Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Antropometric Assessment
2.4. Accelerometer-Based Apps
2.5. Statistical Analysis
3. Results
3.1. Step Count
3.2. Distance
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; Licence: CC BY-NC-SA 3.0 IGO; Available online https://www.who.int/publications/i/item/9789240015128 (accessed on 15 May 2021).
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; Stamatakis, E.; Bull, F.C. How can global physical activity surveillance adapt to evolving physical activity guidelines? Needs, challenges and future directions. Br. J. Sports Med. 2020, 54, 1468–1473. [Google Scholar] [CrossRef]
- Omura, J.D.; Carlson, S.A.; Paul, P.; Watson, K.B.; Fulton, J.E. National physical activity surveillance: Users of wearable activity monitors as a potential data source. Prev. Med. Rep. 2017, 5, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Althoff, T.; Sosič, R.; Hicks, J.L.; King, A.C.; Delp, S.L.; Leskovec, J. Large-scale physical activity data reveal worldwide activity inequality. Nature 2017, 547, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Del Pozo Cruz, B.; Green, M.A.; Bauman, A.E. Is the COVID-19 lockdown nudging people to be more active: A big data analysis. Br. J. Sports Med. 2020, 54, 1183–1184. [Google Scholar] [CrossRef]
- McCarthy, H.; Potts, H.; Fisher, A. Physical activity behavior before, during, and after COVID-19 restrictions: Longitudinal smartphone-tracking study of adults in the United Kingdom. J. Med. Internet Res. 2021, 23, e23701. [Google Scholar] [CrossRef]
- Pépin, J.L.; Bruno, R.M.; Yang, R.Y.; Vercamer, V.; Jouhaud, P.; Escourrou, P.; Boutouyrie, P. Wearable activity trackers for monitoring adherence to home confinement during the COVID-19 pandemic worldwide: Data aggregation and analysis. J. Med. Internet Res. 2020, 22, e19787. [Google Scholar] [CrossRef]
- Tison, G.H.; Avram, R.; Kuhar, P.; Abreau, S.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Worldwide effect of COVID-19 on physical activity: A descriptive study. Ann. Intern. Med. 2020, 173, 767–770. [Google Scholar] [CrossRef]
- Bent, B.; Dunn, J.P. Wearables in the SARS-CoV-2 pandemic: What are they good for? JMIR mHealth uHealth 2020, 8, e25137. [Google Scholar] [CrossRef]
- Nelson, M.B.; Kaminsky, L.A.; Dickin, D.C.; Montoye, A.H. Validity of consumer-based physical activity monitors for specific activity types. Med. Sci. Sports Exerc. 2016, 48, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- Rhea, C.K.; Felsberg, D.T.; Maher, J.P. Toward evidence-based smartphone apps to enhance human health: Adoption of behavior change techniques. Am. J. Health Educ. 2018, 49, 210–213. [Google Scholar] [CrossRef]
- Moore, C.C.; McCullough, A.K.; Aguiar, E.J.; Ducharme, S.W.; Tudor-Locke, C. Toward harmonized treadmill-based validation of step-counting wearable technologies: A scoping review. J. Phys. Act. Health 2020, 17, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Feehan, L.M.; Geldman, J.; Sayre, E.C.; Park, C.; Ezzat, A.M.; Yoo, J.Y.; Hamilton, C.B.; Li, L.C. Accuracy of Fitbit devices: Systematic review and narrative syntheses of quantitative data. JMIR mHealth uHealth 2018, 6, e10527. [Google Scholar] [CrossRef] [Green Version]
- Evenson, K.R.; Spade, C.L. Review of validity and reliability of Garmin activity trackers. J. Measur. Phys. Behav. 2020, 3, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Adamakis, M. Physical activity in the era of mHealth big data: Considerations on accuracy and bias. SSP J. Sport Sci. Med. 2019, 2, 6–10. [Google Scholar]
- Brodie, M.A.; Pliner, E.M.; Ho, A.; Li, K.; Chen, Z.; Gandevia, S.C.; Lord, S.R. Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias. Med. Hypotheses 2018, 119, 32–36. [Google Scholar] [CrossRef]
- Silva, A.G.; Simões, P.; Queirós, A.; Rodrigues, M.; Rocha, N.P. Mobile apps to quantify aspects of physical activity: A systematic review on its reliability and validity. J. Med. Syst. 2020, 44, 51. [Google Scholar] [CrossRef]
- Leong, J.Y.; Wong, J.E. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. J. Sports Sci. 2017, 35, 14–21. [Google Scholar] [CrossRef]
- Orr, K.; Howe, H.S.; Omran, J.; Smith, K.A.; Palmateer, T.M.; Ma, A.E.; Faulkner, G. Validity of smartphone pedometer applications. BMC Res. Notes 2015, 8, 733. [Google Scholar] [CrossRef] [PubMed]
- Höchsmann, C.; Knaier, R.; Eymann, J.; Hintermann, J.; Infanger, D.; Schmidt-Trucksäss, A. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scand. J. Med. Sci. Sports 2018, 28, 1818–1827. [Google Scholar] [CrossRef]
- Konharn, K.; Eungpinichpong, W.; Promdee, K.; Sangpara, P.; Nongharnpitak, S.; Malila, W.; Karawa, J. Validity and reliability of smartphone applications for the assessment of walking and running in normal-weight and overweight/obese young adults. J. Phys. Act. Health 2016, 13, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: Comparative study. JMIR mHealth uHealth 2018, 6, e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, M.D.; Salazar, C.L.; Martinez, M.; Gonzalez, J.; Leyva, P.; Bassett, D.; Karabulut, M. Validity of smartphone applications at measuring steps: Does wear location matter? J. Measur. Phys. Behav. 2019, 2, 22–27. [Google Scholar] [CrossRef]
- Hartung, V.; Sarshar, M.; Karle, V.; Shammas, L.; Rashid, A.; Roullier, P.; Eilers, C.; Mäurer, M.; Flachenecker, P.; Pfeifer, K.; et al. Validity of consumer activity monitors and an algorithm using smartphone data for measuring steps during different activity types. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 9314. [Google Scholar] [CrossRef]
- Keadle, S.K.; Lyden, K.A.; Strath, S.J.; Staudenmayer, J.W.; Freedson, P.S. A framework to evaluate devices that assess physical behavior. Exerc. Sport Sci. Rev. 2019, 47, 206–214. [Google Scholar] [CrossRef]
- Johnston, W.; Judice, P.B.; Molina García, P.; Mühlen, J.M.; Lykke Skovgaard, E.; Stang, J.; Schumann, M.; Cheng, S.; Bloch, W.; Brønd, J.C.; et al. Recommendations for determining the validity of consumer wearable and smartphone step count: Expert statement and checklist of the INTERLIVE network. Br. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Adamakis, M. Preliminary validation study of consumer-level activity monitors and mobile applications for step counting under free living conditions. J. Mob. Technol. Med. 2017, 6, 26–33. [Google Scholar] [CrossRef]
- Adamakis, M. Criterion validity of wearable monitors and smartphone applications to measure physical activity energy expenditure in adolescents. Sport Sci. Health 2020, 16, 755–763. [Google Scholar] [CrossRef]
- Warner, R.M. Applied Statistics: From Bivariate through Multivariate Techniques, 2nd ed.; Sage: Los Angeles, CA, USA, 2012. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 8, 307–310. [Google Scholar] [CrossRef]
- Ludbrook, J. Statistical techniques for comparing measurers and methods of measurement: A critical review. Clin. Exp. Pharmacol. Physiol. 2002, 29, 527–536. [Google Scholar] [CrossRef]
- Case, M.A.; Burwick, H.A.; Volpp, K.G.; Patel, M.S. Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA 2015, 313, 625–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowd, K.P.; Szeklicki, R.; Minetto, M.A.; Murphy, M.H.; Polito, A.; Ghigo, E.; van der Ploeg, H.; Ekelund, U.; Maciaszek, J.; Stemplewski, R.; et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: A DEDIPAC study. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [Green Version]
- John, D.; Morton, A.; Arguello, D.; Lyden, K.; Bassett, D. “What Is a step?” Differences in how a step is detected among three popular activity monitors that have impacted physical activity research. Sensors 2018, 18, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamakis, M. Comparing the validity of a GPS monitor and a smartphone application to measure physical activity. J. Mob. Technol. Med. 2017, 6, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Pobiruchin, M.; Suleder, J.; Zowalla, R.; Wiesner, M. Accuracy and adoption of wearable technology used by active citizens: A marathon event field study. JMIR mHealth uHealth 2017, 5, e24. [Google Scholar] [CrossRef] [Green Version]
Males (n = 11) | Females (n = 19) | Total (n = 30) | |
---|---|---|---|
Μ ± SD | Μ ± SD | Μ ± SD | |
Age (years) | 26.0 ± 6.6 | 25.8 ± 5.2 | 25.9 ± 5.7 |
Weight (kg) | 83.2 ± 16.2 | 63.4 ± 9.3 | 70.7 ± 1.7 |
Height (m) | 1.79 ± 0.09 | 1.64 ± 0.06 | 1.70 ± 0.10 |
Body mass index (kg/m2) | 24.7 ± 3.7 | 23.6 ± 3.9 | 24.4 ± 3.9 |
Resting heart rate (bpm) | 72.5 ± 7.3 | 68.5 ± 5.5 | 70.0 ± 6.4 |
Walking step length (cm) | 74.5 ± 6.4 | 62.2 ± 6.2 | 66.7 ± 8.6 |
Running step length (cm) | 101.5 ± 7.5 | 80.9 ± 5.9 | 88.5 ± 11.9 |
4.8 km/h | 6.0 km/h | 8.4 km/h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Μ (SD) | F | p | 95% CI | Μ (SD) | F | p | 95% CI | M (SD) | F | p | 95% CI | |
Criterion | 569 (39) | - | - | - | 622 (36) | - | - | - | 751 (40) | - | - | - |
Accupedo iOS | 562 (56) | 12.87 | 0.001 | 0.11–15.02 | 616 (34) | 20.21 | <0.001 | 1.35–11.25 | 745 (40) | 9.65 | 0.004 | (−0.81)–12.54 |
Accupedo Android | 566 (42) | 1.37 | 0.251 | (−7.07)–14.07 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
Pacer iOS | 562 (56) | 12.87 | 0.001 | 0.11–15.02 | 616 (34) | 20.21 | <0.001 | 1.35–11.25 | 745 (40) | 9.65 | 0.004 | (−0.81)–12.54 |
Pacer Android | 565 (42) | 1.55 | 0.224 | (−6.89)–14.35 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
Runtastic iOS | 558 (41) | 6.22 | 0.019 | (−4.55)–26.35 | 616 (34) | 20.21 | <0.001 | 1.35–11.25 | 743 (41) | 7.05 | 0.013 | (−2.83)–19.90 |
Runtastic Android | 573 (54) | 0.25 | 0.624 | (−32.23)–24.30 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
Argus iOS | 555 (52) | 3.62 | 0.067 | (−12.22)–40.69 | 607 (56) | 2.69 | 0.112 | (−17.70)–48.30 | 745 (40) | 9.65 | 0.004 | (−0.81)–12.54 |
Argus Android | 566 (42) | 1.37 | 0.251 | (−7.07)–14.07 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
4.8 km/h | 6.0 km/h | 8.4 km/h | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
App | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI |
Accupedo iOS | 7.57 | 3.25–11.88 | 0.10 | 0.063 | (−0.01)–0.21 | 6.30 | 3.43–9.17 | 0.08 | 0.052 | 0.00–0.15 | 5.87 | 2.00–9.73 | 0.01 | 0.789 | (−0.09)–0.11 |
Accupedo Android | 3.50 | (−2.62)–9.62 | 0.01 | 0.951 | (−0.17)–0.16 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
Pacer iOS | 7.57 | 3.25–11.88 | 0.10 | 0.063 | (−0.01)–0.21 | 6.30 | 3.43–9.17 | 0.08 | 0.052 | 0.00–0.15 | 5.87 | 2.00–9.73 | 0.01 | 0.789 | (−0.09)–0.11 |
Pacer Android | 3.73 | (−2.41)–9.88 | −0.01 | 0.895 | (−0.18)–0.15 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
Runtastic iOS | 10.90 | 1.96–19.84 | 0.12 | 0.286 | (−0.11)–0.36 | 6.30 | 3.43–9.17 | 0.08 | 0.052 | 0.00–0.15 | 8.53 | 1.96–15.11 | 0.06 | 0.446 | (−0.11)–0.23 |
Runtastic Android | −3.97 | (−20.32)–12.39 | 0.18 | 0.407 | (−0.26)–0.61 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
Argus iOS | 14.23 | (−1.07)–29.54 | 0.15 | 0.465 | (−0.26)–0.55 | 15.30 | (−3.79)–34.39 | 0.29 | 0.276 | (−0.25)–0.83 | 5.87 | 2.00–9.73 | 0.01 | 0.789 | (−0.09)–0.11 |
Argus Android | 3.50 | (−2.62)–9.62 | −0.01 | 0.951 | (−0.17)–0.16 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
4.8 km/h | 6.0 km/h | 8.4 km/h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Μ (SD) | F | p | 95% CI | Μ (SD) | F | p | 95% CI | M (SD) | F | p | 95% CI | |
Criterion | 0.39 (0.01) | - | - | - | 0.49 (0.01) | - | - | - | 0.69 (0.01) | - | - | - |
Accupedo iOS | 0.41 (0.05) | 1.67 | 0.207 | (−0.05)–0.02 | 0.46 (0.05) | 7.80 | 0.009 | (−0.01)–0.07 | 0.63 (0.08) | 20.93 | <0.001 | 0.01–0.11 |
Accupedo Android | 0.40 (0.07) | 0.16 | 0.696 | (−0.05)–0.04 | 0.45 (0.04) | 24.57 | <0.001 | 0.01–0.07 | 0.60 (0.07) | 51.03 | <0.001 | 0.05–0.14 |
Pacer iOS | 0.39 (0.04) | 0.73 | 0.401 | (−0.02)–0.03 | 0.45 (0.06) | 11.99 | 0.002 | 0.00–0.08 | 0.63 (0.12) | 7.39 | 0.011 | (−0.02)–0.13 |
Pacer Android | 0.38 (0.08) | 1.25 | 0.274 | (−0.03)–0.06 | 0.43 (0.06) | 31.53 | <0.001 | 0.02–0.11 | 0.63 (0.13) | 6.22 | 0.019 | (−0.03)–0.15 |
Runtastic iOS | 0.39 (0.10) | 0.01 | 0.923 | (−0.06)–0.06 | 0.53 (0.14) | 1.65 | 0.209 | (−0.13)–0.06 | 0.78 (0.17) | 7.56 | 0.010 | (−0.20)–0.03 |
Runtastic Android | 0.49 (0.16) | 10.45 | 0.003 | (−0.20)–0.01 | 0.54 (0.09) | 6.76 | 0.15 | (−0.10)–0.02 | 0.73 (0.12) | 3.75 | 0.063 | (−0.12)–0.03 |
Argus iOS | 0.44 (0.09) | 7.98 | 0.008 | (−0.10)–0.01 | 0.53 (0.13) | 2.44 | 0.129 | (−0.12)–0.05 | 0.68 (0.17) | 0.19 | 0.665 | (−0.10)–0.12 |
Argus Android | 0.64 (0.41) | 11.04 | 0.002 | (−0.52)–0.02 | 0.65 (0.18) | 24.67 | <0.001 | (−0.27)–(−0.05) | 0.77 (0.20) | 4.74 | 0.038 | (−0.21)–0.05 |
4.8 km/h | 6.0 km/h | 8.4 km/h | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
App | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI |
Accupedo iOS | −0.01 | (−0.03)–0.01 | 3.53 | 0.029 | 0.38–6.68 | 0.03 | 0.01–0.05 | 1.74 | <0.001 | 0.85–2.63 | 0.06 | 0.03–0.09 | −0.47 | 0.653 | (−2.56)–1.63 |
Accupedo Android | −0.01 | (−0.03)–0.02 | −0.75 | 0.731 | (−5.17)–3.67 | 0.04 | 0.02–0.06 | 0.94 | 0.015 | 0.20–1.68 | 0.10 | 0.07–0.12 | 0.48 | 0.644 | (−1.63)–2.59 |
Pacer iOS | 0.01 | (−0.01)–0.02 | 0.84 | 0.485 | (−1.60)–3.28 | 0.04 | 0.02–0.06 | 0.59 | 0.310 | (−0.58)–1.76 | 0.06 | 0.01–0.10 | −1.34 | 0.413 | (−4.64)–1.96 |
Pacer Android | 0.02 | (−0.01)–0.04 | −0.50 | 0.833 | (−5.30)–4.30 | 0.07 | 0.04–0.09 | 0.76 | 0.189 | (−0.39)–1.91 | 0.06 | 0.01–0.11 | 1.60 | 0.400 | (2.23)–5.43 |
Runtastic iOS | 0.00 | (−0.03)–0.04 | −4.09 | 0.157 | (−9.86)–1.67 | −0.03 | (−0.09)–0.02 | 1.09 | 0.401 | (−1.53)–3.72 | −0.09 | (−0.15)–(−0.02) | 4.78 | 0.500 | 0.01–9.54 |
Runtastic Android | −0.10 | (−0.16)–(−0.04) | 4.25 | 0.410 | (−6.15)–14.65 | −0.04 | (−0.08)–(−0.01) | 0.93 | 0.239 | (−0.65)–2.52 | −0.04 | (−0.08)–0.00 | −3.06 | 0.053 | (−6.17)–0.05 |
Argus iOS | −0.04 | (−0.07)–(−0.01) | −8.00 | <0.001 | (−9.28)–3.72 | −0.04 | (−0.09)–0.01 | 0.46 | 0.701 | (−1.96)–2.87 | 0.01 | (−0.05)–0.08 | −2.29 | 0.344 | (−7.16)–2.58 |
Argus Android | −0.25 | (−0.40)–(−0.10) | 20.16 | 0.111 | (−4.96)–45.27 | −0.16 | (−0.22)–(−0.09) | −0.27 | 0.864 | (3.48)–2.94 | −0.08 | (−0.15)–(−0.01) | −1.29 | 0.650 | (−7.07)–4.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamakis, M. Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults. Technologies 2021, 9, 55. https://doi.org/10.3390/technologies9030055
Adamakis M. Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults. Technologies. 2021; 9(3):55. https://doi.org/10.3390/technologies9030055
Chicago/Turabian StyleAdamakis, Manolis. 2021. "Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults" Technologies 9, no. 3: 55. https://doi.org/10.3390/technologies9030055
APA StyleAdamakis, M. (2021). Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults. Technologies, 9(3), 55. https://doi.org/10.3390/technologies9030055