Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Steam Distillation Apparatus and Procedure of Bioactive Compounds Extraction from Citrus Peels
2.3. Preparation of Nanoparticles
2.4. Characterization of Orange Peel Extract
2.5. Characterization of Nanoparticles
2.6. Tested Bacteria
2.7. Antimicrobial Activity of NPs
3. Results and Discussion
3.1. Characterization of Extract and NPs
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Secretary-General, U.N. Population, Food Security, Nutrition and Sustainable Development: Report of the Secretary-General; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Sadraei, R.; Biancone, P.; Lanzalonga, F.; Jafari-Sadeghi, V.; Chmet, F. How to Increase Sustainable Production in the Food Sector? Mapping Industrial and Business Strategies and Providing Future Research Agenda. Bus. Strategy Environ. 2023, 32, 2209–2228. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; El-Wafai, N.A.; Abou-Aly, H.E.; Salem, H.M.; Soliman, S.M.; El-Mageed, T.A.A.; Elrys, A.S.; Selim, S.; El-Hack, M.E.A.; et al. Hazardous Wastes and Management Strategies of Landfill Leachates: A Comprehensive Review. Environ. Technol. Innov. 2023, 31, 103150. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, E.; Mishra, R.; Lo, S.L.; Kumar, S. Global Trends in Municipal Solid Waste Treatment Technologies through the Lens of Sustainable Energy Development Opportunity. Energy 2023, 275, 127471. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Li, M.; Du, M.; Li, X.; Li, Y. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (Opfrs). Int. J. Mol. Sci. 2019, 20, 2874. [Google Scholar] [CrossRef]
- Vaccari, M.; Tudor, T.; Vinti, G. Characteristics of Leachate from Landfills and Dumpsites in Asia, Africa and Latin America: An Overview. Waste Manag. 2019, 95, 416–431. [Google Scholar] [CrossRef]
- Liu, Z.; de Souza, T.S.P.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A.R. Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes 2023, 11, 840. [Google Scholar] [CrossRef]
- Mahongnao, S.; Sharma, P.; Nanda, S. Conversion of Waste Materials into Different By-Products of Economic Value. In Waste Management and Resource Recycling in the Developing World; Elsevier: Amsterdam, The Netherlands, 2023; pp. 665–699. [Google Scholar]
- Varshney, S.; Gupta, A. Forest Industrial Biomass Residue-Mediated Green Synthesized Multifunctional Copper Oxide Nanoparticles for Efficient Wastewater Treatment and Biomedical Applications. J. Clean. Prod. 2024, 434, 140109. [Google Scholar] [CrossRef]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; El-Monaem, E.M.A.; Mohamed, I.M.A.; Badr, M.M.; Ihara, I.; Rooney, D.W.; et al. Synthesis of Green Nanoparticles for Energy, Biomedical, Environmental, Agricultural, and Food Applications: A Review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Sharma, R.; Lata, S.; Garg, R. Valorisation of Agricultural Waste and Their Role in Green Synthesis of Value-Added Nanoparticles. Environ. Technol. Rev. 2024, 13, 40–59. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Statistical Compendium 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; pp. 1–48. [Google Scholar]
- Uthman, A.; Garba, Y. Citrus Mineral Nutrition and Health Benefits: A Review. In Citrus Research-Horticultural and Human Health Aspects; IntechOpen: London, UK, 2023. [Google Scholar]
- Dongre, P.; Doifode, C.; Choudhary, S.; Sharma, N. Botanical Description, Chemical Composition, Traditional Uses and Pharmacology of Citrus sinensis: An Updated Review. Pharmacol. Res.-Mod. Chin. Med. 2023, 8, 100272. [Google Scholar] [CrossRef]
- Minami, G.S.; Lumbantoruan, E.C.; Puteri; Nuraini, R.; Harianto, J.C.; Fahrurroji, A. The Potential of Sweet Orange (Citrus sinensis) in Cardiovascular Health: A Literature Review. J. Kedokt. Dan. Kesehat. Indones. 2023, 14, 82–94. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed Electric Field Technology as a Promising Pre-Treatment for Enhancing Orange Agro-Industrial Waste Biorefinery. RSC Adv. 2024, 14, 2116–2133. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- Ashraf, H.; Iahtisham-Ul-Haq; Butt, M.S.; Nayik, G.A.; Ramniwas, S.; Damto, T.; Alharbi, S.A.; Ansari, M.J. Phytochemical and Antioxidant Profile of Citrus Peel Extracts in Relation to Different Extraction Parameters. Int. J. Food Prop. 2024, 27, 286–299. [Google Scholar] [CrossRef]
- Bekheet, M.A.; Riyad, Y.M.; Hosny, M.H.; El-Ghafar, A.; Mohamed, M. Bioactive Compounds and Antioxidant Activity of Some Fruit and Vegetable Wastes. Egypt. J. Chem. 2024, 67, 157–166. [Google Scholar] [CrossRef]
- Yohannes, R.; Geremew, T.; Tafese, T.; Endale, M. Antibacterial and Antioxidant Activity of Compounds from Citrus sinensis L. Peels and in Silico Molecular Docking Study. Int. J. Second. Metab. 2023, 10, 437–458. [Google Scholar] [CrossRef]
- Viñas-Ospino, A.; Jesus, A.R.; Paiva, A.; Esteve, M.J.; Frígola, A.; Blesa, J.; López-Malo, D. Comparison of Green Solvents for the Revalorization of Orange By-Products: Carotenoid Extraction and in vitro Antioxidant Activity. Food Chem. 2024, 442, 138530. [Google Scholar] [CrossRef]
- Wang, Z.; Mei, X.; Chen, X.; Rao, S.; Ju, T.; Li, J.; Yang, Z. Extraction and Recovery of Bioactive Soluble Phenolic Compounds from Brocade Orange (Citrus sinensis) Peels: Effect of Different Extraction Methods Thereon. LWT 2023, 173, 114337. [Google Scholar] [CrossRef]
- Bruno, M.R.; Russo, D.; Cetera, P.; Faraone, I.; Giudice, V.L.; Milella, L.; Todaro, L.; Sinisgalli, C.; Fritsch, C.; Dumarçay, S.; et al. Chemical Analysis and Antioxidant Properties of Orange-Tree (Citrus sinensis L.) Biomass Extracts Obtained via Different Extraction Techniques. Biofuels Bioprod. Biorefining 2020, 14, 509–520. [Google Scholar] [CrossRef]
- Farhat, A.; Fabiano-Tixier, A.-S.; Maataoui, M.; Maingonnat, J.-F.; Romdhane, M.; Chemat, F. Microwave Steam Diffusion for Extraction of Essential Oil from Orange Peel: Kinetic Data, Extract’s Global Yield and Mechanism. Food Chem. 2011, 125, 255–261. [Google Scholar] [CrossRef]
- Charlton, N.C.; Mastyugin, M.; Török, B.; Török, M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef] [PubMed]
- Brett, A.M.O.; Ghica, M.E. Electrochemical Oxidation of Quercetin. Electroanalysis 2003, 15, 1745–1750. [Google Scholar] [CrossRef]
- Niluxsshun, M.C.D.; Masilamani, K.; Mathiventhan, U. Green Synthesis of Silver Nanoparticles from the Extracts of Fruit Peel of Citrus tangerina, Citrus sinensis, and Citrus limon for Antibacterial Activities. Bioinorg. Chem. Appl. 2021, 2021, 6695734. [Google Scholar] [CrossRef] [PubMed]
- Sahar, T.; Munir, H.; Zia, Z.; Nageen; Rafiq, N.; Shafiq, N.; Aleem, S.; Aslam, S. Ecofriendly Green Synthesis of Iron Oxide Nanoparticles Using Citrus sinensis. Front. Chem. Sci. 2020, 1, 21–28. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, D.; Ren, D.; Zeng, K.; Wu, X. Green Synthesis of Zinc Oxide Nanoparticles Using Citrus sinensis Peel Extract and Application to Strawberry Preservation: A Comparison Study. LWT 2020, 126, 109297. [Google Scholar] [CrossRef]
- Salem, S.S.; Badawy, M.S.E.M.; Al-Askar, A.A.; Arishi, A.A.; Elkady, F.M.; Hashem, A.H. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Life 2022, 12, 893. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; da Silva, S.S. Copper and Copper Nanoparticles: Role in Management of Insect-Pests and Pathogenic Microbes. Nanotechnol. Rev. 2018, 7, 303–315. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Netala, V.R.; Kotakadi, V.S.; Nagam, V.; Bobbu, P.; Ghosh, S.B.; Tartte, V. First Report of Biomimetic Synthesis of Silver Nanoparticles Using Aqueous Callus Extract of Centella Asiatica and Their Antimicrobial Activity. Appl. Nanosci. 2015, 5, 801–807. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, G.; Kaur, P.; Bajaj, R.; Rawat, M. A review on green synthesis and characterization of silver nanoparticles and their applications: A green nanoworld. World J. Pharm. Pharm. Sci. 2016, 5, 730–762. [Google Scholar] [CrossRef]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef]
- Dayem, A.A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [PubMed]
- Bogdanović, U.; Lazić, V.; Vodnik, V.; Budimir, M.; Marković, Z.; Dimitrijević, S. Copper Nanoparticles with High Antimicrobial Activity. Mater. Lett. 2014, 128, 75–78. [Google Scholar] [CrossRef]
- Crisan, M.C.; Teodora, M.; Lucian, M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Appl. Sci. 2021, 12, 141. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics 2021, 10, 884. [Google Scholar] [CrossRef]
- Mandal, A.K.; Katuwal, S.; Tettey, F.; Gupta, A.; Bhattarai, S.; Jaisi, S.; Bhandari, D.P.; Shah, A.K.; Bhattarai, N.; Parajuli, N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. Nanomaterials 2022, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Larosi, M.B.; del Val García, J.; Rodríguez, A.R. Laser Synthesis of Nanomaterials. Nanomaterials 2022, 12, 2903. [Google Scholar] [CrossRef]
- Gorrasi, G.; Sorrentino, A. Mechanical Milling as a Technology to Produce Structural and Functional Bio-Nanocomposites. Green. Chem. 2015, 17, 2610–2625. [Google Scholar] [CrossRef]
- Rajput, N. Methods of Preparation of Nanoparticles–A Review. IJAET 2015, 7, 1806–1811. [Google Scholar]
- Rana, A.; Yadav, K.; Jagadevan, S. A Comprehensive Review on Green Synthesis of Nature-Inspired Metal Nanoparticles: Mechanism, Application and Toxicity. J. Clean. Prod. 2020, 272, 122880. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. “Green” Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of Different Operating Conditions on the Extraction of Phenolic Compounds in Orange Peel. Food Bioprod. Process. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Cavaleri, J.S.; Rankin, D.I.; Harbeck, J.K.; Sautter, L.R.; McCarter, S.Y.; Sharp, S.E. Manual of Antimicrobial Susceptibility Testing; American Society for Microbiology: Seattle, WA, USA, 2005. [Google Scholar]
- Andrews, J.M. Determination of Minimum Inhibitory Concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef]
- Abdelghffar, E.A.; El-Nashar, H.A.S.; Al-Mohammadi, A.G.A.; Eldahshan, O.A. Orange Fruit (Citrus sinensis) Peel Extract Attenuates Chemotherapy-Induced Toxicity in Male Rats. Food Funct. 2021, 12, 9443–9455. [Google Scholar] [CrossRef]
- Chen, Z.T.; Chu, H.L.; Chyau, C.C.; Chu, C.C.; Duh, P. Der Protective Effects of Sweet Orange (Citrus sinensis) Peel and Their Bioactive Compounds on Oxidative Stress. Food Chem. 2012, 135, 2119–2127. [Google Scholar] [CrossRef]
- Elsheikh, M.M.; Agamy, N.F.; Elnouby, M.S.; Ismail, H.M. Green Synthesis of Silver Nanoparticles Using Various Food Wastes. FPMPEB 2024, 1, 13–17. [Google Scholar] [CrossRef]
- Jahan, I.; Erci, F.; Isildak, I. Facile Microwave-Mediated Green Synthesis of Non-Toxic Copper Nanoparticles Using Citrus sinensis Aqueous Fruit Extract and Their Antibacterial Potentials. J. Drug Deliv. Sci. Technol. 2021, 61, 102172. [Google Scholar] [CrossRef]
- Faruruwa, M.D.; Adamu, H.; Adeyemi, M.M.; Tomori, W.B. Green Synthesis of Iron (III) Oxide (Fe3O4) Nanoparticles Using Citrus sinensis Peel Extract for the Removal of Ciprofloxacin in Water. J. Appl. Sci. Environ. Manag. 2024, 28, 823–839. [Google Scholar] [CrossRef]
- Thakral, F.; Tuli, H.S.; Gupta, S.; Joshi, H.; Ashgar, S.S.; Faidah, H.; Bantun, F.; Slama, P.; Haque, S. Synergistic Anti-Bacterial Effects of Green Synthesized Zinc Oxide Nanoparticles with Levofloxacin. J. King Saud. Univ. Sci. 2023, 35, 102905. [Google Scholar] [CrossRef]
- Duarte, J.; Cruz-Lopes, L.; Dulyanska, Y.; Domingos, I.; Ferreira, J.; Ferreira, J.; Lemos, L.T.D.; Esteves, B. Orange peel liquefaction monitored by ftir. J. Int. Sci. Publ. 2017, 5, 309–313. [Google Scholar]
- Yaradoddi, J.S.; Banapurmath, N.R.; Ganachari, S.V.; Soudagar, M.E.M.; Sajjan, A.M.; Kamat, S.; Mujtaba, M.A.; Shettar, A.S.; Anqi, A.E.; Safaei, M.R.; et al. Bio-Based Material from Fruit Waste of Orange Peel for Industrial Applications. J. Mater. Res. Technol. 2022, 17, 3186–3197. [Google Scholar] [CrossRef]
- Miranda, R.; Bustos-Martinez, D.; Blanco, C.S.; Villarreal, M.H.G.; Cantú, M.E.R. Pyrolysis of Sweet Orange (Citrus sinensis) Dry Peel. J. Anal. Appl. Pyrolysis 2009, 86, 245–251. [Google Scholar] [CrossRef]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O.; Eyo, E.U. Modified Orange Peel Waste as a Sustainable Material for Adsorption of Contaminants. Materials 2023, 16, 1092. [Google Scholar] [CrossRef]
- Sang, J.; Li, L.; Wen, J.; Gu, Q.; Wu, J.; Yu, Y.; Xu, Y.; Fu, M.; Lin, X. Evaluation of the Structural, Physicochemical and Functional Properties of Dietary Fiber Extracted from Newhall Navel Orange by-Products. Foods 2021, 10, 2772. [Google Scholar] [CrossRef]
- Noman, M.; Shahid, M.; Ahmed, T.; Niazi, M.B.K.; Hussain, S.; Song, F.; Manzoor, I. Use of Biogenic Copper Nanoparticles Synthesized from a Native Escherichia Sp. as Photocatalysts for Azo Dye Degradation and Treatment of Textile Effluents. Environ. Pollut. 2020, 257, 113514. [Google Scholar] [CrossRef]
- Toprakçı, İ.; Balci-Torun, F.; Deniz, N.G.; Ortaboy, S.; Torun, M.; Şahin, S. Recovery of Citrus Volatile Substances from Orange Juice Waste: Characterization with GC-MS, FTIR, 1H- and 13C-NMR Spectroscopies. Phytochem. Lett. 2023, 57, 177–184. [Google Scholar] [CrossRef]
- Tarhan, İ.; Çelikten, Ş.; Kestek, H.M.; Çelik, B.; Öner, M.; Kenar, A.; Kara, H. Development of a New and Rapid FTIR Method Using Chemometric Modeling Techniques for the Determination of Lavandin Adulteration in Lavender Essential Oil. Vib. Spectrosc. 2023, 127, 103559. [Google Scholar] [CrossRef]
- Figueira, O.; Pereira, V.; Castilho, P.C. A Two-Step Approach to Orange Peel Waste Valorization: Consecutive Extraction of Pectin and Hesperidin. Foods 2023, 12, 3834. [Google Scholar] [CrossRef]
- Muthuselvi, C.; Sabapathy, S.; Ravikumar, B.; Athimoolam, S.; Srinivasan, N.; Venkatrama, R. Synthesis, Vibrational and Optical Studies of Indeno Quinoxaline Pyrrolo Thiazole Derivative Crystal. Asian J. Appl. Sci. 2018, 11, 140–150. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Clairotte, M. Fourier Transform Infrared (Ftir) Spectroscopy for Measurements of Vehicle Exhaust Emissions: A Review. Appl. Sci. 2021, 11, 7416. [Google Scholar] [CrossRef]
- Niu, Y.; Gao, Y.; Xiao, Z.; Mao, C.; Wang, H.; Geng, Y.; Ye, Y.; Kou, X. Preparation and Characterisation of Linalool Oil-in-Water Starch-Based Pickering Emulsions and the Effects of the Addition of Cellulose Nanocrystals on Their Stability. Int. J. Biol. Macromol. 2023, 247, 125732. [Google Scholar] [CrossRef] [PubMed]
- Corbu, V.M.; Dumbravă, A.Ş.; Marinescu, L.; Motelica, L.; Chircov, C.; Surdu, A.V.; Gheorghe-Barbu, I.; Pecete, I.; Balotescu, I.; Popa, M.; et al. Alternative Mitigating Solutions Based on Inorganic Nanoparticles for the Preservation of Cultural Heritage. Front. Mater. 2023, 10, 1272869. [Google Scholar] [CrossRef]
- Munir, I.; Yesiloz, G. Novel Size-Tunable and Straightforward Ultra-Small Nanoparticle Synthesis in a Varying Concentration Range of Glycerol as a Green Reducing Solvent. ACS Omega 2023, 8, 28456–28466. [Google Scholar] [CrossRef]
- Brumbaugh, A.D.; Cohen, K.A.; Angelo, S.K.S. Ultrasmall Copper Nanoparticles Synthesized with a Plant Tea Reducing Agent. ACS Sustain. Chem. Eng. 2014, 2, 1933–1939. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Green Synthesized Nanoclusters of Ultra-Small Zero Valent Iron Nanoparticles as a Novel Dye Removing Material. Sci. Total Environ. 2018, 621, 1527–1532. [Google Scholar] [CrossRef]
- Zarate-Escobedo, J.; Zavaleta-Mancera, H.A.; Soto-Hernández, R.M.; Pérez-Rodríguez, P.; Vilchis-Nestor, A.R.; Silva-Rojas, H.V.; Trejo-Téllez, L.I. Long-Lasting Silver Nanoparticles Synthesized with Tagetes Erecta and Their Antibacterial Activity against Erwinia Amylovora, a Serious Rosaceous Pathogen. Plants 2024, 13, 981. [Google Scholar] [CrossRef]
- Anwar, S.J.; Yusoff, H.M.; Bhat, I.U.H.; Ern, L.K. Remediation of Dye-Contaminated Water Using Brown Algae Seaweed Supported Copper Nanoparticles. Arab. J. Sci. Eng. 2024, 49, 475–496. [Google Scholar] [CrossRef]
- Alamu, G.A.; Ayanlola, P.S.; Babalola, K.K.; Adedokun, O.; Sanusi, Y.K.; Fajinmi, G.R. Green Synthesis and Characterizations of Magnetic Iron Oxide Nanoparticles Using Moringa Oleifera Extract for Improved Performance in Dye-Sensitized Solar Cell. Chem. Phys. Impact 2024, 8, 100542. [Google Scholar] [CrossRef]
- Kadir, N.H.A.; Murugan, N.; Khan, A.A.; Sandrasegaran, A.; Khan, A.U.; Alam, M. Evaluation of the Cytotoxicity, Antioxidant Activity, and Molecular Docking of Biogenic Zinc Oxide Nanoparticles Derived from Pumpkin Seeds. Microsc. Res. Tech. 2024, 87, 602–615. [Google Scholar] [CrossRef]
- Din, M.I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities. Nanoscale Res. Lett. 2017, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Fievet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef]
- Naaz, R.; Siddiqui, V.U.; Qadir, S.U.; Siddiqi, W.A. Green Synthesis of Silver Nanoparticles Using Syngonium Podophyllum Leaf Extract and Its Antibacterial Activity. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Oxford, UK, 2021; pp. 2352–2358. [Google Scholar]
- Korkmaz, N.; Ceylan, Y.; Hamid, A.; Karadağ, A.; Bülbül, A.S.; Aftab, M.N.; Çevik, Ö.; Şen, F. Biogenic Silver Nanoparticles Synthesized via Mimusops Elengi Fruit Extract, a Study on Antibiofilm, Antibacterial, and Anticancer Activities. J. Drug Deliv. Sci. Technol. 2020, 59, 101864. [Google Scholar] [CrossRef]
- Rashnaei, N.; Siadat, S.D.; Sepahi, A.A.; Mirzaee, M.; Bahramali, G.; Joshaghani, A.A. Green Synthesized Silver Nanoparticles Using Anise (Pimpinella anisum L.) Have Antibacterial Effects. Vaccine Res. 2020, 7, 17–24. [Google Scholar] [CrossRef]
- Yousef, A.; Abu-Elghait, M.; Barghoth, M.G.; Elazzazy, A.M.; Desouky, S.E. Fighting Multidrug-Resistant Enterococcus Faecalis via Interfering with Virulence Factors Using Green Synthesized Nanoparticles. Microb. Pathog. 2022, 173, 105842. [Google Scholar] [CrossRef] [PubMed]
- Zangeneh, M.M.; Ghaneialvar, H.; Akbaribazm, M.; Ghanimatdan, M.; Abbasi, N.; Goorani, S.; Pirabbasi, E.; Zangeneh, A. Novel Synthesis of Falcaria Vulgaris Leaf Extract Conjugated Copper Nanoparticles with Potent Cytotoxicity, Antioxidant, Antifungal, Antibacterial, and Cutaneous Wound Healing Activities under in Vitro and in Vivo Condition. J. Photochem. Photobiol. B 2019, 197, 111556. [Google Scholar] [CrossRef]
- Ismail, N.A.; Shameli, K.; Wong, M.M.T.; Teow, S.Y.; Chew, J.; Sukri, S.N.A.M. Antibacterial and Cytotoxic Effect of Honey Mediated Copper Nanoparticles Synthesized Using Ultrasonic Assistance. Mater. Sci. Eng. C 2019, 104, 109899. [Google Scholar] [CrossRef]
- Vinothini, P.; Malaikozhundan, B.; Krishnamoorthi, R.; Senthamarai, M.D.; Shanthi, D. Potential Inhibition of Biofilm Forming Bacteria and Fungi and DPPH Free Radicals Using Tamarindus Indica Fruit Extract Assisted Iron Oxide Nanoparticle. Inorg. Chem. Commun. 2023, 156, 111206. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N. Ultrasound Assisted-Phytofabricated Fe3O4 NPs with Antioxidant Properties and Antibacterial Effects on Growth, Biofilm Formation, and Spreading Ability of Multidrug Resistant Bacteria. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2405–2423. [Google Scholar] [CrossRef]
- Ifeanyichukwu, U.L.; Fayemi, O.E.; Ateba, C.N. Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate (Punica granatum) Extracts and Characterization of Their Antibacterial Activity. Molecules 2020, 25, 4521. [Google Scholar] [CrossRef]
- El-Kattan, N.; Emam, A.N.; Mansour, A.S.; Ibrahim, M.A.; El-Razik, A.B.A.; Allam, K.A.M.; Riad, N.Y.; Ibrahim, S.A. Curcumin Assisted Green Synthesis of Silver and Zinc Oxide Nanostructures and Their Antibacterial Activity against Some Clinical Pathogenic Multi-Drug Resistant Bacteria. RSC Adv. 2022, 12, 18022–18038. [Google Scholar] [CrossRef] [PubMed]
Bacteria | MICs (ppm) | |||
---|---|---|---|---|
AgNPs | CuNPs | Fe2O3NPs | ZnONPs | |
E. coli ATCC-11229 | 16 | >512 | >512 | >512 |
E. coli resistant | 32 | >512 | >512 | >512 |
E. faecalis resistant | 32 | >512 | >512 | >512 |
Bacteria | Treatment | MIC (ppm) | Extract | Reference |
---|---|---|---|---|
E. coli | AgNPs | 12.50 | Syngonium podophyllum | [78] |
E. coli | AgNPs | 1250 | Mimusops elengi | [79] |
E. coli | AgNPs | 50 | Pimpinella anisum L. | [80] |
E. faecalis (OU510, ATCC29212, SL92, SL96, SL86) | AgNPs | 250 | Moringa oleifera L. | [81] |
E. coli | CuNPs | 8000 | Falcaria vulgaris | [82] |
E. coli | CuNPs | 288 | Ascorbic acid | [83] |
E. faecalis | 31.3 | |||
E. coli | FeNPs | 12.5 | T. indica | [84] |
E. faecalis | 7.4 | |||
E. coli ATCC 25922 | FeNPs | 50 | A. haussknechtii | [85] |
E. faecalis | ZnONPs | 1250 | Punica granatum | [86] |
E. coli | ZnONPs | 3.9 | Curcuma longa | [87] |
E. faecalis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Aude, J.E.; Díaz Barriga-Castro, E.; Díaz-Muñoz, L.L.; Garza-Cervantes, J.A.; Rodríguez-Mirasol, J.; Morones-Ramírez, J.R.; Amézquita-García, H.J.; De Haro-Del Río, D.A.; León-Buitimea, A.; Macias-Segura, N.; et al. Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis. Technologies 2025, 13, 303. https://doi.org/10.3390/technologies13070303
Castañeda-Aude JE, Díaz Barriga-Castro E, Díaz-Muñoz LL, Garza-Cervantes JA, Rodríguez-Mirasol J, Morones-Ramírez JR, Amézquita-García HJ, De Haro-Del Río DA, León-Buitimea A, Macias-Segura N, et al. Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis. Technologies. 2025; 13(7):303. https://doi.org/10.3390/technologies13070303
Chicago/Turabian StyleCastañeda-Aude, Javier Emanuel, Enrique Díaz Barriga-Castro, Lizbeth Liliana Díaz-Muñoz, Javier Alberto Garza-Cervantes, José Rodríguez-Mirasol, José Rubén Morones-Ramírez, Héctor Javier Amézquita-García, David Alejandro De Haro-Del Río, Angel León-Buitimea, Noe Macias-Segura, and et al. 2025. "Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis" Technologies 13, no. 7: 303. https://doi.org/10.3390/technologies13070303
APA StyleCastañeda-Aude, J. E., Díaz Barriga-Castro, E., Díaz-Muñoz, L. L., Garza-Cervantes, J. A., Rodríguez-Mirasol, J., Morones-Ramírez, J. R., Amézquita-García, H. J., De Haro-Del Río, D. A., León-Buitimea, A., Macias-Segura, N., & Escárcega-González, C. E. (2025). Steam Distillation of Citrus Waste Extract for Antimicrobial Metal Nanoparticle Synthesis. Technologies, 13(7), 303. https://doi.org/10.3390/technologies13070303