74 | 0.244 |
W × EESC | 1.06 | 0.098 | 0.03 | 0.943 | 2.09 ** | 0.002 | 0.69 | 0.258 |
W × DI | −0.20 *** | 0.000 | −0.14 *** | 0.000 | −0.09 | 0.135 | −0.18 ** | 0.001 |
W × EPH | −35,056.15 | 0.310 | 13,246.75 | 0.694 | −12,424.23 | 0.719 | −30,375.68 | 0.352 |
W × HOP | 1230.91 | 0.164 | 1919.00 * | 0.016 | 148.49 | 0.891 | 1007.20 | 0.115 |
W × LAP | 8807.69 *** | 0.000 | 7678.66 *** | 0.000 | 7741.62 *** | 0.001 | 5621.29 ** | 0.005 |
W × FSCS | 1292.51 | 0.541 | −4003.87 ** | 0.008 | 4785.39 * | 0.025 | −2135.21 | 0.252 |
Constant | −48,320.74 | 0.429 | ||||||
n | 462 | 462 | 462 | 462 | ||||
Spatial ρ | 0.20 *** | 0.000 | 0.21 *** | 0.000 | 0.06 | 0.289 | 0.23 *** | 0.000 |
within R2 | 0.7835 | 0.7456 | 0.7609 | 0.7793 | ||||
between R2 | 0.6524 | 0.8197 | 0.7698 | 0.9046 | ||||
overall R2 | 0.6731 | 0.8061 | 0.7683 | 0.8787 | ||||
Log-likelihood | −5369.2162 | −5502.5384 | −5342.3046 | −5427.4673 | ||||
AIC | 10,756.43 | 11,023.08 | 10,702.61 | 10,874.93 | ||||
BIC | 10,793.65 | 11,060.30 | 10,739.83 | 10,916.29 |
Variables | Direct Effect | Indirect Effect | Total Effect | |||
---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
EDE | −0.25 | 0.570 | 0.87 | 0.164 | 0.61 | 0.488 |
EESC | 0.18 | 0.678 | 1.19 | 0.066 | 1.37 | 0.076 |
DI | 0.54 *** | 0.000 | −0.09 *** | 0.036 | 0.45 *** | 0.000 |
EPH | 95,654.02 *** | 0.000 | −15,854.58 | 0.647 | 79,799.44 * | 0.036 |
HOP | −71.47 | 0.882 | 1321.16 | 0.174 | 1249.69 | 0.249 |
LAP | 4282.79 *** | 0.000 | 9811.18 *** | 0.000 | 14,093.98 *** | 0.000 |
FSCS | −990.72 | 0.382 | 1212.04 | 0.576 | 221.32 | 0.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-C.; Yuan, C.-L.; Liao, T.-H. The Spatial Spillover Effects of Fiscal Expenditures and Household Characteristics on Household Consumption Spending: Evidence from Taiwan. Economies 2022, 10, 227. https://doi.org/10.3390/economies10090227
Huang H-C, Yuan C-L, Liao T-H. The Spatial Spillover Effects of Fiscal Expenditures and Household Characteristics on Household Consumption Spending: Evidence from Taiwan. Economies. 2022; 10(9):227. https://doi.org/10.3390/economies10090227
Chicago/Turabian StyleHuang, Hao-Chen, Chen-Lin Yuan, and Ting-Hsiu Liao. 2022. "The Spatial Spillover Effects of Fiscal Expenditures and Household Characteristics on Household Consumption Spending: Evidence from Taiwan" Economies 10, no. 9: 227. https://doi.org/10.3390/economies10090227
APA StyleHuang, H. -C., Yuan, C. -L., & Liao, T. -H. (2022). The Spatial Spillover Effects of Fiscal Expenditures and Household Characteristics on Household Consumption Spending: Evidence from Taiwan. Economies, 10(9), 227. https://doi.org/10.3390/economies10090227