Minimum MOS Transistor Count Fractional-Order Voltage-Mode and Current-Mode Filters †
Abstract
:1. Introduction
2. Fractional-Order Filters
3. Proposed Implementations
3.1. Voltage-Mode Filters
3.2. Current-Mode Filters
4. Simulation and Comparison Results
4.1. Voltage-Mode Filters
4.2. Current-Mode Filters
4.3. Comparison Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MOS | Metal-Oxide-Semiconductor |
CMOS | Complementary Metal-Oxide-Semiconductor |
IC | Integrated Circuit |
RC | Resistor Capacitor |
OP-AMP | Operational Amplifier |
OTA | Operational Transconductance Amplifier |
CCII | Second-generation Current Conveyor |
CFOA | Current Feedback Operational Amplifier |
CM | Current-Mirrors |
References
- Hidalgo-Reyes, J.; Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; Alvarado-Martínez, V.M.; López-López, M.G. Classical and fractional-order modeling of equivalent electrical circuits for supercapacitors and batteries, energy management strategies for hybrid systems and methods for the state of charge estimation: A state of the art review. Microelectron. J. 2019, 85, 109–128. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Taneco-Hernández, M.A.; Escobar-Jiménez, R.F. Fractional operator without singular kernel: Applications to linear electrical circuits. Int. J. Circuit Theory Appl. 2018, 46, 2394–2419. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Elwakil, A.S. Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 2010, 10, 40–50. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Psychalinos, C.; Elwakil, A. Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology; Springer: Berlin/Heidelberger, Germany, 2017. [Google Scholar] [CrossRef]
- Agambayev, A.; Farhat, M.; Patole, S.P.; Hassan, A.H.; Bagci, H.; Salama, K.N. An ultra-broadband single-component fractional-order capacitor using MoS2-ferroelectric polymer composite. Appl. Phys. Lett. 2018, 113, 093505. [Google Scholar] [CrossRef] [Green Version]
- Biswas, K.; Caponetto, R.; Di Pasquale, G.; Graziani, S.; Pollicino, A.; Murgano, E. Realization and characterization of carbon black based fractional order element. Microelectron. J. 2018, 82, 22–28. [Google Scholar] [CrossRef]
- Caponetto, R.; Di Pasquale, G.; Graziani, S.; Murgano, E.; Pollicino, A. Realization of Green Fractional Order Devices by using Bacterial Cellulose. AEU Int. J. Electron. Commun. 2019, 112, 152927. [Google Scholar] [CrossRef]
- Carlson, G.; Halijak, C. Approximation of fractional capacitors (1/s)ˆ(1/n) by a regular Newton process. IEEE Trans. Circuit Theory 1964, 11, 210–213. [Google Scholar] [CrossRef]
- Valsa, J.; Vlach, J. RC models of a constant phase element. Int. J. Circuit Theory Appl. 2013, 41, 59–67. [Google Scholar] [CrossRef]
- Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M. Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 25–39. [Google Scholar] [CrossRef]
- Krishna, B. Studies on fractional order differentiators and integrators: A survey. Signal Process. 2011, 91, 386–426. [Google Scholar] [CrossRef]
- Matsuda, K.; Fujii, H. H∞ optimized wave-absorbing control-Analytical and experimental results. J. Guid. Control Dyn. 1993, 16, 1146–1153. [Google Scholar] [CrossRef]
- El-Khazali, R. On the biquadratic approximation of fractional-order Laplacian operators. Analog. Integr. Circuits Signal Process. 2015, 82, 503–517. [Google Scholar] [CrossRef]
- AbdelAty, A.; Elwakil, A.; Radwan, A.; Psychalinos, C.; Maundy, B. Approximation of the fractional-order Laplacian sα as a weighted sum of first-order high-pass filters. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1114–1118. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Kartci, A.; Koton, J.; Herencsar, N.; Psychalinos, C. Comparative study of discrete component realizations of fractional-order capacitor and inductor active emulators. J. Circuits Syst. Comput. 2018, 27, 1850170. [Google Scholar] [CrossRef]
- Adhikary, A.; Sen, S.; Biswas, K. Practical realization of tunable fractional order parallel resonator and fractional order filters. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 1142–1151. [Google Scholar] [CrossRef]
- Baxevanaki, K.; Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Electronically tunable fractional-order highpass filter for phantom electroencephalographic system model implementation. AEU Int. J. Electron. Commun. 2019, 110, 152850. [Google Scholar] [CrossRef]
- Bertsias, P.; Psychalinos, C.; Elwakil, A.; Safari, L.; Minaei, S. Design and application examples of CMOS fractional-order differentiators and integrators. Microelectron. J. 2019, 83, 155–167. [Google Scholar] [CrossRef]
- Bertsias, P.; Psychalinos, C.; Maundy, B.J.; Elwakil, A.S.; Radwan, A.G. Partial fraction expansion-based realizations of fractional-order differentiators and integrators using active filters. Int. J. Circuit Theory Appl. 2019, 47, 513–531. [Google Scholar] [CrossRef]
- Dimeas, I.; Tsirimokou, G.; Psychalinos, C.; Elwakil, A.S. Experimental verification of fractional-order filters using a reconfigurable fractional-order impedance emulator. J. Circuits Syst. Comput. 2017, 26, 1750142. [Google Scholar] [CrossRef]
- Dvorak, J.; Langhammer, L.; Jerabek, J.; Koton, J.; Sotner, R.; Polak, J. Synthesis and Analysis of Electronically Adjustable Fractional-Order Low-Pass Filter. J. Circuits Syst. Comput. 2018, 27, 1850032. [Google Scholar] [CrossRef]
- Freeborn, T.J.; Maundy, B.; Elwakil, A.S. Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 2010, 4, 514–524. [Google Scholar] [CrossRef]
- Jerabek, J.; Sotner, R.; Dvorak, J.; Polak, J.; Kubanek, D.; Herencsar, N.; Koton, J. Reconfigurable fractional-order filter with electronically controllable slope of attenuation, pole frequency and type of approximation. J. Circuits Syst. Comput. 2017, 26, 1750157. [Google Scholar] [CrossRef] [Green Version]
- Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Single active element implementation of fractional-order differentiators and integrators. AEU Int. J. Electron. Commun. 2018, 97, 6–15. [Google Scholar] [CrossRef]
- Kaskouta, E.; Kamilaris, T.; Sotner, R.; Jerabek, J.; Psychalinos, C. Single-Input Multiple-Output and Multiple-Input Single-Output Fractional-Order Filter Designs. In Proceedings of the 2018 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July 2018; pp. 1–4. [Google Scholar]
- Khateb, F.; Kubánek, D.; Tsirimokou, G.; Psychalinos, C. Fractional-order filters based on low-voltage DDCCs. Microelectron. J. 2016, 50, 50–59. [Google Scholar] [CrossRef]
- Koton, J.; Kubanek, D.; Sladok, O.; Vrba, K.; Shadrin, A.; Ushakov, P. Fractional-Order Low-and High-Pass Filters Using UVCs. J. Circuits Syst. Comput. 2017, 26, 1750192. [Google Scholar] [CrossRef]
- Koton, J.; Kubanek, D.; Herencsar, N.; Dvorak, J.; Psychalinos, C. Designing constant phase elements of complement order. Analog Integr. Circuits Signal Process. 2018, 97, 107–114. [Google Scholar] [CrossRef]
- Langhammer, L.; Sotner, R.; Dvorak, J.; Domansky, O.; Jerabek, J.; Uher, J. A 1+ α Low-Pass Fractional-Order Frequency Filter with Adjustable Parameters. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017; pp. 724–729. [Google Scholar]
- Radwan, A.G.; Soliman, A.M.; Elwakil, A.S. First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 2008, 17, 55–66. [Google Scholar] [CrossRef]
- Said, L.A.; Ismail, S.M.; Radwan, A.G.; Madian, A.H.; El-Yazeed, M.F.A.; Soliman, A.M. On the optimization of fractional order low-pass filters. Circuits Syst. Signal Process. 2016, 35, 2017–2039. [Google Scholar] [CrossRef]
- Sotner, R.; Jerabek, J.; Petrzela, J.; Domansky, O.; Tsirimokou, G.; Psychalinos, C. Synthesis and design of constant phase elements based on the multiplication of electronically controllable bilinear immittances in practice. AEU Int. J. Electron. Commun. 2017, 78, 98–113. [Google Scholar] [CrossRef]
- Sotner, R.; Polak, L.; Jerabek, J.; Petrzela, J. Simple two operational transconductance amplifiers-based electronically controllable bilinear two port for fractional-order synthesis. Electron. Lett. 2018, 54, 1164–1166. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Psychalinos, C.; Elwakil, A.S.; Salama, K.N. Electronically tunable fully integrated fractional-order resonator. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Tsirimokou, G.; Psychalinos, C.; Elwakil, A.S. Fractional-order electronically controlled generalized filters. Int. J. Circuit Theory Appl. 2017, 45, 595–612. [Google Scholar] [CrossRef]
- Mohan, P.A. VLSI Analog Filters: Active RC, OTA-C, and SC; Springer Science & Business Media: Berlin/Heidelberger, Germany, 2012. [Google Scholar]
- Bertsias, P.; Psychalinos, C.; Elwakil, A.; Maundy, B. Simple Multi-Function Fractional-Order Filter Designs. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar]
- Tsirimokou, G. A systematic procedure for deriving RC networks of fractional-order elements emulators using MATLAB. AEU Int. J. Electron. Commun. 2017, 78, 7–14. [Google Scholar] [CrossRef]
- Vittoz, E.; Fellrath, J. CMOS analog integrated circuits based on weak inversion operation. IEEE J. Solid-State Circuits 1977, 12, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Enz, C.C.; Krummenacher, F.; Vittoz, E.A. An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr. Circuits Signal Process. 1995, 8, 83–114. [Google Scholar] [CrossRef]
Element | |||
---|---|---|---|
12 M | 30 M | 90 M | |
1.6 M | 457.7 k | 133.1 k | |
6.4 M | 3.8 M | 3.2 M | |
10.6 M | 8.9 M | 10.8 M | |
11 M | 13.4 M | 23.1 M | |
472 pF | 1.1 nF | 2.1 nF | |
972.3 pF | 1.4 nF | 1.4 nF | |
2.4 nF | 2.5 nF | 1.8 nF | |
13.5 nF | 9 nF | 4.3 nF |
Parameter | |||
---|---|---|---|
(Hz) | 0.76 (0.7) | 2.6 (2.7) | 5.2 (5.3) |
phase @ (deg) | −8.5 (−8.3) | −14.8 (−15) | −24 (−23.9) |
slope (dB/Oct.) | −1.6 (−1.8) | −2.8 (−3) | −4 (−4.2) |
Parameter | |||
---|---|---|---|
(Hz) | 142 (145) | 38 (37.3) | 18 (18.7) |
phase @ (deg) | −172 (−172) | −165 (−165) | −156 (−156) |
slope (dB/Oct.) | 1.5 (1.8) | 2.7 (3) | 3.9 (4.2) |
Parameter | |||
---|---|---|---|
(Hz) | 6.6 (6.6) | 10 (10) | 16 (16.2) |
(dB) | −9.8 (−9.8) | −10.7 (−10.7) | −7.9 (−7.8) |
(Hz) | 1 (1) | 1 (1) | 5 (5.2) |
(Hz) | 36.3 (37) | 93 (96) | 72 (70) |
Parameter | |||
---|---|---|---|
(Hz) | 0.76 (0.7) | 2.6 (2.7) | 5.2 (5.3) |
phase @ (deg) | −8.5 (−8.3) | −14.8 (−15) | −24 (−23.9) |
slope (dB/Oct.) | −1.6 (−1.8) | −2.8 (−3) | −4 (−4.2) |
Parameter | |||
---|---|---|---|
(Hz) | 143 (145) | 36.4 (37.3) | 18.2 (18.7) |
phase @ (deg) | 8 (8.3) | 14.7 (15) | 23.9 (23.9) |
slope (dB/Oct.) | 1.7 (1.8) | 2.9 (3) | 4.1 (4.2) |
Parameter | |||
---|---|---|---|
(Hz) | 9.2 (9.4) | 9.8 (10) | 9 (9.2) |
(dB) | −12.7 (−12.7) | −13.7 (−13.7) | −10.9 (−10.8) |
(Hz) | 1.7 (1.9) | 1.4 (1.5) | 4 (4.1) |
(Hz) | 33 (35.5) | 62 (66) | 29.3 (31.6) |
Implementation | Number of Transistors | Power Dissipation | ||||
---|---|---|---|---|---|---|
Low-Pass | High-Pass | Band-Pass | Low-Pass | High-Pass | Band-Pass | |
OTA-C | 18 | 36 | 27 | |||
Proposed | 3 | 3 | 3 |
Implementation | Number of Transistors | Power Dissipation | ||||
---|---|---|---|---|---|---|
Low-Pass | High-Pass | Band-Pass | Low-Pass | High-Pass | Band-Pass | |
OTA-C | 18 | 18 | 27 | |||
Proposed | 7 | 7 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertsias, P.; Psychalinos, C.; Elwakil, A.S.; Maundy, B. Minimum MOS Transistor Count Fractional-Order Voltage-Mode and Current-Mode Filters. Technologies 2019, 7, 85. https://doi.org/10.3390/technologies7040085
Bertsias P, Psychalinos C, Elwakil AS, Maundy B. Minimum MOS Transistor Count Fractional-Order Voltage-Mode and Current-Mode Filters. Technologies. 2019; 7(4):85. https://doi.org/10.3390/technologies7040085
Chicago/Turabian StyleBertsias, Panagiotis, Costas Psychalinos, Ahmed S. Elwakil, and Brent Maundy. 2019. "Minimum MOS Transistor Count Fractional-Order Voltage-Mode and Current-Mode Filters" Technologies 7, no. 4: 85. https://doi.org/10.3390/technologies7040085
APA StyleBertsias, P., Psychalinos, C., Elwakil, A. S., & Maundy, B. (2019). Minimum MOS Transistor Count Fractional-Order Voltage-Mode and Current-Mode Filters. Technologies, 7(4), 85. https://doi.org/10.3390/technologies7040085