Assessing Heart Rate Using Consumer Technology Association Standards
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Apple
3.2. Garmin
3.3. Jabra
3.4. Scosche Rhythm 24
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDC Worldwide Quarterly Wearable Device Tracker. 16 December 2019. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS45737919 (accessed on 15 December 2020).
- Vijayalakshmi, K.; Uma, S.; Bhuvanya, R.; Suresh, A. A demand for wearable devices in health care. Int. J. Eng. Technol. 2018, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Consumer Technology Association. Physical Activity Monitoring for Step Counting, ANSI/CTA-2056; Consumer Technology Association: Hopewell, VA, USA, 2016. [Google Scholar]
- Consumer Technology Association. Methodology of Measurements for Features in Sleep Tracking Consumer Technology Devices and Applications, ANSI/CTA/NSF-2052; Consumer Technology Association: Hopewell, VA, USA, 2017. [Google Scholar]
- Consumer Technology Association. Physical Activity Monitoring for Heart Rate, ANSI/CTA-2065; Consumer Technology Association: Hopewell, VA, USA, 2018. [Google Scholar]
- Bunn, J.A.; Jones, C.; Oliviera, A.; Webster, M.J. Assessment of step accuracy using the Consumer Technology Association standard. J. Sports Sci. 2019, 37, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Montes, J.; Tandy, R.; Young, J.; Lee, S.P.; Navalta, J.W. Step count reliability and validity of five wearable technology devices while walking and jogging in both a free motion setting and on a treadmill. Int. J. Exerc. Sci. 2020, 13, 410–426. [Google Scholar]
- Moore, C.C.; McCullough, A.K.; Aguiar, E.J.; Ducharme, S.W.; Tudor-Locke, C. Toward harmonized treadmill-based validation of step-counting wearable technologies: A scoping review. J. Phys. Act. Health 2020, 17, 840–852. [Google Scholar] [CrossRef]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Aguilar, C.D.; Lujan, A.; Guzman, G.; Kam, B.K.; Manning, J.W.; DeBeliso, M. Wearable device validity in determining step count during hiking and trail running. J. Meas. Phys. Behav. 2018, 1, 86–93. [Google Scholar] [CrossRef]
- Bunn, J.; Wells, E.; Manor, J.; Webster, M. Evaluation of earbud and wristwatch heart rate monitors during aerobic and resistance training. Int. J. Exerc. Sci. 2019, 12, 374–384. [Google Scholar]
- Nelson, B.W.; Allen, N.B. Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-h period: Intraindividual validation study. JMIR mHealth uHealth 2019, 7, e10828. [Google Scholar] [CrossRef]
- Nuss, K.J.; Sanford, J.L.; Archambault, L.J.; Schlemer, E.J.; Blake, S.; Courtney, J.B.; Hulett, N.A.; Li, K. Accuracy of heart rate and energy expenditure estimations of wrist-worn and arm-worn Apple watches. J. Meas. Phys. Behav. 2019, 2, 166–175. [Google Scholar] [CrossRef]
- Bassett, D.R.; Toth, L.P.; LaMunion, S.R.; Crouter, S.E. Step counting: A review of measurement considerations and health-related applications. Sports Med. 2017, 47, 1303–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunn, J.A.; Navalta, J.W.; Fountaine, C.J.; Reece, J.D. Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503–515. [Google Scholar] [PubMed]
- Collins, T.; Woolley, S.I.; Oniani, S.; Pires, I.M.; Garcia, N.M.; Ledger, S.J.; Pandyan, A. Version reporting and assessment approaches for new and updated activity and heart rate monitors. Sensors 2019, 19, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Diller, K.R.; Castriotta, R.J. Accuracy of wristband Fitbit models in assessing sleep: Systematic review and meta-analysis. J. Med. Internet Res. 2019, 21, e16273. [Google Scholar] [CrossRef]
- Oniani, S.; Woolley, S.I.; Pires, I.M.; Garcia, N.M.; Collins, T.; Ledger, S.; Pandyan, A. Reliability assessment of new and updated consumer-grade activity and heart rate monitors. In Proceedings of the IARIA, The Ninth International Conference on Sensor Device Technologies and Applications, Venice, Italy, 16–20 September 2018. [Google Scholar]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillinov, S.; Etiwy, M.; Wang, R.; Blackburn, G.; Phelan, D.; Gillinov, A.M.; Houghtaling, P.; Javadikasgari, H.; Desai, M.Y. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med. Sci. Sports Exerc. 2017, 49, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W.; Ramirez, G.G.; Maxell, C.; Radzak, K.N.; McGinnis, G.R. Validity and reliability of three commercially available smart sports bras during treadmill walking and running. Sci. Rep. 2020, 10, 7397. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Salatto, R.W.; Manning, J.W.; DeBeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE 2020, 15, e0238569. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project. Jamovi (Version 1.2). Computer Software. Available online: https://www.jamovi.org (accessed on 1 June 2020).
- Seshadri, D.R.; Bittel, B.; Browsky, D.; Houghtaling, P.; Drummond, C.K.; Desai, M.; Gillinov, A.M. Accuracy of the Apple watch 4 to measure heart rate in patients with atrial fibrillation. IEEE J. Transl. Eng. Health Med. 2019, 8, 2700204. [Google Scholar] [CrossRef]
- Wang, R.; Blackburn, G.; Desai, M.; Phelan, D.; Gillinov, L.; Houghtaling, P.; Gillinov, M. Accuracy of wrist-worn heart rate monitors. JAMA Cardiol. 2017, 2, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef]
- Wallen, M.P.; Gomersall, S.R.; Keating, S.E.; Wisløff, U.; Coombes, J.S. Accuracy of heart rate watches: Implications for weight management. PLoS ONE 2016, 11, e0154420. [Google Scholar] [CrossRef] [Green Version]
- Khushhal, A.; Nichols, S.; Evans, W.; Gleadall-Siddall, D.O.; Page, R.; O’Doherty, A.F.; Carroll, S.; Ingle, L.; Grant Abt, G. Validity and reliability of the apple watch for measuring heart rate during exercise. Sports Med. Int. Open 2017, 1, E206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, E.A.; Nuss, K.; Comstock, A.; Reinwald, S.; Blake, S.; Pimentel, R.E.; Brian, L.; Tracy, B.L.; Li, K. Heart rate measures from the Apple watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. J. Sports Sci. 2019, 37, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.E.; An, H.S.; Dinkel, D.M.; Noble, J.M.; Lee, J.M. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport Exerc. Med. 2016, 2, e000106. [Google Scholar] [CrossRef] [Green Version]
- Leboeuf, S.F.; Aumer, M.E.; Kraus, W.E.; Johnson, J.L.; Duscha, B. Earbud-based sensor for the assessment of energy expenditure, HR, and VO2max. Med. Sci. Sports Exerc. 2014, 46, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Boudreaux, B.D.; Hebert, E.P.; Hollander, D.B.; Williams, B.M.; Cormier, C.L.; Naquin, M.R.; Gillan, W.W.; Gusew, E.E.; Kraemer, R.R. Validity of wearable activity monitors during cycling and resistance exercise. Med. Sci. Sports Exerc. 2018, 50, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Leader, N.; Dorian, P.; Lam, J.; Lee, C.; Woo, A.; Chow, C. Evaluation of heart rate trackers in patients with atrial fibrillation. Can. J. Cardiol. 2018, 34, S152–S153. [Google Scholar] [CrossRef] [Green Version]
- Claes, J.; Buys, R.; Avila, A.; Finlay, D.; Kennedy, A.; Guldenring, D.; Budts, W.; Cornelissen, V. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. J. Med. Eng. Technol. 2017, 41, 480–485. [Google Scholar] [CrossRef]
- Dooley, E.E.; Golaszewski, N.M.; Bartholomew, J.B. Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR mHealth uHealth 2017, 5, e34. [Google Scholar] [CrossRef]
- Støve, M.P.; Haucke, E.; Nymann, M.L.; Sigurdsson, T.; Larsen, B.T. Accuracy of the wearable activity tracker Garmin Forerunner 235 for the assessment of heart rate during rest and activity. J. Sports Sci. 2019, 37, 895–901. [Google Scholar] [CrossRef]
Sedentary | Lifestyle | Walking | Dynamic Walk-Jog | Running | Cycling | |
---|---|---|---|---|---|---|
Total n data points (n removed, % removed) | 1416 (0, 0%) | 3455 (0, 0%) | 1868 (0, 0%) | 3342 (0, 0%) | 1934 (0, 0%) | 3302 (0, 0%) |
Mean bias (bpm) | 0.19 (0.30) | 0.09 (3.32) | 0.02 (0.29) | 0.37 (1.00) | −0.16 (0.52) | 0.09 (0.04) |
MAPE (%) | 1.69 | 2.95 | 1.50 | 1.17% | 0.92 | 0.62 |
ICC | 0.989 (0.988, 0.990) | 0.963 (0.960, 0.965) | 0.991 (0.990, 0.991) | 0.993 (0.992, 0.994) | 0.992 (0.991, 0.993) | 0.998 (0.998, 0.998) |
LOA | −21.63 (−22.43, −20.83) to 22.01 (21.21, 22.82) | −38.58 (−39.58, −37.59) to 38.77 (37.78, 39.76) | −21.16 (−22.12, −20.19) to 21.19 (20.23, 22.16) | −35.05 (−35.67, −34.42) to 35.78 (35.16, 36.41) | −36.53 (−37.50, −35.56) to 36.22 (35.24, 37.19) | −13.40 (−15.26, −11.53) to 13.57 (11.71, 15.43) |
Sedentary | Lifestyle | Walking | Dynamic Walk-Jog | Running | Cycling | |
---|---|---|---|---|---|---|
Total n data points (n removed, % removed) | 461 (88, 4.5%) | 1964 (0, 0%) | 752 (0, 0%) | 2087 (0, 0%) | 1034 (0, 0%) | 1281 (0, 0%) |
Mean bias (bpm) | −4.30 (115.9) | −3.20 (18.53) | −1.56 (23.42) | −2.32 (37.07) | −0.93 (69.41) | 3.14 (119.68) |
MAPE (%) | 15.33 | 12.09 | 8.75 | 12.63 | 11.22 | 7.56 |
ICC | 0.444 (0.368, 0.515) | 0.710 (0.687, 0.733) | 0.802 (0.775, 0.826) | 0.732 (0.711, 0.751) | 0.710 (0.678, 0.739) | 0.809 (0.789, 0.827) |
LOA | −84.95 (−92.85, −77.05) to 76.35 (68.45, 84.25) | −129.89 (−134.52, −125.25) to 123.49 (118.85, 128.12) | −157.57 (−166.00, −149.14) to 154.45 (146.02, 162.88) | −219.11 (−226.28, −211.95) to 214.48 (207.32, 221.65) | −257.47 (−269.61, −245.34) to 255.61 (243.47, 267.74) | −226.68 (−237.05, −216.30) to 232.95 (222.57, 243.33) |
Sedentary | Lifestyle | Walking | Dynamic Walk-Jog | Running | Cycling | |
---|---|---|---|---|---|---|
Total n data points (n removed, % removed) | 7357 (48, 0.6%) | 17,195 (225, 1.3%) | 9475 (178, 1.8%) | 15,819 (739, 4.5%) | 8602 (333, 3.4%) | 15,266 (295, 1.8%) |
Mean bias (bpm) | 1.32 (5.09) | 1.60 (15.31) | −1.57 (29.49) | 2.13 (506.44) | −1.68 (40.61) | 2.27 (27.07) |
MAPE (%) | 4.14 | 7.58 | 7.91 | 10.80 | 7.91 | 7.15 |
ICC | 0.937 (0.934, 0.939) | 0.826 (0.821, 0.830) | 0.833 (0.827, 0.839) | 0.906 (0.903, 0.909) | 0.923 (0.920, 0.926) | 0.904 (0.901, 0.907) |
LOA | −38.91 (−39.86, −37.96) to 41.57 (40.62, 42.52) | −80.27 (−82.08, −78.46) to 83.48 (81.67, 85.29) | −65.74 (−68.17, −63.30) to 62.59 (60.16, 65.03) | −208.08 (−210.98, −191.19) to 205.34 (195.44, 215.23) | −82.89 (−85.80, −79.99) to 79.53 (76.62, 82.43) | −75.49 (−77.80, −73.18) to 80.04 (77.73, 82.34) |
Sedentary | Lifestyle | Walking | Dynamic Walk-Jog | Running | Cycling | |
---|---|---|---|---|---|---|
Total n data points (n removed, % removed) | 7405 (0, 0%) | 17,420 (0, 0%) | 9653 (0, 0%) | 16,558 (0, 0%) | 9636 (0, 0%) | 16,547 (0, 0%) |
Mean bias (bpm) | 0.83 (3.96) | 0.30 (2.36) | 0.12 (0.24) | 0.37 (0.94) | −0.01 (0.78) | 0.17 (0.02) |
MAPE (%) | 2.71 | 4.12 | 2.33 | 1.54 | 1.24 | 0.90 |
ICC | 0.959 (0.957, 0.961) | 0.940 (0.939, 0.942) | 0.978 (0.978, 0.979) | 0.991 (0.991, 0.992) | 0.990 (0.990, 0.990) | 0.997 (0.997, 0.997) |
LOA | 30.55 (−31.09, −30.02) to 32.21 (31.67, 32.74) | −49.50 (−50.14, −48.85) to 50.09 (49.45, 50.73) | −29.02 (−29.77, −28.27) to 29.25 (28.50, 30.00) | −35.34 (−35.79, −34.89) to 36.05 (35.60, 36.50) | −35.31 (−35.69, −34.94) to 35.29 (34.92, 35.67) | −15.88 (−17.46, −14.30) to 16.22 (14.64, 17.80) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reece, J.D.; Bunn, J.A.; Choi, M.; Navalta, J.W. Assessing Heart Rate Using Consumer Technology Association Standards. Technologies 2021, 9, 46. https://doi.org/10.3390/technologies9030046
Reece JD, Bunn JA, Choi M, Navalta JW. Assessing Heart Rate Using Consumer Technology Association Standards. Technologies. 2021; 9(3):46. https://doi.org/10.3390/technologies9030046
Chicago/Turabian StyleReece, Joel D., Jennifer A. Bunn, Minsoo Choi, and James W. Navalta. 2021. "Assessing Heart Rate Using Consumer Technology Association Standards" Technologies 9, no. 3: 46. https://doi.org/10.3390/technologies9030046
APA StyleReece, J. D., Bunn, J. A., Choi, M., & Navalta, J. W. (2021). Assessing Heart Rate Using Consumer Technology Association Standards. Technologies, 9(3), 46. https://doi.org/10.3390/technologies9030046