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Abstract: Voltage-mode and current-mode fractional-order filter topologies, which are capable of
realizing various types of transfer functions, are introduced in this paper. Thanks to the employment
of the transconductance parameter of the MOS transistors, the derived filter structures offer the
benefit of the electronic adjustment of their frequency characteristics. With regards to the literature,
the number of MOS transisitors is minimized leading to significant reduction of the circuit complexity
and power dissipation. Simulation results, derived using the Design Kit of the 0.35 µm Austria
Mikro Systeme CMOS process and the Cadence IC design suite, confirm the correct operation of the
presented filter structures.

Keywords: CMOS analog integrated circuits; filters; fractional-order circuits; fractional-order filters;
voltage-mode filters; current-mode filters

1. Introduction

Owing to the interdisciplinary nature of fractional-order calculus [1–3], the development of
fractional-order filters has gained a significant research interest because of the offered more precise
gradient of the transition from pass-band to stop-band, with regards to their integer-order counterparts.
This originates from the fact that the slope of the attenuation of an n + α order filter, with n integer
and 0 < α < 1, is equal to −6 · (n + α) dB/Oct., instead of −6 · n dB/Oct. slope realized by the
corresponding integer-order filters [4]. Another benefit of the fractional-order filters is their capability
of performing scaling of the realized time-constants due to their dependence on the order of the filter.
This is a very attractive feature in the case of biomedical applications, where very large values of
time-constants are required [5].

Due to the absence of commercially available fractional-order capacitors [6–8], fractional-order
filters can be derived through: (a) the substitution of the conventional (i.e., integer-order) capacitors in
the well-known integer-order filters with RC networks (e.g., Foster or Cauer) [9,10], and (b) the
implementation of the rational integer-order transfer functions, which are derived through the
substitution of the Laplacian fractional-order operator with a suitable expression offered by
approximation formulas such as Oustaloup, Continued Fraction Expansion, Matsuda, El-Khazali
etc. [11–16]. Comparing the aforementioned methods, the main derivation is that the first one offers a
quick design procedure but the resulting filter structures suffer from the absence of electronic tuning
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of the employed RC networks; the second one offers fully electronic tunability of the characteristics of
the fractional-order filters. On the other hand, the active component count is much higher in this case
and, consequently, the circuit complexity and the power dissipation are both increased [5].

Fractional-order filters, implemented using various types of active elements such as Operational
Amplifiers (op-amps), Operational Transconductance Amplifiers (OTAs), second generation Current
Conveyors (CCIIs), Current-Feedback Operational Amplifiers (CFOAs) and current-mirrors (CMs),
have been already proposed in the literature [17–36]. All of them suffer from the increased number of
MOS transistors which are required for implementing the active elements. In addition, only the filter
realizations performed with OTAs or CMs offer the benefit of the electronic adjustment of the frequency
characteristics, due to the employment of the transconductance parameter (gm) of the MOS transistors.

The contribution made in this work is the introduction of fractional-order voltage-mode and
current-mode filter topologies, constructed from a minimum number of MOS transistors with regards
to those required in the already published topologies. The proposed structures are capable of providing
low-pass, high-pass, and band-pass filter functions and, consequently, they are multi-function
schemes being attractive due to their design versatility and flexibility. Due to the realization of
time-constants through the employment of the electronically controlled transconductance parameter,
their characteristic frequencies can be electronically adjusted by the corresponding dc bias currents.

The paper is organized as follows: a short introduction on the fractional-order filter characteristics
is given in Section 2, while the proposed implementations are presented in Section 3. Their performance
evaluation is provided in Section 4, through simulation results obtained using the Cadence IC design
suite and the MOS transistor parameters provided by the Austrian Mikro Systeme (AMS) CMOS
0.35 µm Design Kit.

2. Fractional-Order Filters

The transfer function of a fractional low-pass filter of order 0 < α < 1 is

Hlp (s) =
1

(ταs)α + 1
, (1)

with variable τα being the time-constant, associated to the pole frequency (ω0) through the relationship:
ω0 = 1/τα [31].

Setting sα = ωα [cos (0.5απ) + j sin (0.5απ)] in (1), the expressions of the gain and phase responses
are given by (2) and (3), respectively∣∣∣Hlp (jω)

∣∣∣ = 1√(
ω
ω0

)2α
+ 2
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)α
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(
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The maximum gain of the filter is equal to 1 for ω → 0, while the slope of the stop-band attenuation
is equal to −6 · α dB/Oct. Defining as half-power frequency (ωh,lp) the frequency where a 3 dB drop
from the maximum gain is observed, the expressions of this frequency as well as of the phase at this
frequency, derived from (2) and (3), are provided by the Equations (4) and (5), respectively

ωh,lp = ω0

[√
1 + cos2

(απ

2

)
− cos
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)]1/α

, (4)
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6 Hlp(ωh,lp) = − tan−1
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According to (4), the pole frequency is different from the half-power frequency and not equal,
as in the case of conventional integer-order filters. As the half-power frequency depends on the order
of the filter, scaling of the time-constant is possible by adjusting the order of the filter. For example,
this is very useful in biomedical applications where extremely small cut-off frequencies are required.

A fractional high-pass filter of order 0 < α < 1 is described by the the transfer function in (6)

Hhp (s) =
(ταs)α

(ταs)α + 1
. (6)

The expressions of the magnitude and phase responses are
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The maximum gain of the filter is equal to 1 for ω → ∞, while the slope of the gradient from
stop-band to pass-band is equal to +6 · α dB/Oct.

The half-power frequency (ωh,hp) is given by the expression in (9)

ωh,hp = ω0

[√
1 + cos2

(απ

2

)
+ cos

(απ

2

)]1/α

, (9)

and the observations made in the case of the low-pass filter, about the dependence of the half-power
frequency on the order, are still valid. The phase at this frequency is given by (10)

6 Hhp(ωh,hp) =
απ

2
− tan−1
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2
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A fractional-order band-pass filter is described by the transfer function

Hbp (s) =
K4sα

sα+β + K1sα + K2sβ + K3
, (11)

where the order of the band-pass filter is equal to α + β. The slope of the gradient at low
frequencies is +6 · α dB/Oct., while at high-frequencies the slope becomes −6 · β dB/Oct., giving the
capability of implementing asymmetric band-pass filters with controlled slopes in both low and high
frequency ranges.

The peak frequency of the band-pass filter (ωpeak) is calculated through the condition: d/dω |
Hbp(ωpeak) |= 0, while the lower (ωlow) and upper (ωhigh) cut-off frequencies are calculated by setting:
0.707· | Hbp(ωpeak) |=| Hbp(ωlow(high)) |. Moreover, the realized quality factor (Q) is given by the

formula: Q = ωpeak/
(

ωhigh −ωlow

)
[36].
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3. Proposed Implementations

3.1. Voltage-Mode Filters

As it was mentioned in Section 1, OTA-C implementations are attractive due to the offered
electronic tuning which originates from the control of the transconductance parameter by the associated
bias current [37]. Considering that the impedance of a fractional-order (0 < α < 1) capacitor is given
by (12)

Z (s) =
1

Cαsα
, (12)

with Cα being the pseudo-capacitance expressed in Farad/sec1−α, and that the transconductance of
OTAs is gm, then the OTA-C filters depicted in Figure 1a,b implement the transfer functions in (1)
and (6), respectively. The realized time-constant is given by the formula: τα = (Cα/gm)

1/α .

gm
-

+

Ca

υin
υout

gm

-

(a)

gm
-

+

Ca

in out

gm

- +

gm
-

+

gm

- +

(b)

gm
-

+

Cβ

υin υout
gm

- gm
-

+

Cα

(c)

Figure 1. Realization of voltage-mode fractional-order (a) low-pass, (b) high-pass, and (c) band-pass
filters using OTAs as active elements.

The two-integrator loop OTA-C filter in Figure 1c implements the following band-pass
filter function

Hbp(s) =

(
1

τα
α

)
sα

sα+β +
(

1
τα

α

)
sα + 1

τα
α τ

β
β

, (13)

with the time-constant τβ given by the formula: τβ =
(
Cβ/gm

)1/β .
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In order to reduce the MOS transistor count, the proposed topology is demonstrated in
Figure 2a [38]. Considering that transistors Mp1-Mp2 are matched, with transconductance parameter
equal to gmp, the derived transfer functions are:

Hlp (s) =
1[(

Cα/gmp
)1/α s

]α
+ 1

, (14)

Hhp (s) = −

[(
Cα/gmp

)1/α s
]α

[(
Cα/gmp

)1/α s
]α

+ 1
. (15)

Comparing (1) with (14) and (6) with (15), it is readily observed that the topology in Figure 2a
implements low-pass and high-pass filter functions, with the time-constant given by (16)

τα =

(
Cα

gmp

)1/α

. (16)

Mp1

Cα

VDD

VSS

Mp2

υin

υlp
I0

υhp

(a)

Mp1

Cα

VDD

VSS

Mp2

υin

I0

υbpCβ

(b)

Figure 2. Proposed voltage-mode fractional-order (a) low-pass and high-pass, and (b) band-pass
filter topologies.

Adding a fractional-order capacitor Cβ (0 < β < 1) in the topology in Figure 2a, as it is depicted
in Figure 2b, the topology implements the following band-pass filter function

Hbp (s) = −

(
1

τ
β
β

)
sα

sα+β +

(
1

τ
β
β

)
sα +

(
1

τα
α

)
sβ + 1

τα
α τ

β
β

, (17)
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with τα and τβ given by (16) and (18), respectively,

τβ =

( Cβ

gmp

)1/β

. (18)

Comparing (17) with (11) the derived design equations are: K1 = K4 = 1/τ
β
β , K2 = 1/τα

α , and

K3 = 1/τα
α τ

β
β .

3.2. Current-Mode Filters

The implementation of current-mode low-pass and high-pass filters, using OTAs as active
elements, is demonstrated in Figure 3a,b, where the topologies implement the transfer functions
in (14) and (15), respectively. The implementation of the band-pass filter is performed by the topology
in Figure 3c, which realizes the transfer function in (13).

gm
-

+

Ca

iin
iout

gm

-

(a)

gm
-

+Ca

iin
iout

gm

-
iin

iin

(b)

gm
-

+

Cβ

iin

ioutgm

- gm
-

+
Cα

(c)

Figure 3. Realization of current-mode fractional-order (a) low-pass, (b) high-pass, and (c) band-pass
filters using OTAs as active elements.

The proposed current-mode low-pass filter structure is depicted in Figure 4a. Applying the
Kirchhoff’s current law (KCL) at the input terminal and taking into account the current-mirror
operation, implemented by transistors Mn1–Mn2, it is derived that

iin = iout + icα , (19)

with icα being the current that flows through the capacitor Cα, given by the formula

icα = υcαCαsα . (20)
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Considering that gmn is the transconductance of Mn1–Mn2, the output current is expressed as

iout = gmnυcα . (21)

Using (19)–(21) it is derived that the topology in Figure 4a implements the transfer function in (14)
with a time-constant given by (22)

τα =

(
Cα

gmn

)1/α

. (22)

Mp1

iin

Cα

Mn2

I0

Mn1

VDD

VDC

iout

I0

I0

I0

VSS

iout

(a)

Mp1

iin

Cα

4I0

Mn1

VDD

VDC

2I0

2I0

VSS

Mp2

2I0

iout

(b)

VDD

Cβ

Mp1

iin

Cα

I0

Mn1

VDC

2I0

I0/2

VSS

Mp2

I0/2

iout

(c)

Figure 4. Proposed current-mode fractional-order (a) low-pass, (b) high-pass, and (c) band-pass filters.
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Let us consider the topology in Figure 4b; applying the KCL at the input terminal and assuming
that Mp1–Mp2 are matched transistors forming a current-mirror with ac current equal to iout, it is
obtained that

iin = gmnυcα + 2iout . (23)

In addition, the current that flows through the capacitor Cα is

icα = iout = υcαCαsα . (24)

Using Equations (23) and (24) the derived transfer function is

Hhp (s) = 0.5 ·

[
(Cα/gmn)

1/α s
]α

[
(Cα/gmn)

1/α s
]α

+ 1
. (25)

Inspecting (25) it is readily obtained that the topology in Figure 4b implements a high-pass filter
function with the time-constant given by (22).

The topology in Figure 4c is derived by adding an extra fractional-order capacitor (Cβ) in the
topology of Figure 4b. The KCL at the input node takes the form

iin = gmnυcα + icβ + 2iout . (26)

The current that flows through the capacitor Cα is still given by (24), while for the capacitor Cβ

the following expression is valid

iout = gmpυcβ =
gmpicβ

Cβsβ
. (27)

Using Equations (24), (26) and (27), the derived transfer function is

Hbp (s) = 0.5 ·

(
1

τ
β
β

)
sα

sα+β +

(
1

τ
β
β

)
sα + 1

τα
α τ

β
β

, (28)

with the time-constant τα given by (22) and the time-constant τβ given by (18).

4. Simulation and Comparison Results

The behavior of the proposed topologies will be evaluated using the Cadence IC design suite
and the Design Kit provided by the AMS 0.35 µm CMOS process. The power supply voltages were
VDD = −VSS = 0.5 V. Considering the fourth-order Foster-II network given in Figure 5 and using
the Continued Fraction Expansion approximation with center frequency 10 Hz and the Matlab code
introduced in [39], then the values of the passive element values of the RC network for approximating
fractional-order capacitances (Cα) of orders {0.3, 0.5, 0.7} with values 85.4 nF/sec0.7, 37.4 nF/sec0.5,
and 16.3 nF/sec0.3, are provided in Table 1.

R2

C2

Rp

C1

R1 R3

C3

R4

C4

Figure 5. RC network for approximating the fractional-order capacitors in the proposed fractional-order
filter topologies.
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Table 1. Values of passive elements of the network in Figure 5.

Element 85.4 nF/sec0.7 37.4 nF/sec0.5 16.3 nF/sec0.3

Rp 12 MΩ 30 MΩ 90 MΩ
R1 1.6 MΩ 457.7 kΩ 133.1 kΩ
R2 6.4 MΩ 3.8 MΩ 3.2 MΩ
R3 10.6 MΩ 8.9 MΩ 10.8 MΩ
R4 11 MΩ 13.4 MΩ 23.1 MΩ
C1 472 pF 1.1 nF 2.1 nF
C2 972.3 pF 1.4 nF 1.4 nF
C3 2.4 nF 2.5 nF 1.8 nF
C4 13.5 nF 9 nF 4.3 nF

Considering MOS transistors biased in the sub-threshold region, their transconductance is given
by (29)

gm =
I0

nVT
, (29)

where 1 < n < 2 is the sub-threshold slope factor of a MOS transistor, VT is the thermal voltage
(26 mV @ 27 ◦C), and I0 is the bias current [40,41]. Thus, the realized-time constants are electronically
adjusted, offering the capability of electronic adjustment of the frequency characteristics of the realized
filter functions.

4.1. Voltage-Mode Filters

Assuming a dc bias current equal to I0 = 10 nA, the aspect ratio of Mp1–Mp2 in Figure 2 was
chosen to be 100 µm/1 µm, in order to guarantee operation in the sub-threshold region.

The obtained frequency magnitude and phase responses of the low-pass and high-pass filters
are provided in Figure 6, while the corresponding theoretically predicted plots are given by dashes.
The most important performance characteristics are given in Tables 2 and 3, along with the theoretical
values given between parentheses.

Table 2. Frequency characteristics of the low-pass filter in Figure 2a.

Parameter α = 0.3 α = 0.5 α = 0.7

fh,lp (Hz) 0.76 (0.7) 2.6 (2.7) 5.2 (5.3)
phase @ fh,lp (deg) −8.5 (−8.3) −14.8 (−15) −24 (−23.9)

slope (dB/Oct.) −1.6 (−1.8) −2.8 (−3) −4 (−4.2)

Table 3. Frequency characteristics of the high-pass filter in Figure 2a.

Parameter α = 0.3 α = 0.5 α = 0.7

fh,hp (Hz) 142 (145) 38 (37.3) 18 (18.7)
phase @ fh,hp (deg) −172 (−172) −165 (−165) −156 (−156)

slope (dB/Oct.) 1.5 (1.8) 2.7 (3) 3.9 (4.2)

The electronic tuning capability of the filter structure in Figure 2a has been evaluated by
considering the set of bias currents {5, 10, 15} nA. The obtained frequency responses are depicted in
Figure 7, where the values of the half-power frequency were {0.75, 2.6, 5.8} Hz for the low-pass filter
and {9.5, 38, 82} Hz for the high-pass filter.

According to (4), (9), (16) and (29), the half-power frequencies ω ′h and ωh, which correspond to
bias currents I ′0 and I0, are related according to the expression given by (30)

ω ′h
ωh

=

(
I ′0
I0

)1/α

. (30)
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Therefore, the theoretically predicted values will be {0.68, 2.7, 6.1} Hz and {9.3, 37.3, 83.9} Hz,
respectively, confirming the aforementioned feature.
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Figure 6. Simulated frequency responses of the proposed voltage-mode low-pass and high-pass filters
in Figure 2a (a) gain, and (b) phase.
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Figure 7. Demonstration of the electronic tuning capability of the filter structure in Figure 2a.
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The effects of MOS transistor parameters mismatch, as well as those of the process parameter
variations, have been evaluated using the Monte Carlo analysis tool (N = 100 runs) offered by the
Analog Design Environment of the Cadence software. The derived statistical plots for order α = 0.5
are provided in Figure 8, while the values of standard deviation of the half-power frequency were
{0.03, 0.01, 0.01} Hz for the low-pass filter and {0.5, 0.16, 0.03} Hz for the high-pass filter, confirming
that the proposed structure has reasonable sensitivity characteristics.

In order to estimate which circuit element contributes to the maximum error, a sensitivity analysis
has been performed through the Cadence software. According to this analysis, it is derived that the
deviations in the measurement of the half-power frequency as well as of the maximum gain in both
low-pass and high-pass filter topologies of Figure 2a, are caused by transistor Mp1.

2.55 2.6 2.65
fh,lp (Hz)

0

10

20

30

40

N
um

be
r o

f s
am

pl
es

N = 100
Mean = 2.59Hz
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(a)

37.2 37.4 37.6 37.8 38 38.2 38.4 38.6
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0

10

20

30

40

N
um

be
r o

f s
am

pl
es

N = 100
Mean = 38Hz
Std = 0.16Hz

(b)

Figure 8. Statistical plots about the sensitivity of the half-power frequency in the case of the
voltage-mode (a) low-pass, and (b) high-pass filters of order α = 0.5.

The evaluation of the performance of the band-pass filter in Figure 2b has been performed by
considering that the orders (α, β) are {(0.5, 0.7), (0.5, 0.5), (1, 0.5)}. The derived frequency responses
are depicted in Figure 9, while the results in Table 4 confirm the correct operation of the filter.
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Table 4. Frequency characteristics of the band-pass filter in Figure 2b.

Parameter (0.5, 0.7) (0.5, 0.5) (1, 0.5)

fpeak (Hz) 6.6 (6.6) 10 (10) 16 (16.2)
gain@ fpeak (dB) −9.8 (−9.8) −10.7 (−10.7) −7.9 (−7.8)

flow (Hz) 1 (1) 1 (1) 5 (5.2)
fhigh (Hz) 36.3 (37) 93 (96) 72 (70)

Freq (Hz)

10
-1

10
0

10
1

10
2

10
3

G
a
in

 (
d
B

)

-45

-40

-35
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-25

-20

-15

-10

-5

theory

, = 0.5 - = 0.7

, = 0.5 - = 0.5

, = 1    - = 0.5

Figure 9. Frequency responses of the band-pass filter in Figure 2b for various orders.

4.2. Current-Mode Filters

The power supply voltages and capacitor values which will be considered in the performance
evaluation of the current-mode filters will be the same as in the case of the voltage-mode filters.
In addition, the value of the dc voltage VDC will be equal to 150 mV.

The frequency responses of the current-mode low-pass (Figure 4a) and high-pass (Figure 4b)
filters are provided in Figure 10. The results in Tables 5 and 6, where the theoretically predicted values
are given between parentheses, confirm the accurate operation of the proposed filters.

Table 5. Frequency characteristics of the low-pass filter in Figure 4a.

Parameter α = 0.3 α = 0.5 α = 0.7

fh,lp (Hz) 0.76 (0.7) 2.6 (2.7) 5.2 (5.3)
phase @ fh,lp (deg) −8.5 (−8.3) −14.8 (−15) −24 (−23.9)

slope (dB/Oct.) −1.6 (−1.8) −2.8 (−3) −4 (−4.2)

Table 6. Frequency characteristics of the high-pass filter in Figure 4b.

Parameter α = 0.3 α = 0.5 α = 0.7

fh,hp (Hz) 143 (145) 36.4 (37.3) 18.2 (18.7)
phase @ fh,hp (deg) 8 (8.3) 14.7 (15) 23.9 (23.9)

slope (dB/Oct.) 1.7 (1.8) 2.9 (3) 4.1 (4.2)

The electronic tuning capability of the filters for α = 0.5 is demonstrated in Figure 11,
where for bias currents {5, 10, 15} nA, for the low-pass filter the corresponding half-power frequencies
were {0.77, 2.6, 5.7} Hz, while for the high-pass filter the derived half-power frequencies were
{9.4, 36.4, 80} Hz. These results are close to the results {0.68, 2.7, 6.1} Hz and {9.3, 37.3, 83.9} Hz,
which are derived according to (30).

The sensitivity behavior of the filters has been evaluated using the Monte Carlo analysis
tool (N = 100 runs) and the derived values of standard deviation of the half-power frequency



Technologies 2019, 7, 85 13 of 19

were {0.004, 0.01, 0.01} Hz for the low-pass filter and {0.6, 0.17, 0.05} Hz for the high-pass filter.
The obtained statistical plots for order α = 0.5 are provided in Figure 12.

Performing also a sensitivity analysis, the obtained results showed that for the low-pass filter
topology in Figure 4a, the obtained error in the measurement of the half-power frequency is caused
by Mn1, while transistors Mn1 and Mn2 equally contribute in the error of the low frequency gain.
In the case of the high-pass filter circuit of Figure 4b, transistors Mp1 and Mp2 equally contribute
to the derived deviations in the measurement of the half-power frequency as well as of the high
frequency gain.
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Figure 10. Simulated frequency responses of the proposed current-mode low-pass (Figure 4a) and
high-pass (Figure 4b) filters (a) gain, and (b) phase.
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Figure 12. Statistical plots about the sensitivity of the half-power frequency in the case of the
current-mode (a) low-pass, and (b) high-pass filters of order α = 0.5.
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The frequency responses of band-pass filter functions that correspond to orders (α, β) equal to
{(0.5, 0.7), (0.5, 0.5), (1, 0.5)} are presented in Figure 13, while the corresponding simulated values
of the most important characteristics are given in Table 7.

Table 7. Frequency characteristics of the current-mode band-pass filter.

Parameter (0.5, 0.7) (0.5, 0.5) (1, 0.5)

fpeak (Hz) 9.2 (9.4) 9.8 (10) 9 (9.2)
gain@ fpeak (dB) −12.7 (−12.7) −13.7 (−13.7) −10.9 (−10.8)

flow (Hz) 1.7 (1.9) 1.4 (1.5) 4 (4.1)
fhigh (Hz) 33 (35.5) 62 (66) 29.3 (31.6)
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Figure 13. Frequency responses of the current mode band-pass filter for various orders.

4.3. Comparison Results

In order to perform a comparison between the MOS transistor count needed for implementing
the OTA-C filters and the proposed structures, let us consider the typical OTA topology provided in
Figure 14. Here 9 MOS transistors are required for its implementation and the dc power dissipation,
considering that VDD = −VSS, is equal to 4VDD I0.

VDD

Mn3

I0

Mn1 Mn2

Mp1 Mp4

Mn4

υin+υin-

VSS

Mp2

VSS

Mp3

iout

Figure 14. Typical OTA structure.

The derived comparison results between the proposed voltage-mode and current-mode filters
are summarized in Tables 8 and 9, respectively. According to the provided results, it is concluded
that both types of implementations offer reduced MOS transistor count, which means reduced circuit
complexity, and lower dc power dissipation.
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Table 8. Comparison between the MOS transistor count and dc power dissipation for the proposed
voltage-mode filters.

Implementation Number of Transistors Power Dissipation

Low-Pass High-Pass Band-Pass Low-Pass High-Pass Band-Pass

OTA-C 18 36 27 8VDD I0 16VDD I0 12VDD I0
Proposed 3 3 3 2VDD I0 2VDD I0 2VDD I0

Table 9. Comparison between the MOS transistor count and dc power dissipation for the proposed
current-mode filters.

Implementation Number of Transistors Power Dissipation

Low-Pass High-Pass Band-Pass Low-Pass High-Pass Band-Pass

OTA-C 18 18 27 8VDD I0 8VDD I0 12VDD I0
Proposed 7 7 7 6VDD I0 6VDD I0 6VDD I0

5. Conclusions

The proposed voltage-mode and current-mode filter structures offer significant reduction of
circuit complexity and dc power dissipation, with regards to their OTA-C counterparts. In the case of
voltage-mode filters, the reduction in the number of transistors is 83.3%, 91.6%, and 88.9% for low-pass,
high-pass and band-pass filters, respectively. The achieved reduction of the dc power dissipation is
75%, 87.5%, and 83.3%, respectively. In the case of current-mode filters, the corresponding factors are
61.1% MOS transistor count reduction for both low-pass and high-pass filters, while for the band-pass
filters, the corresponding value is 74.1%. With regards to the power dissipation, the corresponding
factors are 25% for both low-pass and high-pass filters, and 50% for the band-pass filter. Therefore,
the proposed structures are attractive candidates for implementing fractional-order filters with low
complexity and reduced power dissipation.
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