A Framework for Prediction of Household Energy Consumption Using Feed Forward Back Propagation Neural Network
Abstract
:1. Introduction
2. Related Work
3. Proposed Methodology
3.1. Data Layer
3.2. Pre-Processing Layer
3.3. Prediction Layer
3.4. Performance Evaluation Layer
4. Implementation and Results
4.1. Implementation Setup
4.2. Results
5. Conclusion and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
Notation | Description |
FFBPNN | Feed Forward Back Propagation Neural Network |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
RMSE | Root Mean Square Error |
SD | Simple Data |
ND | Normalized Data |
SMD | Statistical Moments Data |
YD | One Year Data |
Tr | Training Data |
Ts | Testing Data |
D | Day |
References
- i-Scoop. Smart Homes Automation. Available online: https://www.i-scoop.eu/smart-home-home-automation/ (accessed on 20 November 2018).
- Gartner. Gartner Survey Shows Connected Home Solutions Adoption Remains Limited to Earlyadopters. 2017. Available online: https://www.gartner.com/en/newsroom/press-releases/2017-03-06-gartner-survey-shows-connected-home-solutions-adoption-remains-limited-to-e.arly-adopters (accessed on 25 March 2019).
- Controls, J. 2017 Energy Efficiency Indicator Survey. 2017. Available onlinehttps://www.johnsoncontrols.com/media-center/news/press-releases/2017/10/12/-/media/d23ec7c884d34719b0ec5b00d3a8abe2.ashx (accessed on 25 March 2019).
- Shah, A.S.; Nasir, H.; Fayaz, M.; Lajis, A.; Shah, A. A review on energy consumption optimization techniques in iot based smart building environments. Information 2019, 10, 108. [Google Scholar] [CrossRef]
- Wahid, F.; Ghazali, R.; Fayaz, M.; Shah, A.S. Statistical features based approach (sfba) for hourly energy consumption prediction using neural network. Int. J. Inf. Technol. Comput. Sci. 2017, 9, 23–30. [Google Scholar] [CrossRef]
- Wahid, F.; Ghazali, R.; Fayaz, M.; Shah, A.S. A simple and easy approach for home appliances energy consumption prediction in residential buildings using machine learning techniques. JAEBS 2017, 7, 108–119. [Google Scholar]
- Fayaz, M.; Kim, D. A prediction methodology of energy consumption based on deep extreme learning machine and comparative analysis in residential buildings. Electronics 2018, 7, 222. [Google Scholar] [CrossRef]
- 55-2010,A.A.S. Thermal Environmental Conditions for Human Occupancy.; American Society of Heating, Refrigerating, and Air Conditioning Engineers Inc.: Atlanta, GE, USA, 2010. [Google Scholar]
- Stinson, J.; Willis, A.; Williamson, J.B.; Currie, J.; Smith, R.S. Visualising energy use for smart homes and informed users. Energy Procedia 2015, 78, 579–584. [Google Scholar] [CrossRef]
- Ha, D.L.; Ploix, S.; Zamai, E.; Jacomino, M. Realtimes dynamic optimization for demand-side load management. IJMSEM 2008, 3, 243–252. [Google Scholar] [CrossRef]
- Li, K.; Hu, C.; Liu, G.; Xue, W. Building‘s electricity consumption prediction using optimized artificial neural networks and principal component analysis. Energy Build. 2015, 108, 106–113. [Google Scholar] [CrossRef]
- Biswas, M.A.R.; Robinson, M.D.; Fumo, N. Prediction of residential building energy consumption: A neural network approach. Energy 2016, 117, 84–92. [Google Scholar] [CrossRef]
- Hu, Y.-C. Electricity consumption prediction using a neural-network-based grey forecasting approach. J. Oper. Res. Soc. 2017, 68, 1259–1264. [Google Scholar] [CrossRef]
- Basu, K.; Hawarah, L.; Arghira, N.; Joumaa, H.; Ploix, S. A prediction system for home appliance usage. Energy Build. 2013, 67, 668–679. [Google Scholar] [CrossRef]
- Li, C.; Ding, Z.; Zhao, D.; Yi, J.; Zhang, G. Building energy consumption prediction: An extreme deep learning approach. Energies 2017, 10, 1525. [Google Scholar] [CrossRef]
- Bâra, A.; Oprea, S.V. Electricity consumption and generation forecasting with artificial neural networks. In Advanced applications for artificial neural networks; IntechOpen: London, UK, 2017. [Google Scholar]
- Rahman, A.; Srikumar, V.; Smith, A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- Kuo, P.-H.; Huang, C.-J. A high precision artificial neural networks model for short-term energy load forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef]
- González, P.A.; Zamarreno, J.M. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network. Energy Build. 2005, 37, 595–601. [Google Scholar] [CrossRef]
- Gibbs, M.S.; Morgan, N.; Maier, H.R.; Dandy, G.C.; Nixon, J.B.; Holmes, M. Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods. Math. Comput. Model. 2006, 44, 485–498. [Google Scholar] [CrossRef]
- Geem, Z.W.; Roper, W.E. Energy demand estimation of south korea using artificial neural network. Energy Policy 2009, 37, 4049–4054. [Google Scholar] [CrossRef]
- Wahid, F.; Kim, D.H. Short-term energy consumption prediction in korean residential buildings using optimized multi-layer perceptron. Kuwait J. Sci. 2017, 44. Available online: https://journalskuwait.org/kjs/index.php/KJS/article/view/1473 (accessed on 25 March 2019).
- MATLAB Version 8; (R2013a); The Mathworks Inc.: Natick, MA, USA, 2013.
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
ANN on SD (1D) | 1.6609 | 4.5503 | 1.9046 |
AN on SD (2D) | 1.9649 | 5.2604 | 2.4105 |
ANN on SD (5D) | 2.3261 | 6.3572 | 2.8343 |
ANN on SD(W) | 2.1069 | 5.9065 | 2.6226 |
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
ANN on ND (1D) | 1.6832 | 4.6264 | 2.2857 |
ANN on ND (2D) | 1.3383 | 3.5847 | 1.7186 |
ANN on ND (5D) | 2.2114 | 6.2251 | 2.7352 |
ANN on ND (W) | 1.9545 | 5.2577 | 2.3558 |
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
ANN on SMD(1D) | 1.0321 | 2.9039 | 1.212 |
ANN on SMD(2D) | 0.9575 | 2.516 | 1.1388 |
ANN on SMD(5D) | 1.6105 | 4.4772 | 2.1394 |
ANN on SMD(W) | 0.7265 | 2.0646 | 0.9723 |
Statistical Measures | MAE | MAPE | RMSE |
---|---|---|---|
ANN (simple Data) | 8.0588 | 22.0744 | 9.772 |
ANN on ND | 7.1874 | 19.6939 | 9.0953 |
ANN on SMD | 4.3266 | 11.9617 | 5.4625 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayaz, M.; Shah, H.; Aseere, A.M.; Mashwani, W.K.; Shah, A.S. A Framework for Prediction of Household Energy Consumption Using Feed Forward Back Propagation Neural Network. Technologies 2019, 7, 30. https://doi.org/10.3390/technologies7020030
Fayaz M, Shah H, Aseere AM, Mashwani WK, Shah AS. A Framework for Prediction of Household Energy Consumption Using Feed Forward Back Propagation Neural Network. Technologies. 2019; 7(2):30. https://doi.org/10.3390/technologies7020030
Chicago/Turabian StyleFayaz, Muhammad, Habib Shah, Ali Mohammad Aseere, Wali Khan Mashwani, and Abdul Salam Shah. 2019. "A Framework for Prediction of Household Energy Consumption Using Feed Forward Back Propagation Neural Network" Technologies 7, no. 2: 30. https://doi.org/10.3390/technologies7020030
APA StyleFayaz, M., Shah, H., Aseere, A. M., Mashwani, W. K., & Shah, A. S. (2019). A Framework for Prediction of Household Energy Consumption Using Feed Forward Back Propagation Neural Network. Technologies, 7(2), 30. https://doi.org/10.3390/technologies7020030