Towards Safer Primers: A Review
Abstract
:1. Introduction
2. From Fuses to Flintlocks: Evolution and Use Of Primers
2.1. Primers
2.2. What Primers Come Next?
3. Materials
3.1. Green Energetic Materials
3.2. Thermites
3.3. Semiconductors
4. Ignition Methods
4.1. Electrical
4.2. Optical
5. Devices
5.1. Safety Mechanisms
5.2. Optimising Output
5.3. Testing Standards
5.4. Initiators: Practical Aspects of Fabrication
6. Characterisation: Techniques and Principles
7. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion; Wiley: Hoboken, NJ, USA, 2015; Volume 3, p. 534. [Google Scholar]
- Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyroytechnics; Wiley-VCH Verlag GmbH Co. KGaA: Weinheim, Germany, 2010; p. 464. [Google Scholar] [CrossRef]
- Sabatini, J.J.; Oyler, K.D. Recent Advances in the Synthesis of High Explosive Materials. Crystals 2016, 6, 5. [Google Scholar] [CrossRef]
- Meyer, R.; Kohler, J.; Homburg, A. Explosives; Wiley: Hoboken, NJ, USA, 2015; p. 466. [Google Scholar]
- Matyáš, R.; Pachman, J. Primary Explosives; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–338. [Google Scholar]
- Wang, Y.W.; Khan, A.; Som, M.; Wang, D.; Chen, Y.; Leigh, S.Y.; Meza, D.; McVeigh, P.Z.; Wilson, B.C.; Liu, J.T. Rapid Ratiometric Biomarker Detection with Topically Applied SERS Nanoparticles. Technology 2014, 2, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Badgujar, D.M.; Talawar, M.B.; Zarko, V.E.; Mahulikar, P.P. Recent Advances in Safe Synthesis of Energetic Materials: An Overview. Combust. Explos. Shock Waves 2019, 55, 245–257. [Google Scholar] [CrossRef]
- Glor, M.; Krämer, H. Handbook of Explosion Prevention and Protection; Wiley: Hoboken, NJ, USA, 2008; pp. 160–180. [Google Scholar] [CrossRef]
- Mellor, J.W.J.W. A Comprehensive Treatise on Inorganic and Theoretical Chemistry; Longman: Harlow, UK, 1928; Volume 8, p. 354. [Google Scholar]
- Sabatini, J.J.; Nagori, A.V.; Chen, G.; Chu, P.; Damavarapu, R.; Klapötke, T.M. High-Nitrogen-Based Pyrotechnics: Longer- and Brighter-Burning, Perchlorate-Free, Red-Light Illuminants for Military and Civilian Applications. Chem. Eur. J. 2012, 18, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metals Toxicity and the Environment. NIH Public Access 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Luch, A. Molecular, Clinical and Environmental Toxicicology Volume 3: Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 101, p. 580. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Ueland, M.; Blanes, L.; Taudte, R.V.; Stuart, B.H.; Cole, N.; Willis, P.; Roux, C.; Doble, P. Capillary-Driven Microfluidic Paper-Based Analytical Devices for Lab on a Chip Screening of Explosive Residues in Soil. J. Chromatogr. 2016, 1436, 28–33. [Google Scholar] [CrossRef]
- Sukker, H.M. Explanatory Statement—Consumer Goods (Motor Vehicles with Affected Takata Airbag Inflators and Specified Spare Parts) Recall Notice 2018; Technical Report; Office of Parliamentary Councel: Canberra, Australia, 27 February 2018.
- Huynh, M.H.V.; Hiskey, M.; Meyer, T.J.; Wetzler, M. Green Primaries: Environmentally Friendly Energetic Complexes. Proc. Natl. Acad. Sci. USA 2006, 103, 5409–5412. [Google Scholar] [CrossRef]
- Patil, K.C.; Aruna, S.T.; Ekambaram, S. Combustion Synthesis. Curr. Opin. Solid State Mater. Sci. 1997, 2, 158–165. [Google Scholar] [CrossRef]
- Kim, J.; Kim, G.S.; Jungling, K.C. Correlated Electrical and Optical Measurements of Firing Semiconductor Bridges. J. Vac. Sci. Technol. 1997, 15, 1943–1948. [Google Scholar] [CrossRef]
- Adams, D.P. Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review. Thin Solid Film. 2015, 576, 98–128. [Google Scholar] [CrossRef]
- Needham, J. Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 7, Military Technology: The Gunpowder Epic; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Buchanan, B.J. Gunpowder, Explosives and the State: A Technological History; Routledge: New York, NY, USA, 2006. [Google Scholar]
- Engelen, K.; Lefebvre, M.H. Properties of Gas-Generating Mixtures Related to Different Fuel and Oxidizer Compositions. Propellants Explos. Pyrotech. 2003, 28, 201–209. [Google Scholar] [CrossRef]
- Nobel, A. Improved Explosive and Primer for the Same. UK Patent 1345, 7 May 1867. [Google Scholar]
- Li, H.; Zhou, Q.; Ren, H.; Jiao, Q.; Du, S.; Yang, G. Ignition Characteristics of Semiconductor Bridge Based on Lead Styphnate and Lead Azide Charges Under Capacitor Discharge Conditions. Sens. Actuators Phys. 2016, 241, 27–33. [Google Scholar] [CrossRef]
- Davis, T.L. The Chemistry of Powder and Explosives; John Wiley Sons, Inc.: New York, NY, USA, 1943; Volumes I–II, pp. 1–490. [Google Scholar] [CrossRef]
- Ermolaev, B.S.; Belyaev, A.A.; Viktorov, S.B.; Sleptsov, K.A.; Zharikova, S.Y. Nonideal Regimes of Deflagration and Detonation of Black Powder. Russ. J. Phys. Chem. B 2010, 4, 428–439. [Google Scholar] [CrossRef]
- Routon, B.J.; Kocher, B.B.; Goodpaster, J.V.; Note, T.; Routon, B.J.; Kocher, B.B.; Goodpaster, J.V. Discriminating Hodgdon Pyrodex and Triple Seven Using Gas Chromatography-Mass Spectrometry. J. Forensic Sci. 2011, 56, 194–199. [Google Scholar] [CrossRef]
- Walley, S.M.; Field, J.E.; Greenaway, M.W. Crystal Sensitivities of Energetic Materials. Mater. Sci. Technol. 2006, 22, 402–413. [Google Scholar] [CrossRef]
- Martin, E.S.; Thomas, K.A.; Clarke, S.A.; Kennedy, J.E.; Stewart, D.S. Measurements of the DDT Process in Exploding Bridgewire Detonators. AIP Conf. Proc. 2006, 845, 1093–1096. [Google Scholar] [CrossRef]
- Kapila, A.K.; Menikoff, R.; Bdzil, J.B.; Son, S.F.; Stewart, D.S. Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Phys. Fluids 2001, 13, 3002–3024. [Google Scholar] [CrossRef]
- Tokmakoff, A.; Fayer, M.D.; Dlott, D.D. Shocked Energetic Molecular Materials: Chemical Reaction Initiation and Hot Spot Formation. J. Phys. Chem. 1993, 97, 1901–1913. [Google Scholar] [CrossRef]
- Zhang, F. Shock Wave Science and Technology Reference Library: Non-Shock Initiation of Explosives; Springer: Berlin/Heidelberg, Germany, 2012; Volume 5, pp. 1–461. [Google Scholar] [CrossRef]
- Tarver, C.M.; Chidester, S.K.; Nichols, A.L.I. Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives. J. Phys. Chem. 1996, 100, 5794–5799. [Google Scholar] [CrossRef]
- Bernecker, R.R.; Price, D. Studies in the transition from deflagration to detonation in granular explosives-III. Proposed mechanisms for transition and comparison with other proposals in the literature. Combust. Flame 1974, 22, 161–170. [Google Scholar] [CrossRef]
- Thomas, G. Some observations on the initiation and onset of detonation. Math. Phys. Eng. Sci. 2012, 370, 715–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badgujar, D.M.; Talawar, M.B.; Asthana, S.N.; Mahulikar, P.P. Advances in Science and Technology of Modern Energetic Materials: An Overview. J. Hazard. Mater. 2008, 151, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Smyth Wallace, J. Chemical Analysis of Firearms, Ammunition, and Gunshot Residue; CRC: Boca Raton, FL, USA, 2008; Volume 17, pp. 1–275. [Google Scholar] [CrossRef]
- Taudte, R.V.; Roux, C.; Beavis, A. Stability of Smokeless Powder Compounds on Collection Devices. Forensic Sci. Int. 2017, 270, 55–60. [Google Scholar] [CrossRef]
- Taudte, R.V.; Roux, C.; Bishop, D.P.; Fouracre, C.; Beavis, A. High-Throughput Screening for Target Compounds in Smokeless Powders Using Online-SPE Tandem Mass Spectrometry. Aust. J. Forensic Sci. 2019. [Google Scholar] [CrossRef]
- Taudte, R.V.; Beavis, A.; Blanes, L.; Cole, N.; Doble, P.; Roux, C. Detection of Gunshot Residues Using Mass Spectrometry. Biomed Res. Int. 2014, 2014, 16. [Google Scholar] [CrossRef] [PubMed]
- Goyer, R.A. Lead Toxicity: Current Concerns. Environ. Health Perspect. 1993, 100, 177–187. [Google Scholar] [CrossRef]
- Fairhall, L.T.; Jenrette, W.V.; Jones, S.W.; Pritchard, E.A. The Toxicity of Lead Azide. Public Health Rep. 1943, 58, 607–617. [Google Scholar] [CrossRef]
- Chang, S.; Lamm, S.H. Human Health Effects of Sodium Azide Exposure: A Literature Review and Analysis. Int. J. Toxicol. 2003, 22, 175–186. [Google Scholar] [CrossRef]
- Zhu, W.; Xiao, H. Ab Initio Study of Energetic Solids: Cupric Azide, Mercuric Azide, and Lead Azide. J. Phys. Chem. B 2006, 110, 18196–18203. [Google Scholar] [CrossRef]
- Semple, J.B. Fuse. U.S. Patent No. 1310844, 22 July 1919. [Google Scholar]
- Scherrer, G.H. Detonator. U.S. Patent No. 2429490A, 21 October 1947. [Google Scholar]
- Haas, J.W. Electric Explosive Initiator. U.S. Patent No. 3002458, 3 October 1961. [Google Scholar]
- Bickes, R.W., Jr.; Schwarz, A.C. Semiconductor Bridge (SCB) Igniter. U.S. Patent No. 4708060, 24 November 1987. [Google Scholar]
- Talawar, M.B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A.K.; Gandhe, B.R.; Rao, A.S. Environmentally Compatible Next Generation Green Energetic Materials (GEMs). J. Hazard. Mater. 2009, 161, 589–607. [Google Scholar] [CrossRef] [PubMed]
- Ilyushin, M.A.; Tselinsky, I.V.; Shugalei, I.V. Environmentally Friendly Energetic Materials for Initiation Devices. Cent. Eur. J. Energetic Mater. 2012, 9, 293–328. [Google Scholar]
- Nair, U.R.; Asthana, S.N.; Rao, A.S.; Gandhe, B.R. Advances in High Energy Materials. Def. Sci. J. 2010, 60, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants Explos. Pyrotech. 2016, 41, 426–451. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Zhang, K.; Esteve, D.; Alphonse, P.; Tailhades, P.; Vahlas, C. Nanoenergetic Materials for MEMS: A Review. J. Microelectromech. Syst. 2007, 16, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Dreizin, E.L. Metal-Based Reactive Nanomaterials. Prog. Energy Combust. Sci. 2009, 35, 141–167. [Google Scholar] [CrossRef]
- Taton, G.; Lagrange, D.; Conedera, V.; Renaud, L.; Rossi, C. Micro-Chip Initiator Realized by Integrating Al/CuO Multilayer Nanothermite on Polymeric Membrane. J. Micromech. Microeng. 2013, 23, 8. [Google Scholar] [CrossRef]
- Xu, J.; Tai, Y.; Ru, C.; Dai, J.; Ye, Y.; Shen, R.; Zhu, P. Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge. ACS Appl. Mater. Interfaces 2017, 9, 5580–5589. [Google Scholar] [CrossRef]
- Fronabarger, J.W.; Williams, M.D.; Sanborn, W.B.; Bragg, J.G.; Parrish, D.A.; Bichay, M. DBX-1—A Lead Free Replacement for Lead Azide. Propellants Explos. Pyrotech. 2011, 36, 541–550. [Google Scholar] [CrossRef]
- Fronabarger, J.W.; Williams, M.D.; Sanborn, W.B.; Parrish, D.A.; Bichay, M. KDNP—A Lead Free Replacement for Lead Styphnate. Propellants Explos. Pyrotech. 2011, 36, 459–470. [Google Scholar] [CrossRef]
- Galante, E.B.F.; Haddad, A.; Boer, D.; Bonifácio, D. Life Cicle Inventory for Lead Azide Manufacture. J. Aerosp. Technol. Manag. 2014, 6, 53–60. [Google Scholar] [CrossRef]
- Stohs, S.J.; Bagchi, D. Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef]
- Brinck, T. Green Energetic Materials; Wiley: Hoboken, NJ, USA, 2014; p. 290. [Google Scholar] [CrossRef]
- Steinhauser, G.; Klapötke, T.M. “Green” Pyrotechnics: A Chemists’ Challenge. Angew. Chem. Int. Ed. 2008, 47, 3330–3347. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite Reactions: Their Utilization in the Synthesis and Processing of Materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Fischer, S.H.; Grubelich, M.C. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals. In Proceedings of the 24th International Pyrotechnics Seminar: Sandia National Laboratories (SNL), Monterey, CA, USA, 27–31 July 1998; Volume 1176C, p. 56. [Google Scholar]
- Baijot, V.; Glavier, L.; Ducéré, J.M.; Djafarirouhani, M.; Rossi, C.; Estève, A. Modeling the Pressure Generation in Aluminum-Based Thermites. Propellants Explos. Pyrotech. 2015, 40, 402–412. [Google Scholar] [CrossRef]
- Strohm, G.S.; Son, S.F.; Boucher, C.J. Performance Characterization of Nanoscale Energetic Materials on Semiconductor Bridges (SCBs). In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; p. 10. [Google Scholar]
- Maeda, S.; Mukunoki, H. A1 Semiconductor Bridge Device and Igniter Including Semiconductor Bridge Circuit Device. U.S. Patent No. 0083343, 10 April 2008. [Google Scholar]
- Burky, T.E.; Carpenter, J.P.; Dues, L. Reactive Semiconductor Bridge with Oxide Overcoat. U.S. Patent No. 0010078, 12 January 2017. [Google Scholar]
- Gangopadhyay, S.; Tappmeyer, D.; Bezmelnystin, A.; Thiruvengadathan, R.; Shende, R.; Mehendale, B.; Apperson, S.; Barizuddin, S.; Gangopadhyay, K. Homogeneous Mesoporous Nanoenergetic Metal Oxide Composite Fabrication Methods. U.S. Patent No. 8512490 B2, 20 August 2013. [Google Scholar]
- Puszynski, J.a.; Bulian, C.J.; Swiatkiewicz, J.J. Processing and Ignition Characteristics of Aluminum-Bismuth Trioxide Nanothermite System. J. Propuls. Power 2007, 23, 698–706. [Google Scholar] [CrossRef]
- Nellums, R.R.; Son, S.F.; Groven, L.J. Preparation and Characterization of Aqueous Nanothermite Inks for Direct Deposition on SCB Initiators. Propellants Explos. Pyrotech. 2014, 39, 463–470. [Google Scholar] [CrossRef]
- Bockmon, B.S.; Pantoya, M.L.; Son, S.F.; Asay, B.W.; Mang, J.T. Combustion Velocities and Propagation Mechanisms of Metastable Interstitial Composites. J. Appl. Phys. 2005, 98, 7. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X. Fabrication and Kinetics Study of Nano-Al/NiO Thermite Film by Electrophoretic Deposition. J. Phys. Chem. A 2015, 119, 4688–4694. [Google Scholar] [CrossRef]
- Bahrami, M.; Taton, G.; Conédéra, V.; Salvagnac, L.; Tenailleau, C.; Alphonse, P.; Rossi, C. Magnetron Sputtered Al-CuO Nanolaminates: Effect of Stoichiometry and Layers Thickness on Energy Release and Burning Rate. Propellants Explos. Pyrotech. 2014, 39, 365–373. [Google Scholar] [CrossRef]
- Apperson, S.; Shende, R.V.; Subramanian, S.; Tappmeyer, D.; Gangopadhyay, S.; Chen, Z.; Gangopadhyay, K.; Redner, P.; Nicholich, S.; Kapoor, D. Generation of Fast Propagating Combustion and Shock Waves with Copper Oxide/Aluminum Nanothermite Composites. Appl. Phys. Lett. 2007, 91, 204–206. [Google Scholar] [CrossRef]
- Ebeling, H.; Schmid, H.; Eisenreich, N.; Weiser, V. Development of Gas Generators for Fire Extinguishing. Propellants Explos. Pyrotech. 1997, 22, 170–175. [Google Scholar] [CrossRef]
- Mishra, U.; Singh, J. Semiconductor Device Physics and Design; Springer: Dordrecht, The Netherlands, 2007; p. 559. [Google Scholar]
- Pearson, G.L.; Bardeen, J. Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus. Phys. Rev. 1949, 75, 865–883. [Google Scholar] [CrossRef]
- Martinez-Tovar, B.; Foster, M.C.; Novotney, D.B. Voltage Protected Semiconductor Bridge Igniter Elements. U.S. Patent No. 6199484 B1, 13 March 2001. [Google Scholar]
- Hollander, L.E., Jr. Semiconductor Explosive Igniter. U.S. Patent No. 3366055, 30 January 1968. [Google Scholar]
- Seto, J.Y.W. The Electrical Properties of Polycrystalline Silicon Films. J. Appl. Phys. 1975, 46, 5247–5254. [Google Scholar] [CrossRef]
- Chapman, P.W.; Tufte, O.N.; Zook, J.D.; Long, D. Electrical Properties of Heavily Doped Silicon. J. Appl. Phys. 1963, 34, 3291–3295. [Google Scholar] [CrossRef]
- Morin, F.J.; Maita, J.P. Electrical Properties of Silicon Containing Arsenic and Boron. Phys. Rev. 1954, 96, 28–35. [Google Scholar] [CrossRef]
- Senitzky, B.; Moll, J.L. Breakdown in Silicon. Phys. Rev. 1958, 110, 612–620. [Google Scholar] [CrossRef]
- Plummer, A.; Kuznetsov, V.A.; Gascooke, J.; Shapter, J.; Voelcker, N.H. Sensitiveness of Porous Silicon-Based Nano-Energetic Films. Propellants Explos. Pyrotech. 2016, 41, 1029–1035. [Google Scholar] [CrossRef]
- Churaman, W.; Currano, L.; Singh, A.K.; Rai, U.S.; Dubey, M.; Amirtharaj, P.; Ray, P.C. Understanding the High Energetic Behavior of Nano-Energetic Porous Silicon. Chem. Phys. Lett. 2008, 464, 198–201. [Google Scholar] [CrossRef]
- Ohkura, Y.; Weisse, J.M.; Cai, L.; Zheng, X. Flash Ignition of Freestanding Porous Silicon Films: Effects of Film Thickness and Porosity. Nano Lett. 2013, 13, 5528–5533. [Google Scholar] [CrossRef]
- Kim, J.U.U.; Park, C.O.O.; Park, M.I.I.; Kim, S.H.H.; Lee, J.B.B. Characteristics of Semiconductor Bridge (SCB) Plasma Generated in a Micro-Electro-Mechanical System (MEMS). Phys. Lett. Sect. A 2002, 305, 413–418. [Google Scholar] [CrossRef]
- Fahey, W. An Improved Ignition Device the Reactive Semiconductor Bridge. In Proceedings of the 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 8–11 July 2001; Volume 3484, p. 13. [Google Scholar] [CrossRef]
- Juodkazis, K.; Juodkazyte, J.; Šebeka, B.; Savickaja, I.; Juodkazis, S. Photoelectrochemistry of Silicon in HF Solution. J. Solid State Electrochem. 2013, 17, 2269–2276. [Google Scholar] [CrossRef]
- Juodkazis, K.; Juodkazyte, J.; Kalinauskas, P.; Gertus, T.; Jelmakas, E.; Misawa, H.; Juodkazis, S. Influence of Laser Microfabrication on Silicon Electrochemical Behavior in HF Solution. J. Solid State Electrochem. 2010, 14, 797–802. [Google Scholar] [CrossRef]
- Liu, T.; Chen, X.; Xu, H.; Han, A.; Ye, M.; Pan, G. Preparation and Properties of Boron-Based Nano-B/NiO Thermite. Propellants Explos. Pyrotech. 2015, 40, 873–879. [Google Scholar] [CrossRef]
- Staley, C.S.; Morris, C.J.; Thiruvengadathan, R.; Apperson, S.J.; Gangopadhyay, K.; Gangopadhyay, S. Silicon-Based Bridge Wire Micro-Chip Initiators for Bismuth Oxide–Aluminum Nanothermite. J. Micromech. Microeng. 2011, 21, 115015. [Google Scholar] [CrossRef]
- Shaw, W.L.; Dlott, D.D.; Williams, R.A.; Dreizin, E.L. Ignition of Nanocomposite Thermites by Electric Spark and Shock Wave. Propellants Explos. Pyrotech. 2014, 39, 444–453. [Google Scholar] [CrossRef]
- Baginski, T.A. Radio Frequency and Electrostatic Discharge Insensitive Electro-Explosive Devices. U.S. Patent No. 6192802B1, 27 February 2001. [Google Scholar]
- Benson, D.A.; Larsen, M.E.; Renlund, A.M.; Trott, W.M.; Bickes, R.W., Jr. Semiconductor Bridge: A Plasma Generator for the Ignition of Explosives. J. Appl. Phys. 1987, 62, 1622–1632. [Google Scholar] [CrossRef]
- Plummer, A.; Kuznetsov, V.A.; Gascooke, J.; Shapter, J.; Voelcker, N.H. Laser Shock Ignition of Porous Silicon Based Nano-Energetic Films. J. Appl. Phys. 2014, 116, 054912. [Google Scholar] [CrossRef]
- Lawrence, H.R. Laser Ignition. U.S. Patent No. 3177651A, 13 April 1965. [Google Scholar]
- Kopecek, H.; Eckstein, J.; Young, C.D. Systems Involving Fiber Optic Igniters. U.S. Patent No. 0282805A1, 19 November 2009. [Google Scholar]
- Burke, G.C.; Hirlinger, J.M. Disposable, Minitature Internal Optical Ignition Source for Ammunition Application. U.S. Patent No. 9618307B1, 1 March 2016. [Google Scholar] [CrossRef]
- Dang, N.C.; Gottfried, J.L.; De Lucia, F.C., Jr. Energetic Material Response to Ultrafast Indirect Laser Heating. Appl. Opt. 2017, 56, 85–91. [Google Scholar] [CrossRef]
- Churchyard, S.; Fang, X.; Vrcelj, R. Laser Ignitibility of Energetic Crystals Doped with Gold Nanoparticles. Opt. Laser Technol. 2019, 113, 281–288. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Cartwright, M. Laser Ignition of Energetic Materials; Wiley: Hoboken, NJ, USA, 2015; p. 283. [Google Scholar]
- Yan, Q.L.; Liu, P.J.; He, A.F.; Zhang, J.K.; Ma, Y.; Hao, H.X.; Zhao, F.Q.; Gozin, M. Photosensitive but Mechanically Insensitive Graphene Oxide-Carbohydrazide-Metal Hybrid Crystalline Energetic Nanomaterials. Chem. Eng. J. 2018, 338, 240–247. [Google Scholar] [CrossRef]
- Ishihara, S.; Suzuki, K.; Inoue, H.; Ishii, K.; Kataoka, H. Critical energy for direct initiation of detonation induced by laser ablation. Shock Waves 2016, 26, 635–643. [Google Scholar] [CrossRef]
- Gottfried, J.L. Influence of exothermic chemical reactions on laser-induced shock waves. Phys. Chem. Chem. Phys. 2014, 16, 21452–21466. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Chou, A.; Jaatinen, E.; Buividas, R.; Seniutinas, G.; Juodkazis, S.; Izake, E.L.; Fredericks, P.M. SERS Substrate for Detection of Explosives. Nanoscale 2012, 4, 7419–7424. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Rode, A.V. Ultrafast Re-Structuring of the Electronic Landscape of Transparent Dielectrics: New Material States (Die-Met). Appl. Phys. A 2018, 124, 11. [Google Scholar] [CrossRef]
- Hsu, W.H.; Masim, F.C.P.; Balčytis, A.; Juodkazis, S.; Hatanaka, K. Dynamic Position Shifts of X-ray Emission From a Water Film Induced by a Pair of time-Delayed Femtosecond Laser Pulses. Opt. Express 2017, 25, 24109–24118. [Google Scholar] [CrossRef]
- Cooper, M.A.; Oliver, M.S. The Burning Regimes and Conductive Burn Rates of Titanium Subhydride Potassium Perchlorate (TiH1.65/KClO4) in Hybrid Closed Bomb-Strand Burner Experiments. Combust. Flame 2013, 160, 2619–2630. [Google Scholar] [CrossRef]
- Smith, B.L.; Rhoderick, E.H. Schottky Barriers on p-type Silicon. Solid-State Electron. 1971, 14, 71–75. [Google Scholar] [CrossRef]
- Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717–727. [Google Scholar] [CrossRef]
- Cowley, A.M.; Sze, S.M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220. [Google Scholar] [CrossRef]
- Martinez-Perdiguero, J.; Mendizabal, L.; Morant-Miñana, M.C.; Castro-Hurtado, I.; Juarros, A.; Ortiz, R.; Rodriguez, A. Electrical Insulation and Breakdown Properties of SiO2 and Al2O3 Thin Multilayer Films Deposited on Stainless Steel by Physical Vapor Deposition. Thin Solid Film. 2015, 595, 171–175. [Google Scholar] [CrossRef]
- Henderson, J.H.; Baginski, T.A. An RF-Insensitive Hybrid Electroexplosive Device Incorporating an Integral Filter. IEEE Trans. Ind. Appl. 1996, 32, 465–470. [Google Scholar] [CrossRef]
- Saario, S.A.; Thiel, D.V.; O’Keefe, S.G.; Lu, J.W. Analysis of Ferrite Beads for RF Isolation on Straight Wire Conductors. Electron. Lett. 1997, 33, 1359–1360. [Google Scholar] [CrossRef]
- Glavier, L.; Taton, G.; Ducéré, J.M.; Baijot, V.; Pinon, S.; Calais, T.; Estève, A.; Djafari, M.R.; Rossi, C. Nanoenergetics as Pressure Generator for Nontoxic Impact Primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 Nanothermites and Al/PTFE. Combust. Flame 2015, 162, 1813–1820. [Google Scholar] [CrossRef]
- Granier, J.J.; Pantoya, M.L. Laser Ignition of Nanocomposite Thermites. Combust. Flame 2004, 138, 373–383. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.J.; Park, J.H.; Jeung, I.S. Effects of a wall on the self-ignition patterns and flame propagation of high-pressure hydrogen release through a tube. Proc. Combust. Inst. 2013, 34, 2049–2056. [Google Scholar] [CrossRef]
- Loiseau, J.; Huneault, J.; Petel, O.E.; Goroshin, S.; Frost, D.L.; Higgins, A.J.; Zhang, F. Development of Multi-Component Explosive Lenses for Arbitrary Phase Velocity Generation. J. Phys. 2014, 500, 7. [Google Scholar] [CrossRef]
- Fuzes, Ignition Safety Devices and Other Related Components, Environmental and Performance Tests for; US MIL STD Technical Report 331D; US Department of Defense: Picatinny, NJ, USA, 31 May 1996.
- Interface Standard Electromagnetic Environmental Effects Requirements for Systems; US MIL STD Technical Report 464C; US Department of Defense: Picatinny, NJ, USA, 1 December 2010.
- Dugast, E. Electro-Pyrotechnic Initiator with Resistive Heating Element. EP2056061B1, 14 December 2011. [Google Scholar]
- Neyer, B.T. A D-Optimality-Based Sensitivity Test. Technometrics 1994, 36, 61–70. [Google Scholar] [CrossRef]
- Yan, N.; Bao, B.; Zheng, F.; Li, C. Ignition Characteristics of Micro-Energy Semiconductor Bridges with Different Ignition Compositions. Propellants Explos. Pyrotech. 2016, 41, 223–227. [Google Scholar] [CrossRef]
- Guo, X.R.; Zhang, L.; Zhu, S.G.; Li, Y.; Ma, P. Investigations on the Ignition Characteristics of a Semiconductor Bridge with an Electrostatic Discharge. Combust. Explos. Shock Waves 2013, 49, 231–237. [Google Scholar] [CrossRef]
- Park, M.I.; Choo, H.T.; Yoon, S.H.; Park, C.O. Comparison of Plasma Generation Behaviors Between a Single Crystal Semiconductor Bridge (Single-SCB) and a Polysilicon Semiconductor Bridge (Poly SCB). Sens. Actuators Phys. 2004, 115, 104–108. [Google Scholar] [CrossRef]
- Martinez-Tovar, B.; Foster, M.C. Titanium Semiconductor Bridge Igniter. U.S. Patent No. 4708060A, 24 January 2008. [Google Scholar]
- Bickes, R.W.; Grubelich, M.C. Seminconductor Bridge (SCB) Detonator; OSTI: Albuquerque, NM, USA, 1999.
- Ma, P.; Zhang, L.; Zhu, S.; Zhang, L.; Chen, H. Non-Plasma Ignition of Lead Styphnate by a Semiconductor Bridge and its Comparison with Plasma Ignition. Combust. Explos. Shock Waves 2011, 47, 103–109. [Google Scholar] [CrossRef]
- Zhang, K.; Rossi, C.; Petrantoni, M.; Mauran, N. A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials with a Au/Pt/Cr Microheater. J. Microelectromech. Syst. 2008, 17, 832–836. [Google Scholar] [CrossRef]
- Zhang, K.; Rossi, C.; Rodriguez, A.G.A.; Tenailleau, C.; Alphonse, P. Development of a Nano-AlCuO Based Energetic Material on Silicon Substrate. Appl. Phys. Lett. 2007, 91, 113117. [Google Scholar] [CrossRef]
- Benson, D.A.; Bickes, R.W., Jr.; Blewer, R.S. Tungsten Bridge for the Low Energy Ignition of Explosive and Energetic Materials; OSTI: Albuquerque, NM, USA, 1990.
- Motley, J. Explosive Detonation Apparatus. U.S. Patent No. 5503077, 2 April 1996. [Google Scholar]
- Aduev, B.P.; Nurmukhametov, D.R.; Zvekov, A.A.; Nikitin, A.P.; Kalenskii, A.V. Laser Initiation of PETN-Based Composites with Additives of Ultrafine Aluminium Particles. Combust. Explos. Shock Waves 2016, 52, 713–718. [Google Scholar] [CrossRef]
- Afanasenkov, A.N. Strength of Explosives. Trauzl Test. Combust. Explos. Shock Waves 2004, 40, 119–125. [Google Scholar] [CrossRef]
- Gordon, W.E.; Reed, F.E.; Lepper, B.A. Lead-Block Test for Explosives. Ind. Eng. Chem. 1955, 47, 1794–1800. [Google Scholar] [CrossRef]
- Ermolaev, B.S.; Romankov, A.V.; Sulimov, A.A.; Crowley, A.B. Compacted Modified Propellant Blocks as Traveling Charge in the Hybrid Shot Scheme. Propellants Explos. Pyrotech. 2014, 39, 881–889. [Google Scholar] [CrossRef]
- Zvulun, E.; Toker, G.; Gurovich, V.T.; Krasik, Y.E. Shockwave Generation by a Semiconductor Bridge Operation in Water. J. Appl. Phys. 2014, 115, 203301. [Google Scholar] [CrossRef]
- Federoff, B.T.; Sheffield, O.E. Encyclopedia of Explosives and Related Items Vol. 2; Technical Report; U.S. Army Research and Development Command Tacom, Ardec Warheads, Energetics and Combat Support Center Picatinny Arsenal: Warren, MI, USA, 1962. [Google Scholar]
- Kim, B.; gyo Jang, S.; Yoh, J.J. A full-scale hydrodynamic simulation of energetic component system. Comput. Fluids 2017, 156, 368–383. [Google Scholar] [CrossRef]
- Trzciński, W.A.; Maiz, L. Thermobaric and Enhanced Blast Explosives—Properties and Testing Methods. Propellants Explos. Pyrotech. 2015, 40, 632–644. [Google Scholar] [CrossRef]
- Mizeikis, V.; Juodkazis, S.; Balčiunas, T.; Misawa, H.; Kudryashov, S.I.; Zvorykin, V.D.; Ionin, A.A. Optical and Ultrasonic Signatures of Femtosecond Pulse Filamentation in Fused Silica. J. Appl. Phys. 2009, 105, 123106. [Google Scholar] [CrossRef]
- Kim, J.; Schamiloglu, E.; Martinez-Tovar, B.; Jungling, K.C. Measurement of Plasma Electron Density Generated by a Semiconductor Bridge (SCB). Electron. Lett. 1994, 30, 603–604. [Google Scholar] [CrossRef]
- Juodkazis, S.; Murazawa, N.; Wakatsuki, H.; Misawa, H. Laser irradiation induced disintegration of a bubble in a glass melt. Appl. Phys. A 2007, 87, 41–45. [Google Scholar] [CrossRef]
- Juodkazis, S.; Misawa, H.; Gamaly, E.G.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V.T. Is the Nano-Explosion Really Microscopic? J. Non-Cryst. Solids 2009, 355, 1160–1162. [Google Scholar] [CrossRef]
- Juodkazis, S.; Nishimura, K.; Tanaka, S.; Misawa, H.; Gamaly, E.E.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V. Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures. Phys. Rev. Lett. 2006, 96, 166101. [Google Scholar] [CrossRef] [Green Version]
- Judsen, J. Army nearing strategy on way ahead for Indirect Fire Protection Capability. Defence News. 2019. Available online: https://www.defensenews.com/digital-show-dailies/ausa/2018/10/10/army-nearing-strategy-on-way-ahead-for-indirect-fire-protection-capability/ (accessed on 10 August 2019).
Energetic Material Properties | |||||
---|---|---|---|---|---|
Property | Lead Azide 1 | Lead Styphnate 1 | TNT 1 | DBX-1 2 | PETN 1 |
Empirical formula | Pb(N3)2 | C6H3N3O9Pb | C7H5N3O6 | C2Cu2N10O4 | C5H8O12N4 |
Density () | 4.8 | 3.0 | 1.654 (molten) | 2.584 | 1.76 |
Volume of explosion gases () | 231 | 825 | 780 | ||
Heat of explosion () | 391 | 347 | 871 (H2O gas) | 912.2 | 1398.2 (H2O gas) |
Lead block test () | 110 | 130 | 300 | 523 | |
Detonation velocity, confined ( @ ) | 5200 @ 4.6 | 5200 @ 2.9 | 6900 @ 1.60 | 7000 1 | 8400 @ 1.7 |
Deflagration point (°C) | 320–360 | 275–280 | 300 | 256–281 est. | >190 req. |
Impact sensitivity () | 2.5–4 | 2.5–5 | 15 | 0.04 1 | 3 |
Friction sensitivity (N) | 0.1–1 | 1.5 | >353 | 0.1 1 | 60 |
Electrical discharge sensitivity 3 (mJ) | 4.7 | 0.2 | 3.1 |
Thermite and Intermetallic Reactions | |||
---|---|---|---|
Reactants | Adiabatic Reaction Temperature (K) | Gas Production (L·kg) | Heat of Reaction(kcal·kg) |
2Al + Bi2O3 | 3253 | 97.9 | 506.1 |
2Al + 3CuO | 2843 | 121.0 | 974.1 |
2Al + MoO3 | 3253 | 54.3 | 1124 |
2Al + WO3 | 3253 | 32.1 | 696.4 |
4Al + 3SiO2 | 1889 | 0 | 513.3 |
Ti + 2B | 3498 | 0 | 1320 |
Ti + 2CuO | 2843 | 72.6 | 730.5 |
Ti + SiO2 | 715 | 0 | 75.0 |
Zr + 2CuO | 2843 | 124.4 | 752.9 |
Zr + SiO2 | 1687 | 0 | 299.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundgaard, S.; Ng, S.H.; Cahill, D.; Dahlberg, J.; Ruan, D.; Cole, N.; Stoddart, P.R.; Juodkazis, S. Towards Safer Primers: A Review. Technologies 2019, 7, 75. https://doi.org/10.3390/technologies7040075
Lundgaard S, Ng SH, Cahill D, Dahlberg J, Ruan D, Cole N, Stoddart PR, Juodkazis S. Towards Safer Primers: A Review. Technologies. 2019; 7(4):75. https://doi.org/10.3390/technologies7040075
Chicago/Turabian StyleLundgaard, Stefan, Soon Hock Ng, Damien Cahill, Johan Dahlberg, Dong Ruan, Nerida Cole, Paul R. Stoddart, and Saulius Juodkazis. 2019. "Towards Safer Primers: A Review" Technologies 7, no. 4: 75. https://doi.org/10.3390/technologies7040075
APA StyleLundgaard, S., Ng, S. H., Cahill, D., Dahlberg, J., Ruan, D., Cole, N., Stoddart, P. R., & Juodkazis, S. (2019). Towards Safer Primers: A Review. Technologies, 7(4), 75. https://doi.org/10.3390/technologies7040075