Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Antropometric Assessment
2.4. Accelerometer-Based Apps
2.5. Statistical Analysis
3. Results
3.1. Step Count
3.2. Distance
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; Licence: CC BY-NC-SA 3.0 IGO; Available online https://www.who.int/publications/i/item/9789240015128 (accessed on 15 May 2021).
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; Stamatakis, E.; Bull, F.C. How can global physical activity surveillance adapt to evolving physical activity guidelines? Needs, challenges and future directions. Br. J. Sports Med. 2020, 54, 1468–1473. [Google Scholar] [CrossRef]
- Omura, J.D.; Carlson, S.A.; Paul, P.; Watson, K.B.; Fulton, J.E. National physical activity surveillance: Users of wearable activity monitors as a potential data source. Prev. Med. Rep. 2017, 5, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Althoff, T.; Sosič, R.; Hicks, J.L.; King, A.C.; Delp, S.L.; Leskovec, J. Large-scale physical activity data reveal worldwide activity inequality. Nature 2017, 547, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Del Pozo Cruz, B.; Green, M.A.; Bauman, A.E. Is the COVID-19 lockdown nudging people to be more active: A big data analysis. Br. J. Sports Med. 2020, 54, 1183–1184. [Google Scholar] [CrossRef]
- McCarthy, H.; Potts, H.; Fisher, A. Physical activity behavior before, during, and after COVID-19 restrictions: Longitudinal smartphone-tracking study of adults in the United Kingdom. J. Med. Internet Res. 2021, 23, e23701. [Google Scholar] [CrossRef]
- Pépin, J.L.; Bruno, R.M.; Yang, R.Y.; Vercamer, V.; Jouhaud, P.; Escourrou, P.; Boutouyrie, P. Wearable activity trackers for monitoring adherence to home confinement during the COVID-19 pandemic worldwide: Data aggregation and analysis. J. Med. Internet Res. 2020, 22, e19787. [Google Scholar] [CrossRef]
- Tison, G.H.; Avram, R.; Kuhar, P.; Abreau, S.; Marcus, G.M.; Pletcher, M.J.; Olgin, J.E. Worldwide effect of COVID-19 on physical activity: A descriptive study. Ann. Intern. Med. 2020, 173, 767–770. [Google Scholar] [CrossRef]
- Bent, B.; Dunn, J.P. Wearables in the SARS-CoV-2 pandemic: What are they good for? JMIR mHealth uHealth 2020, 8, e25137. [Google Scholar] [CrossRef]
- Nelson, M.B.; Kaminsky, L.A.; Dickin, D.C.; Montoye, A.H. Validity of consumer-based physical activity monitors for specific activity types. Med. Sci. Sports Exerc. 2016, 48, 1619–1628. [Google Scholar] [CrossRef]
- Rhea, C.K.; Felsberg, D.T.; Maher, J.P. Toward evidence-based smartphone apps to enhance human health: Adoption of behavior change techniques. Am. J. Health Educ. 2018, 49, 210–213. [Google Scholar] [CrossRef]
- Moore, C.C.; McCullough, A.K.; Aguiar, E.J.; Ducharme, S.W.; Tudor-Locke, C. Toward harmonized treadmill-based validation of step-counting wearable technologies: A scoping review. J. Phys. Act. Health 2020, 17, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Feehan, L.M.; Geldman, J.; Sayre, E.C.; Park, C.; Ezzat, A.M.; Yoo, J.Y.; Hamilton, C.B.; Li, L.C. Accuracy of Fitbit devices: Systematic review and narrative syntheses of quantitative data. JMIR mHealth uHealth 2018, 6, e10527. [Google Scholar] [CrossRef]
- Evenson, K.R.; Spade, C.L. Review of validity and reliability of Garmin activity trackers. J. Measur. Phys. Behav. 2020, 3, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Adamakis, M. Physical activity in the era of mHealth big data: Considerations on accuracy and bias. SSP J. Sport Sci. Med. 2019, 2, 6–10. [Google Scholar]
- Brodie, M.A.; Pliner, E.M.; Ho, A.; Li, K.; Chen, Z.; Gandevia, S.C.; Lord, S.R. Big data vs accurate data in health research: Large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias. Med. Hypotheses 2018, 119, 32–36. [Google Scholar] [CrossRef]
- Silva, A.G.; Simões, P.; Queirós, A.; Rodrigues, M.; Rocha, N.P. Mobile apps to quantify aspects of physical activity: A systematic review on its reliability and validity. J. Med. Syst. 2020, 44, 51. [Google Scholar] [CrossRef]
- Leong, J.Y.; Wong, J.E. Accuracy of three Android-based pedometer applications in laboratory and free-living settings. J. Sports Sci. 2017, 35, 14–21. [Google Scholar] [CrossRef]
- Orr, K.; Howe, H.S.; Omran, J.; Smith, K.A.; Palmateer, T.M.; Ma, A.E.; Faulkner, G. Validity of smartphone pedometer applications. BMC Res. Notes 2015, 8, 733. [Google Scholar] [CrossRef] [PubMed]
- Höchsmann, C.; Knaier, R.; Eymann, J.; Hintermann, J.; Infanger, D.; Schmidt-Trucksäss, A. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scand. J. Med. Sci. Sports 2018, 28, 1818–1827. [Google Scholar] [CrossRef]
- Konharn, K.; Eungpinichpong, W.; Promdee, K.; Sangpara, P.; Nongharnpitak, S.; Malila, W.; Karawa, J. Validity and reliability of smartphone applications for the assessment of walking and running in normal-weight and overweight/obese young adults. J. Phys. Act. Health 2016, 13, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: Comparative study. JMIR mHealth uHealth 2018, 6, e94. [Google Scholar] [CrossRef] [PubMed]
- Funk, M.D.; Salazar, C.L.; Martinez, M.; Gonzalez, J.; Leyva, P.; Bassett, D.; Karabulut, M. Validity of smartphone applications at measuring steps: Does wear location matter? J. Measur. Phys. Behav. 2019, 2, 22–27. [Google Scholar] [CrossRef]
- Hartung, V.; Sarshar, M.; Karle, V.; Shammas, L.; Rashid, A.; Roullier, P.; Eilers, C.; Mäurer, M.; Flachenecker, P.; Pfeifer, K.; et al. Validity of consumer activity monitors and an algorithm using smartphone data for measuring steps during different activity types. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 9314. [Google Scholar] [CrossRef]
- Keadle, S.K.; Lyden, K.A.; Strath, S.J.; Staudenmayer, J.W.; Freedson, P.S. A framework to evaluate devices that assess physical behavior. Exerc. Sport Sci. Rev. 2019, 47, 206–214. [Google Scholar] [CrossRef]
- Johnston, W.; Judice, P.B.; Molina García, P.; Mühlen, J.M.; Lykke Skovgaard, E.; Stang, J.; Schumann, M.; Cheng, S.; Bloch, W.; Brønd, J.C.; et al. Recommendations for determining the validity of consumer wearable and smartphone step count: Expert statement and checklist of the INTERLIVE network. Br. J. Sports Med. 2020. [Google Scholar] [CrossRef]
- Adamakis, M. Preliminary validation study of consumer-level activity monitors and mobile applications for step counting under free living conditions. J. Mob. Technol. Med. 2017, 6, 26–33. [Google Scholar] [CrossRef]
- Adamakis, M. Criterion validity of wearable monitors and smartphone applications to measure physical activity energy expenditure in adolescents. Sport Sci. Health 2020, 16, 755–763. [Google Scholar] [CrossRef]
- Warner, R.M. Applied Statistics: From Bivariate through Multivariate Techniques, 2nd ed.; Sage: Los Angeles, CA, USA, 2012. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 8, 307–310. [Google Scholar] [CrossRef]
- Ludbrook, J. Statistical techniques for comparing measurers and methods of measurement: A critical review. Clin. Exp. Pharmacol. Physiol. 2002, 29, 527–536. [Google Scholar] [CrossRef]
- Case, M.A.; Burwick, H.A.; Volpp, K.G.; Patel, M.S. Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA 2015, 313, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Dowd, K.P.; Szeklicki, R.; Minetto, M.A.; Murphy, M.H.; Polito, A.; Ghigo, E.; van der Ploeg, H.; Ekelund, U.; Maciaszek, J.; Stemplewski, R.; et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: A DEDIPAC study. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef]
- John, D.; Morton, A.; Arguello, D.; Lyden, K.; Bassett, D. “What Is a step?” Differences in how a step is detected among three popular activity monitors that have impacted physical activity research. Sensors 2018, 18, 1206. [Google Scholar] [CrossRef] [PubMed]
- Adamakis, M. Comparing the validity of a GPS monitor and a smartphone application to measure physical activity. J. Mob. Technol. Med. 2017, 6, 28–38. [Google Scholar] [CrossRef][Green Version]
- Pobiruchin, M.; Suleder, J.; Zowalla, R.; Wiesner, M. Accuracy and adoption of wearable technology used by active citizens: A marathon event field study. JMIR mHealth uHealth 2017, 5, e24. [Google Scholar] [CrossRef]
Males (n = 11) | Females (n = 19) | Total (n = 30) | |
---|---|---|---|
Μ ± SD | Μ ± SD | Μ ± SD | |
Age (years) | 26.0 ± 6.6 | 25.8 ± 5.2 | 25.9 ± 5.7 |
Weight (kg) | 83.2 ± 16.2 | 63.4 ± 9.3 | 70.7 ± 1.7 |
Height (m) | 1.79 ± 0.09 | 1.64 ± 0.06 | 1.70 ± 0.10 |
Body mass index (kg/m2) | 24.7 ± 3.7 | 23.6 ± 3.9 | 24.4 ± 3.9 |
Resting heart rate (bpm) | 72.5 ± 7.3 | 68.5 ± 5.5 | 70.0 ± 6.4 |
Walking step length (cm) | 74.5 ± 6.4 | 62.2 ± 6.2 | 66.7 ± 8.6 |
Running step length (cm) | 101.5 ± 7.5 | 80.9 ± 5.9 | 88.5 ± 11.9 |
4.8 km/h | 6.0 km/h | 8.4 km/h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Μ (SD) | F | p | 95% CI | Μ (SD) | F | p | 95% CI | M (SD) | F | p | 95% CI | |
Criterion | 569 (39) | - | - | - | 622 (36) | - | - | - | 751 (40) | - | - | - |
Accupedo iOS | 562 (56) | 12.87 | 0.001 | 0.11–15.02 | 616 (34) | 20.21 | <0.001 | 1.35–11.25 | 745 (40) | 9.65 | 0.004 | (−0.81)–12.54 |
Accupedo Android | 566 (42) | 1.37 | 0.251 | (−7.07)–14.07 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
Pacer iOS | 562 (56) | 12.87 | 0.001 | 0.11–15.02 | 616 (34) | 20.21 | <0.001 | 1.35–11.25 | 745 (40) | 9.65 | 0.004 | (−0.81)–12.54 |
Pacer Android | 565 (42) | 1.55 | 0.224 | (−6.89)–14.35 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
Runtastic iOS | 558 (41) | 6.22 | 0.019 | (−4.55)–26.35 | 616 (34) | 20.21 | <0.001 | 1.35–11.25 | 743 (41) | 7.05 | 0.013 | (−2.83)–19.90 |
Runtastic Android | 573 (54) | 0.25 | 0.624 | (−32.23)–24.30 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
Argus iOS | 555 (52) | 3.62 | 0.067 | (−12.22)–40.69 | 607 (56) | 2.69 | 0.112 | (−17.70)–48.30 | 745 (40) | 9.65 | 0.004 | (−0.81)–12.54 |
Argus Android | 566 (42) | 1.37 | 0.251 | (−7.07)–14.07 | 625 (40) | 1.75 | 0.196 | (−9.43)–4.30 | 752 (39) | 1.16 | 0.039 | (−3.28)–1.75 |
4.8 km/h | 6.0 km/h | 8.4 km/h | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
App | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI |
Accupedo iOS | 7.57 | 3.25–11.88 | 0.10 | 0.063 | (−0.01)–0.21 | 6.30 | 3.43–9.17 | 0.08 | 0.052 | 0.00–0.15 | 5.87 | 2.00–9.73 | 0.01 | 0.789 | (−0.09)–0.11 |
Accupedo Android | 3.50 | (−2.62)–9.62 | 0.01 | 0.951 | (−0.17)–0.16 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
Pacer iOS | 7.57 | 3.25–11.88 | 0.10 | 0.063 | (−0.01)–0.21 | 6.30 | 3.43–9.17 | 0.08 | 0.052 | 0.00–0.15 | 5.87 | 2.00–9.73 | 0.01 | 0.789 | (−0.09)–0.11 |
Pacer Android | 3.73 | (−2.41)–9.88 | −0.01 | 0.895 | (−0.18)–0.15 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
Runtastic iOS | 10.90 | 1.96–19.84 | 0.12 | 0.286 | (−0.11)–0.36 | 6.30 | 3.43–9.17 | 0.08 | 0.052 | 0.00–0.15 | 8.53 | 1.96–15.11 | 0.06 | 0.446 | (−0.11)–0.23 |
Runtastic Android | −3.97 | (−20.32)–12.39 | 0.18 | 0.407 | (−0.26)–0.61 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
Argus iOS | 14.23 | (−1.07)–29.54 | 0.15 | 0.465 | (−0.26)–0.55 | 15.30 | (−3.79)–34.39 | 0.29 | 0.276 | (−0.25)–0.83 | 5.87 | 2.00–9.73 | 0.01 | 0.789 | (−0.09)–0.11 |
Argus Android | 3.50 | (−2.62)–9.62 | −0.01 | 0.951 | (−0.17)–0.16 | −2.57 | (−6.54)–1.40 | −0.07 | 0.202 | (−0.18)–0.04 | −0.77 | (−2.22)–0.69 | 0.01 | 0.498 | (−0.03)–0.05 |
4.8 km/h | 6.0 km/h | 8.4 km/h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Μ (SD) | F | p | 95% CI | Μ (SD) | F | p | 95% CI | M (SD) | F | p | 95% CI | |
Criterion | 0.39 (0.01) | - | - | - | 0.49 (0.01) | - | - | - | 0.69 (0.01) | - | - | - |
Accupedo iOS | 0.41 (0.05) | 1.67 | 0.207 | (−0.05)–0.02 | 0.46 (0.05) | 7.80 | 0.009 | (−0.01)–0.07 | 0.63 (0.08) | 20.93 | <0.001 | 0.01–0.11 |
Accupedo Android | 0.40 (0.07) | 0.16 | 0.696 | (−0.05)–0.04 | 0.45 (0.04) | 24.57 | <0.001 | 0.01–0.07 | 0.60 (0.07) | 51.03 | <0.001 | 0.05–0.14 |
Pacer iOS | 0.39 (0.04) | 0.73 | 0.401 | (−0.02)–0.03 | 0.45 (0.06) | 11.99 | 0.002 | 0.00–0.08 | 0.63 (0.12) | 7.39 | 0.011 | (−0.02)–0.13 |
Pacer Android | 0.38 (0.08) | 1.25 | 0.274 | (−0.03)–0.06 | 0.43 (0.06) | 31.53 | <0.001 | 0.02–0.11 | 0.63 (0.13) | 6.22 | 0.019 | (−0.03)–0.15 |
Runtastic iOS | 0.39 (0.10) | 0.01 | 0.923 | (−0.06)–0.06 | 0.53 (0.14) | 1.65 | 0.209 | (−0.13)–0.06 | 0.78 (0.17) | 7.56 | 0.010 | (−0.20)–0.03 |
Runtastic Android | 0.49 (0.16) | 10.45 | 0.003 | (−0.20)–0.01 | 0.54 (0.09) | 6.76 | 0.15 | (−0.10)–0.02 | 0.73 (0.12) | 3.75 | 0.063 | (−0.12)–0.03 |
Argus iOS | 0.44 (0.09) | 7.98 | 0.008 | (−0.10)–0.01 | 0.53 (0.13) | 2.44 | 0.129 | (−0.12)–0.05 | 0.68 (0.17) | 0.19 | 0.665 | (−0.10)–0.12 |
Argus Android | 0.64 (0.41) | 11.04 | 0.002 | (−0.52)–0.02 | 0.65 (0.18) | 24.67 | <0.001 | (−0.27)–(−0.05) | 0.77 (0.20) | 4.74 | 0.038 | (−0.21)–0.05 |
4.8 km/h | 6.0 km/h | 8.4 km/h | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
App | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI | Μ diff | 95% CI | Slope | p | 95% CI |
Accupedo iOS | −0.01 | (−0.03)–0.01 | 3.53 | 0.029 | 0.38–6.68 | 0.03 | 0.01–0.05 | 1.74 | <0.001 | 0.85–2.63 | 0.06 | 0.03–0.09 | −0.47 | 0.653 | (−2.56)–1.63 |
Accupedo Android | −0.01 | (−0.03)–0.02 | −0.75 | 0.731 | (−5.17)–3.67 | 0.04 | 0.02–0.06 | 0.94 | 0.015 | 0.20–1.68 | 0.10 | 0.07–0.12 | 0.48 | 0.644 | (−1.63)–2.59 |
Pacer iOS | 0.01 | (−0.01)–0.02 | 0.84 | 0.485 | (−1.60)–3.28 | 0.04 | 0.02–0.06 | 0.59 | 0.310 | (−0.58)–1.76 | 0.06 | 0.01–0.10 | −1.34 | 0.413 | (−4.64)–1.96 |
Pacer Android | 0.02 | (−0.01)–0.04 | −0.50 | 0.833 | (−5.30)–4.30 | 0.07 | 0.04–0.09 | 0.76 | 0.189 | (−0.39)–1.91 | 0.06 | 0.01–0.11 | 1.60 | 0.400 | (2.23)–5.43 |
Runtastic iOS | 0.00 | (−0.03)–0.04 | −4.09 | 0.157 | (−9.86)–1.67 | −0.03 | (−0.09)–0.02 | 1.09 | 0.401 | (−1.53)–3.72 | −0.09 | (−0.15)–(−0.02) | 4.78 | 0.500 | 0.01–9.54 |
Runtastic Android | −0.10 | (−0.16)–(−0.04) | 4.25 | 0.410 | (−6.15)–14.65 | −0.04 | (−0.08)–(−0.01) | 0.93 | 0.239 | (−0.65)–2.52 | −0.04 | (−0.08)–0.00 | −3.06 | 0.053 | (−6.17)–0.05 |
Argus iOS | −0.04 | (−0.07)–(−0.01) | −8.00 | <0.001 | (−9.28)–3.72 | −0.04 | (−0.09)–0.01 | 0.46 | 0.701 | (−1.96)–2.87 | 0.01 | (−0.05)–0.08 | −2.29 | 0.344 | (−7.16)–2.58 |
Argus Android | −0.25 | (−0.40)–(−0.10) | 20.16 | 0.111 | (−4.96)–45.27 | −0.16 | (−0.22)–(−0.09) | −0.27 | 0.864 | (3.48)–2.94 | −0.08 | (−0.15)–(−0.01) | −1.29 | 0.650 | (−7.07)–4.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamakis, M. Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults. Technologies 2021, 9, 55. https://doi.org/10.3390/technologies9030055
Adamakis M. Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults. Technologies. 2021; 9(3):55. https://doi.org/10.3390/technologies9030055
Chicago/Turabian StyleAdamakis, Manolis. 2021. "Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults" Technologies 9, no. 3: 55. https://doi.org/10.3390/technologies9030055
APA StyleAdamakis, M. (2021). Criterion Validity of iOS and Android Applications to Measure Steps and Distance in Adults. Technologies, 9(3), 55. https://doi.org/10.3390/technologies9030055