An Analysis of the Performance of Regional Development Banks (RDB) in Indonesia: Stochastic Frontier Analysis Approach
Abstract
:1. Introduction
2. Theoretical Framework
3. Method
3.1. Data
3.2. Methodology
4. Result
5. Discussion
6. Conclusions
7. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abidin, Zaenal. 2009. Kinerja Efisiensi Teknis Bank Pembangunan Daerah: Pendekatan Data Envelopment Analysis (DEA). Jurnal Akuntansi Dan Keuangan 11: 21–29. [Google Scholar] [CrossRef]
- Aigner, Dennis, C. A. Knox Lovell, and Peter Schmidt. 1977. Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Econometrics 6: 21–37. [Google Scholar] [CrossRef]
- Alfriska, Malinda, and Sri Haryani. 2011. Regional Development Banks Performance in Indonesia. In The First International Credit Union Conference on Social Microfinance and Community Development, BKCU Kalimantan-Gunadarma University. Depok City: Universitas Gunadarma. [Google Scholar]
- Anouze, Abdel Latef M., and Imad Bou-Hamad. 2019. Data Envelopment Analysis and Data Mining to Efficiency Estimation and Evaluation. International Journal of Islamic and Middle Eastern Finance and Management 12: 169–90. [Google Scholar] [CrossRef]
- Anwar, Mokhamad. 2019. Cost Efficiency Performance of Indonesian Banks over the Recovery Period: A Stochastic Frontier Analysis. Social Science Journal 56: 377–89. [Google Scholar] [CrossRef]
- Berger, Allen N., and Loretta J. Mester. 1997. Inside the Black Box: What Explains Differences in the Efficiencies of Financial Institutions? Journal of Banking and Finance 21: 895–947. [Google Scholar] [CrossRef]
- Berger, Allen N., Diana Hancock, and David B. Humphrey. 1993. Humphrey. Bank efficiency derived from the profit function. Journal of Banking & Finance 17: 317–47. [Google Scholar]
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Fettry, Sylvia, Hamfri Djajadikerta, and Gery Raphael Lusanjaya. 2018. Accelerating Transformation Program in Indonesian Regional Development Banks: The Importance of High-Quality Information. Journal of Accounting Research, Organization and Economics 1: 1–25. [Google Scholar] [CrossRef]
- Gasperz, Vincent. 2011. Ekonomi Manajerial (Managerial Economics). Cetakan Kedelapan/Edisi Revisi. Bogor: Penerbit Vinchristo Publication. [Google Scholar]
- Hax, Arnoldo C. 2010. The Delta Model: Reinventing Your Business Strategy. New York: Springer. [Google Scholar]
- Hendrawan, Riko. 2020. Assessing Bank’ s Efficiency in Indonesia Using Data Envelopment Analysis (DEA). Test Engineering and Management 81: 2755–63. [Google Scholar]
- Hendriyani, Chandra, and Sam’un Jaja Raharja. 2018. Analysis building customer engagement through e-CRM in the era of digital banking in Indonesia. International Journal of Economic Policy in Emerging Economies 11: 479–86. [Google Scholar] [CrossRef]
- Henriques, Iago Cotrim, Vinicius Amorim Sobreiro, Herbert Kimura, and Enzo Barberio Mariano. 2018. Efficiency in the Brazilian Banking System Using Data Envelopment Analysis. Future Business Journal 4: 157–78. [Google Scholar] [CrossRef]
- Kadang, Juliana. 2018. Factors influencing profit efficiency of banking in indonesia. Journal of Developing Economies 3: 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kasim, Maznah Mat, and Azizul Baten. 2015. Cost and Profit Efficiency of Banks: Stochastic Frontier Analysis vs Data Envelopment Analysis. (APJB) Asia Pacific Journal of Business 6: 1–16. [Google Scholar]
- Kodde, David A., and Franz C. Palm. 1986. Wald criteria for jointly testing equality and inequality restrictions. Econometrica: Journal of the Econometric Society 54: 1243–48. [Google Scholar] [CrossRef]
- Kumar, Pradeep. 2018. Market Power and Cost Efficiencies in Banking. International Journal of Industrial Organization 57: 175–223. [Google Scholar] [CrossRef]
- Liang, Lien-Wen, Bor-Yi Huang, Chih-Feng Liao, and Yu-Ting Gao. 2017. The impact of SMEs’ lending and credit guarantee on bank efficiency in South Korea. Review of Development Finance 7: 134–41. [Google Scholar] [CrossRef]
- Lisdayanti, Agustya, Raycard Daniel, and Wanda Anindita. 2013. Efektifitas Kinerja Bpd Terhadap Pertumbuhan Ekonomi Daerah. Prosiding PESAT 5: 8–9. [Google Scholar]
- Lúpi, Rua Miguel. 2019. Evaluating the European Bank Efficiency Using Data Envelopment Analysis: Evidence in the Aftermath of the Recent Financial Crisis. Cândida Ferreira REM Working Paper 0109-2019. Lisboa: REM—Research in Economics and Mathematics Evaluating the Europe. [Google Scholar]
- Meeusen, Wim, and Julien Van Den Broeck. 1977. Efficiency Estimation from Cobb-Douglas Production Functions. International Economic Review 18: 435–44. [Google Scholar] [CrossRef]
- Mongid, Abdul, and Muazaroh Muazaroh. 2017. The Efficiency and Inefficiency of the Banking Sectors: Evidence from Selected ASEAN Banking. Jurnal Ekonomi Malaysia 51: 119–31. [Google Scholar] [CrossRef]
- Muazaroh, Tandelilin Eduardus, Suad Husnan, and Mamduh M. Hanafi. 2012. Determinants of Bank Profit Efficiency: Evidence From Indonesia. International Journal of Economics and Finance Studies 4: 163–73. [Google Scholar]
- Nicholson, Walter, and Christopher M. Snyder. 2017. Microeconomic Theory Basic Principles & Extensions, 12th ed. Boston: Cengage Learning. [Google Scholar]
- OJK. 2015. Program Transformasi BPD: Menjadi Bank yang Kompetitif, Kuat, dan Kontributif bagi Pembangunan Daerah. Available online: https://www.ojk.go.id/id/kanal/perbankan/berita-dan-kegiatan/publikasi/Pages/Program-Transformasi-BPD.aspx# (accessed on 8 March 2022).
- Othman, Filzah Mohamed, Aiza Mohd-Zamil, Siti Zaleha, Abdul Rasid, Amin Vakilbashi, and Mozhdeh Mokhber. 2016. Data Envelopment Analysis: A Tool of Measuring Efficiency in Banking Sector. International Journal of Economics and Financial Issues 6: 911–16. [Google Scholar]
- Porcelli, Francesco. 2009. Measurement of Technical Efficiency. A brief survey on parametric and non-parametric techniques. University of Warwick 11: 1–27. [Google Scholar]
- Purwoko, Didik, and Bambang Sudiyanto. 2013. Faktor-faktor yang mempengaruhi kinerja bank (Studi empirik pada industri perbankan di Bursa Efek Indonesia). Jurnal Bisnis dan Ekonomi 20: 1. [Google Scholar]
- Puspasari, Anneke. 2020. Bank Specific Factors Affecting the Efficiency of Regional Development Bank in Indonesia. JIMFE (Jurnal Ilmiah Manajemen Fakultas Ekonomi) 6: 171–86. [Google Scholar] [CrossRef]
- Putri, Devy Ariesta, and Sylva Alif Rusmita. 2020. Analisis Tingkat Efisiensi Biaya Bank Umum Syariah Dengan Metode Stochastic Frontier Analysis Periode 2015–2018. Jurnal Ekonomi Syariah Teori Dan Terapan 7: 199–206. [Google Scholar] [CrossRef]
- Rose, Peter S., and Sylvia Hudgins. 2013. Bank Management & Financial Services. New York: McGraw-Hill. [Google Scholar]
- Salim, Sitti Raha Agoes, Yulinda Yulinda, and Khaira Amalia Fachrudin. 2015. The Study of Organization Development and Regional Bank Changing in Indonesia. Journal of Management Research 7: 317. [Google Scholar] [CrossRef]
- Sari, Putri Zanufa, and Erwin Saraswati. 2017. The Determinant of Banking Efficiency in Indonesia (DEA Approach). Journal of Accounting and Business Education 1: 208–29. [Google Scholar] [CrossRef]
- Sari, Dyah Wulan. 2019. The potential horizontal and vertical spillovers from foreign direct investment on Indonesian manufacturing industries. Economic Papers: A Journal of Applied Economics and Policy 38: 299–310. [Google Scholar] [CrossRef]
- Sharif, Omar, Md Zobaer Hasan, Chang Yun Fah, and Mahboobeh Zangeneh Sirdari. 2019. Efficiency Analysis by Combination of Frontier Methods: Evidence from Unreplicated Linear Functional Relationship Model. Business and Economic Horizons 15: 107–25. [Google Scholar]
- Silva, Thiago Christiano, Benjamin Miranda Tabak, Daniel Oliveira Cajueiro, and Marina Villas Boas Dias. 2017. A Comparison of DEA and SFA Using Micro- and Macro-Level Perspectives: Efficiency of Chinese Local Banks. Physica A: Statistical Mechanics and Its Applications 469: 216–23. [Google Scholar] [CrossRef]
- Sparta. 2017. Analisis Pengaruh Efisiensi Dan Kecukupan Modal. Jurnal Ekonomi Dan Bisnis 20: 83–111. [Google Scholar]
- Subandi, and Imam Ghozali. 2013. Determinan Efisiensi Dan Dampaknya Terhadap Kinerja Profitabilitas Industri Perbankan Di Indonesia. Jurnal Keuangan Dan Perbankan 17: 123–35. [Google Scholar]
- Sutanto, Himawan Arif. 2015. Analisis Efisiensi Teknis Bank Pembangun. Jejak 8: 23–35. [Google Scholar] [CrossRef]
- Tan, Yong. 2016. The impacts of risk and competition on bank profitability in China. Journal of International Financial Markets, Institutions and Money 40: 85–110. [Google Scholar] [CrossRef]
- Titko, Jelena, Jelena Stankevičienė, and Nataļja Lāce. 2014. Measuring Bank Efficiency: DEA Application. Technological and Economic Development of Economy 20: 739–57. [Google Scholar] [CrossRef]
- Wardhani, Pratystya Ika, and Abdul Mongid. 2019. Strategies to Increase Production Efficiency in Indonesian Sharia Commercial Banks Using Stochastic Frontier Approach (SFA). Journal of Economics, Business & Accountancy Ventura 21: 379. [Google Scholar] [CrossRef]
- Widiarti, Astoeti Wahjoe, Hermanto Siregar, and Trias Andati. 2015. The Determinants of Bank’S Efficiency in Indonesia. Buletin Ekonomi Moneter Dan Perbankan 18: 129–56. [Google Scholar] [CrossRef]
- Zahra, Nabila, and Darwanto Darwanto. 2019. The Determinant of Banking Efficiency (Data Envelopment Analysis Based on Intermediation Approach). Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan 20: 87–99. [Google Scholar] [CrossRef]
- Zuhroh, Idah, Munawar Ismail, and Ghozali Maskie. 2015. Cost Efficiency of Islamic Banks in Indonesia–A Stochastic Frontier Analysis. Procedia–Social and Behavioral Sciences 211: 1122–31. [Google Scholar] [CrossRef] [Green Version]
Variable | Description |
---|---|
Cost and Profit Variables | |
Cost (Tc) | Total cost of interest and non-interest. |
Profit (π) | Profit before tax. |
Labor cost (Btk) | Ratio of wage per total asset. |
Capital physical cost (BM) | Ratio of capital cost per total fixed capita. |
Funding cost (BD) | Ratio of funding cost per total funding cost. |
Actives (A) | The investment of bank in domestic and foreign currency in the form of security, placement, which include commitments and concessions in administrative accounts. |
Output (Y) | The amount of money based on a loan agreement between the bank and other part. |
Inefficiency Variables | |
Bank Size (Fzise) | Represents the amount of reserve funds owned by the bank, capital adequacy. |
Capital Adequecy Ratio(car) | The amount of reserve funds owned by the bank, capital adequacy. |
Loan to Deposit Ratio(ldr) | Ratio of loans compared to third funds (DPK) which includes current accounts, savings and time deposits excluding interbank funds. |
Non-Performing Loan (npl) | Ratio of the number of non-performing loans or loans with collectability of 3 (three) to 5 (five) with the total loans disbursed. |
Technology Investment (ti) | Technology investment cost which consists of investment in technology supporting services such as SMS banking, mobile banking, and/or internet banking which is stated in billions of rupiah. |
Variables | Unit | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Cost and Profit Variables | ||||||
Cost (Tc) | (ln) million rupiah | 265 | 13.98 | 0.85 | 11.53 | 16.23 |
Profit (p) | (ln) million rupiah | 265 | 12.51 | 2.09 | 0.00 | 14.57 |
Labor cost (Btk) | (ln)ratio | 265 | −3.76 | 0.28 | −5.44 | −2.95 |
Capital physical cost (BM) | (ln)ratio | 265 | 1.36 | 0.46 | −0.07 | 2.38 |
Funding cost (BD) | (ln)ratio | 265 | −3.37 | 0.89 | −5.60 | −1.87 |
Actives (A) | (ln) million rupiah | 265 | 15.10 | 0.93 | 12.96 | 17.45 |
Output (Y) | (ln) million rupiah | 265 | 15.99 | 0.89 | 13.25 | 18.31 |
Inefficiency Variables | ||||||
Bank Size (Fzise) | (ln) million rupiah | 265 | 16.41 | 0.88 | 13.95 | 18.71 |
Capital Adequecy Ratio (car) | ratio | 265 | 20.61 | 4.73 | 9.01 | 35.47 |
Loan to Deposit Ratio (ldr) | ratio | 265 | 88.82 | 16.16 | 7.52 | 128.43 |
Non-Performing Loan (npl) | ratio | 265 | 2.61 | 2.26 | 0.15 | 15.03 |
Technology Investment (ti) | (ln) million rupiah | 265 | 7.67 | 4.31 | 0.00 | 15.85 |
Model | df | χ2 | Cost Efficiency | Profit Efficiency | ||
---|---|---|---|---|---|---|
λ | Conc. | λ | Conc. | |||
Hick-Neutral | 5 | 13.28 | 131.90 | H0 Rejected | 1284.48 | H0 Rejected |
No Tech. Progress | 7 | 16.81 | 23.41 | H0 Rejected | 1339.36 | H0 Rejected |
Cobb-Douglas | 18 | 23.21 | 132.83 | H0 Rejected | 1368.17 | H0 Rejected |
No Inefficiency | 5 | 19.70 | 119.56 | H0 Rejected | 104.92 | H0 Rejected |
Observation | Cost Efficiency | Profit Efficiency | Observation | Cost Efficiency | Profit Efficiency |
---|---|---|---|---|---|
RDB 1 | 1.02 | 1.00 | RDB 15 | 1.01 | 1.23 |
RDB 2 | 1.01 | 1.03 | RDB 16 | 1.02 | 1.10 |
RDB 3 | 1.01 | 1.15 | RDB 17 | 1.01 | 1.61 |
RDB 4 | 1.02 | 1.00 | RDB 18 | 1.02 | 1.42 |
RDB 5 | 1.01 | 1.02 | RDB 19 | 1.01 | 1.22 |
RDB 6 | 1.01 | 1.01 | RDB 20 | 1.00 | 1.14 |
RDB 7 | 1.01 | 1.00 | RDB 21 | 1.03 | 1.17 |
RDB 8 | 1.01 | 1.38 | RDB 22 | 1.01 | 1.00 |
RDB 9 | 1.01 | 1.33 | RDB 23 | 1.01 | 1.48 |
RDB 10 | 1.02 | 1.35 | RDB 24 | 1.01 | 1.17 |
RDB 11 | 1.01 | 1.04 | RDB 25 | 1.01 | 1.44 |
RDB 12 | 1.04 | 1.03 | RDB 26 | 1.03 | 1.09 |
RDB 13 | 1.01 | 1.00 | RDB 27 | 1.02 | 1.03 |
RDB 14 | 1.01 | 1.06 | Average | 1.01 | 1.23 |
Variables | Coefficients | |||
---|---|---|---|---|
Model 1 | Model 2 | |||
Cost and Profit Function | ||||
Constant | −1.64 | 133.68 | ||
(3.32) | (2.09) | |||
Btk | 2.23 | * | −18.93 | * |
(0.92) | (3.18) | |||
BM | 2.75 | * | 8.58 | * |
(0.54) | (3.07) | |||
BD | −0.95 | * | −10.56 | * |
(0.29) | (2.41) | |||
A | −0.69 | *** | −7.78 | * |
(0.37) | (1.62) | |||
Y | 1.87 | * | 15.22 | * |
(0.44) | (1.27) | |||
Btk2 | 0.18 | −1.72 | ||
(0.14) | (1.05) | |||
BM2 | −0.14 | *** | 1.95 | *** |
(0.08) | (0.63) | |||
BD2 | 0.20 | * | −1.42 | * |
(0.04) | (0.27) | |||
BtkA | −0.23 | * | −1.32 | * |
(0.08) | (0.50) | |||
BMA | −0.06 | * | 0.09 | |
(0.08) | (0.65) | |||
BD*A | −0.02 | −1.00 | ||
(0.03) | (0.29) | |||
BtkY | 0.14 | 2.08 | ||
(0.10) | (0.49) | |||
BMY | −0.10 | −0.74 | ||
(0.07) | (0.60) | |||
BDY | 0.13 | * | 1.25 | |
(0.03) | (0.29) | |||
t | 0.05 | −2.33 | ||
(0.08) | (0.65) | |||
t2 | 0.00 | 0.02 | ||
(0.00) | (0.03) | |||
Btkt | −0.01 | 0.12 | ||
(0.02) | (0.14) | |||
BMt | 0.01 | 0.23 | ||
(0.01) | (0.08) | |||
BDt | −0.01 | * | −0.09 | * |
(0.00) | (0.04) | |||
At | −0.02 | ** | 0.03 | ** |
(0.01) | (0.09) | |||
Yt | 0.01 | 0.09 | ||
(0.01) | (0.08) | |||
Inefficiency function | ||||
Constant | −0.53 | 15.84 | ||
(1.06) | (5.24) | |||
FSize | 0.06 | −1.12 | ||
(0.07) | (0.29) | |||
car | −0.01 | *** | −0.18 | *** |
(0.01) | (0.02) | |||
ldr | 0.00 | 0.01 | ||
(0.00) | (0.01) | |||
npl | 0.06 | * | 0.27 | * |
(0.01) | (0.05) | |||
ti | −0.01 | * | −0.00 | *** |
(0.01) | (0.02) | |||
sigma-squared | 0.03 | * | 1.73 | * |
(0.01) | (0.16) | |||
gamma | 0.86 | * | 0.00 | * |
(0.11) | (0.00) | |||
log likelihood function | 178.04 | −447.09 | ||
LR test of the one-sided error | 119.56 | 104.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satyagraha, F.T.; Purwono, R.; Sari, D.W. An Analysis of the Performance of Regional Development Banks (RDB) in Indonesia: Stochastic Frontier Analysis Approach. Economies 2022, 10, 228. https://doi.org/10.3390/economies10090228
Satyagraha FT, Purwono R, Sari DW. An Analysis of the Performance of Regional Development Banks (RDB) in Indonesia: Stochastic Frontier Analysis Approach. Economies. 2022; 10(9):228. https://doi.org/10.3390/economies10090228
Chicago/Turabian StyleSatyagraha, Ferdian Timur, Rudi Purwono, and Dyah Wulan Sari. 2022. "An Analysis of the Performance of Regional Development Banks (RDB) in Indonesia: Stochastic Frontier Analysis Approach" Economies 10, no. 9: 228. https://doi.org/10.3390/economies10090228
APA StyleSatyagraha, F. T., Purwono, R., & Sari, D. W. (2022). An Analysis of the Performance of Regional Development Banks (RDB) in Indonesia: Stochastic Frontier Analysis Approach. Economies, 10(9), 228. https://doi.org/10.3390/economies10090228