Evaluation of Ion-Exchange Characteristics of Cesium in Natural Japanese Rocks
Abstract
1. Introduction
2. Materials and Methods
2.1. Natural Japanese Rocks
2.2. Cesium Adsorption Experiments
2.3. Cesium Desorption Experiments
2.4. Heat Treatment Experiments
3. Results and Discussion
3.1. Adsorption of Cs+ onto Natural Japanese Rocks
3.2. Adsorption Behavior of Cs+ with Seawater
3.3. Adsorption of Cs+ with Coexisting Ions
3.4. Adsorption Quantity of Cs+ for pH Change
3.5. Desorption of Cs+ from Natural Japanese Rocks
3.6. Desorption of Cs+ with Coexisting Ions
3.7. Effect of the Heat Treatment of Rocks
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fujii, K.; Ikeda, S.; Akama, A.; Komatsu, M.; Takahashi, M.; Kaneko, S. Vertical migration of radiocesium and clay mineral composition in five forest soils contaminated by the Fukushima nuclear accident. Soil Sci. Plant Nutr. 2014, 60, 751–764. [Google Scholar] [CrossRef]
- Parajuli, D.; Takahashi, A.; Tanaka, H.; Sato, M.; Fukuda, S.; Kamimura, R.; Kawamoto, T. Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil. J. Environ. Radioact. 2015, 140, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Mukai, H.; Hirose, A.; Motai, S.; Kikuchi, R.; Tanoi, K.; Nakanishi, T.; Yaita, T.; Kogure, T. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. Sci. Rep. 2016, 6, 21543. [Google Scholar] [CrossRef] [PubMed]
- Kogure, T.; Morimoto, K.; Tamura, K.; Sato, H.; Yamagishi, A. XRD and HRTEM Evidence for Fixation of Cesium Ions in Vermiculite Clay. Chem. Lett. 2012, 41, 380–382. [Google Scholar] [CrossRef]
- Benedicto, A.; Missana, T.; Fernández, A.M. Interlayer collapse affects on cesium adsorption onto illite. Environ. Sci. Technol. 2014, 48, 4909–4915. [Google Scholar] [CrossRef] [PubMed]
- Zaunbrecher, L.K.; Cygan, R.T.; Elliott, W.C. Molecular models of cesium and rubidium adsorption on weathered micaceous minerals. J. Phys. Chem. A 2015, 119, 5691–5700. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.J.; Shaw, S.; Peacock, C.L.; Trivedi, D.; Small, J.S.; Abrahamsen, L.G.; Burke, I.T. Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment. Appl. Geochem. 2014, 40, 32–42. [Google Scholar] [CrossRef]
- Endo, M.; Yoshikawa, E.; Muramatsu, N.; Takizawa, N.; Kawai, T.; Unuma, H.; Sasaki, A.; Masano, A.; Takeyama, Y.; Kahara, T. The removal of cesium ion with natural Itaya zeolite and the ion exchange characteristics. J. Chem. Technol. Biotechnol. 2013, 88, 1597–1602. [Google Scholar] [CrossRef]
- Chiang, P.N.; Wang, M.K.; Huang, P.M.; Wang, J.J. Effects of low molecular weight organic acids on (137) Cs release from contaminated soils. Appl. Radiat. Isot. 2011, 69, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Takizawa, N.; Togashi, K.; Sasaki, A.; Endo, M. Adsorption/Desorption Characteristics of Cesium Ions on Natural and Synthetic Minerals. J. Ion Exch. 2018, 29, 9–15. [Google Scholar] [CrossRef]
- Osuna, F.J.; Cota, A.; Pavón, E.; Pazos, M.C.; Alba, M.D. Cesium adsorption isotherm on swelling high-charged micas from aqueous solutions: Effect of temperature. Am. Mineral. 2018, 103, 623–628. [Google Scholar] [CrossRef]
- Durrant, C.B.; Begg, J.D.; Kersting, A.B.; Zavarin, M. Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci. Total Environ. 2018, 610, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.Q.; Jin, X.Y.; Lu, X.Q.; Chen, Z.L. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 2010, 252, 33–39. [Google Scholar] [CrossRef]
- Bostick, B.C.; Vairavamurthy, M.A.; Karthikeyan, K.G.; Chorover, J. Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environ. Sci. Technol. 2002, 36, 2670–2676. [Google Scholar] [CrossRef] [PubMed]
- Nakao, A.; Thiry, Y.; Funakawa, S.; Kosaki, T. Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Sci. Plant Nutr. 2008, 54, 479–489. [Google Scholar] [CrossRef]
- GSJ Geochemical Reference Samples Data Base. Available online: https://gbank.gsj.jp/geostandards/welcome.html (accessed on 14 June 2018).
- Johnson, W.M.; Maxwell, J.A. Rock and Mineral Analysis, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1981; ISBN 13 9780471027430. [Google Scholar]
- Miura, K. Weathering during late Pliocene of Gotsu plutonic rocks. J. Jpn. Soc. Eng. Geol. 1973, 14, 87–102. [Google Scholar] [CrossRef]
- Onikata, M.; Kondo, M.; Hayashi, N.; Yamanaka, S. Complex formation of cation-exchanged montmorillo-nites with propylene carbonate: Osmotic swelling in aqueous electrolyte solutions. Clays Clay Miner. 1999, 47, 672–677. [Google Scholar] [CrossRef]
- Morimoto, K.; Kogure, K.; Tamura, K.; Tomofuji, T.; Yamagishi, A.; Sato, H. Desorption of Cs+ Ions Intercalated in Vermiculite Clay through Cation Exchange with Mg2+ Ions. Chem. Lett. 2012, 41, 1715–1717. [Google Scholar] [CrossRef]
- Tamura, K.; Sato, H.; Yamagishi, A. Desorption of Cs+ ions from a vermiculite by exchanging with Mg2+ ions: Effects of Cs+-capturing ligand. J. Radioanal. Nucl. Chem. 2015, 303, 2205–2210. [Google Scholar] [CrossRef]
- Dzene, L.; Tertre, E.; Hubert, F.; Ferrage, E. Nature of the sites involved in the process of cesium desorption from vermiculite. J. Colloid Interface Sci. 2015, 455, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Komy, Z.R.; Shaker, A.M.; Heggy, S.E.M.; El-Sayed, M.E.A. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere 2014, 99, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Dumat, C.; Stauton, S. Reduced adsorption of caesium on clay minerals caused by various humic substances. J. Environ. Radioact. 1999, 46, 187–200. [Google Scholar] [CrossRef]
- Brouwer, E.; Baeyens, B.; Maes, A.; Cremers, A. Cesium and rubidium ion equilibriums in illite clay. J. Phys. Chem. 1983, 87, 1213–1219. [Google Scholar] [CrossRef]
- Staunton, S.; Roubaud, M. Adsorption of 137Cs on montmorillonite and illite: Effect of charge compensating cation, ionic strength, concentration of Cs, K, and fluvic acid. Clays Clay Miner. 1997, 45, 251–260. [Google Scholar] [CrossRef]
- Environmental Chemistry.com. Available online: https://environmentalchemistry.com/yogi/periodic/ioni-cradius.html (accessed on 14 June 2018).
Constituent | JA-1 | JA-3 | JB-1 | JB-1a | JB-2 | JB-3 | JG-1 | JGb-1 | JSl-1 | JCh-1 | JSd-2 | JSO-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 (%) | 64.0 | 62.3 | 52.4 | 52.4 | 53.3 | 51.0 | 72.3 | 43.7 | 59.5 | 97.8 | 60.8 | 38.4 |
Al2O3 (%) | 15.2 | 15.6 | 14.5 | 14.5 | 14.6 | 17.2 | 14.2 | 17.5 | 17.6 | 0.734 | 12.3 | 18.1 |
Fe2O3 (%) | 2.59 | 1.15 | 2.33 | 2.55 | 3.33 | 3.20 | 0.380 | 4.79 | 1.88 | 0.272 | 4.55 | 8.58 |
FeO (%) | 3.98 | 4.83 | 5.99 | 5.78 | 9.98 | 7.85 | 1.61 | 9.43 | 4.52 | 0.087 | 5.96 | 2.52 |
MgO (%) | 1.57 | 3.72 | 7.71 | 7.83 | 4.62 | 5.19 | 0.740 | 7.85 | 2.41 | 0.075 | 2.73 | 2.11 |
CaO (%) | 5.70 | 6.24 | 9.25 | 9.31 | 9.82 | 9.79 | 2.20 | 11.9 | 1.48 | 0.045 | 3.66 | 2.55 |
Na2O (%) | 3.84 | 3.19 | 2.77 | 2.73 | 2.04 | 2.73 | 3.38 | 1.20 | 2.18 | 0.031 | 2.44 | 0.670 |
K2O (%) | 14.2 | 1.41 | 1.43 | 1.40 | 0.420 | 0.780 | 3.98 | 0.240 | 2.85 | 0.221 | 1.15 | 0.340 |
H2O+ (%) | 0.720 | 0.200 | 1.02 | 0.920 | 0.250 | 0.180 | 0.540 | 1.28 | 3.92 | 0.360 | 2.55 | 7.88 |
H2O− (%) | 0.300 | 0.110 | 0.950 | 0.920 | 0.130 | 0.070 | 0.070 | 0.130 | 0.654 | 0.152 | 0.451 | - |
400 °C | 600 °C | 800 °C | 1000 °C | 1100 °C | |
---|---|---|---|---|---|
JB | 68.1 | 58.3 | 28.6 | 19.8 | 0.0 |
JSO | 98.5 | 76.7 | 45.1 | 17.5 | 0.0 |
JA | 35.8 | 24.5 | 26.4 | 14.2 | 0.0 |
JSd | 100 | 30.0 | 13.6 | 0.0 | 0.0 |
JSl | 90.2 | 83.4 | 48.0 | 21.2 | 0.0 |
Water | HCl (pH 1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | Non calcination | 400 | 600 | 800 | 1000 | 1100 | 400 | 600 | 800 | 1000 | 1100 |
JB | 31.0 | 3.4 | 2.2 | 0.6 | 0.2 | 0.2 | 87.1 | 47.1 | 4.8 | 1.4 | 0.2 |
JSO | 39.2 | 11.2 | 13.0 | 5.9 | 0.5 | 0.8 | 88.6 | 50.2 | 23.8 | 2.6 | 1.5 |
JA | 31.0 | 10.2 | 8.8 | 4.2 | 2.3 | 0.9 | 58.4 | 31.1 | 16.6 | 3.8 | 0.3 |
JSd | 90.1 | 31.6 | 15.1 | 9.9 | 3.0 | 1.3 | 95.9 | 52.0 | 16.1 | 4.3 | 0.8 |
JSl | 65.5 | 29.3 | 16.7 | 15.5 | 1.1 | 0.5 | 100 | 100 | 35.2 | 2.2 | 0.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, T.; Sasaki, A.; Endo, M. Evaluation of Ion-Exchange Characteristics of Cesium in Natural Japanese Rocks. Technologies 2018, 6, 78. https://doi.org/10.3390/technologies6030078
Miura T, Sasaki A, Endo M. Evaluation of Ion-Exchange Characteristics of Cesium in Natural Japanese Rocks. Technologies. 2018; 6(3):78. https://doi.org/10.3390/technologies6030078
Chicago/Turabian StyleMiura, Takuya, Atsushi Sasaki, and Masatoshi Endo. 2018. "Evaluation of Ion-Exchange Characteristics of Cesium in Natural Japanese Rocks" Technologies 6, no. 3: 78. https://doi.org/10.3390/technologies6030078
APA StyleMiura, T., Sasaki, A., & Endo, M. (2018). Evaluation of Ion-Exchange Characteristics of Cesium in Natural Japanese Rocks. Technologies, 6(3), 78. https://doi.org/10.3390/technologies6030078