A Hybrid KAN-BiLSTM Transformer with Multi-Domain Dynamic Attention Model for Cybersecurity
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
3.1. Dataset
3.2. Data Preparation and Pre-Processing
3.3. The Proposed Approach
3.3.1. BiLSTM (Bidirectional Long Short-Term Memory)
3.3.2. RoBERTa
3.3.3. MD-DAN Layer
3.3.4. Feature Fusion Layer
3.3.5. KAN Network
- Linear transformation: for each input feature :
- 2.
- Nonlinear transformation: transformation of the resulting value through the activation function:
- 3.
- Combining results: for each output feature:
- 4.
- Resulting vector: output vector:
3.3.6. Final Classifier
Algorithm 1. Algorithm of the model Hyb-KAN. |
|
4. Results
4.1. Data Processing Tools
4.2. Evaluation Metrics
5. Experimental Results
5.1. Model Results
5.2. Interpretability Analysis
6. Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pleshakova, E.S.; Gataullin, S.T. KAN-BiLSTM: Hybrid Neural Network Model with Multi-Domain Attention for Threat Analysis in Digital Space; Certificate of State Registration of Computer Program No. 2025619243; EDN ORSBNY; Rospatent Federal Service on Intellectual Property: Moscow, Russia, 2025. (In Russian) [Google Scholar]
- Korchagin, S.A.; Pleshakova, E.S.; Gataullin, S.T.; Osipov, A.V. Software Package for Countering Telephone Fraud; Certificate of State Registration of Computer Program No. 2022667657; EDN GHVLGF; Rospatent Federal Service on Intellectual Property: Moscow, Russia, 2022. (In Russian) [Google Scholar]
- Hu, J.; Liao, X.; Wang, W.; Qin, Z. Detecting Compressed Deepfake Videos in Social Networks Using Frame-Temporality Two-Stream Convolutional Network. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1089–1102. [Google Scholar] [CrossRef]
- Efanov, D.; Aleksandrov, P.; Mironov, I. Comparison of the effectiveness of cepstral coefficients for Russian speech synthesis detection. J. Comput. Virol. Hack. Tech. 2024, 20, 375–382. [Google Scholar] [CrossRef]
- Boltachev, E. Potential cyber threats of adversarial attacks on autonomous driving models. J. Comput. Virol. Hack. Tech. 2024, 20, 363–373. [Google Scholar] [CrossRef]
- Ivanyuk, V. Forecasting of digital financial crimes in Russia based on machine learning methods. J. Comput. Virol. Hack. Tech. 2024, 20, 349–362. [Google Scholar] [CrossRef]
- Pleshakova, E.; Osipov, A.; Gataullin, S.; Gataullin, T.; Vasilakos, A. Next gen cybersecurity paradigm towards artificial general intelligence: Russian market challenges and future global technological trends. J. Comput. Virol. Hack. Tech. 2024, 20, 429–440. [Google Scholar] [CrossRef]
- Andriyanov, N.; Khasanshin, I.; Utkin, D.; Gataullin, T.; Ignar, S.; Shumaev, V.; Soloviev, V. Intelligent System for Estimation of the Spatial Position of Apples Based on YOLOv3 and Real Sense Depth Camera D415. Symmetry 2022, 14, 148. [Google Scholar] [CrossRef]
- Golubov, V.V.; Manko, S.V. Automation of autonomous mobile robot docking based on the counter growth rapidly exploring random tree method. Russ. Technol. J. 2024, 12, 7–14. [Google Scholar] [CrossRef]
- Liu, J. Kolmogorov-Arnold networks for symbolic regression and time series prediction. J. Mach. Learn. Res. 2024, 25, 95–110. [Google Scholar]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-Arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Kundu, A.; Sarkar, A.; Sadhu, A. KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search. EPJ Quantum Technol. 2024, 11, 76. [Google Scholar] [CrossRef]
- Genet, R.; Inzirillo, H. Tkan: Temporal Kolmogorov-Arnold networks. arXiv 2024, arXiv:2405.07344. [Google Scholar] [CrossRef]
- Xu, K.; Chen, L.; Wang, S. Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability. arXiv 2024, arXiv:2406.02496. [Google Scholar]
- Dong, C.; Zheng, L.; Chen, W. Kolmogorov-Arnold Networks (KAN) for Time Series Classification and Robust Analysis. In Advanced Data Mining and Applications; Sheng, Q.Z., Dobbie, G., Jiang, J., Eds.; ADMA 2024. Lecture Notes in Computer, Science; Springer: Singapore, 2025; p. 15390. [Google Scholar]
- Qiu, B.; Zhang, J.; Yang, Y.; Qin, G.; Zhou, Z.; Ying, C. Research on Oil Well Production Prediction Based on GRU-KAN Model Optimized by PSO. Energies 2024, 17, 5502. [Google Scholar] [CrossRef]
- Gong, S.; Chen, W.; Jing, X.; Wang, C.; Pan, K.; Cai, H. Optimization of Hybrid Energy Systems Based on MPC-LSTM-KAN: A Case Study of a High-Altitude Wind Energy Work Umbrella Control System. Electronics 2024, 13, 4241. [Google Scholar] [CrossRef]
- Rigas, S.; Papachristou, M.; Papadopoulos, T.; Anagnostopoulos, F.; Alexandridis, G. Adaptive Training of Grid-Dependent Physics-Informed Kolmogorov-Arnold Networks. IEEE Access 2024, 12, 176982–176998. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, X.; Xu, Z.; Cheng, N.; Xu, W.; Zhang, J.-J. GNN-Empowered Effective Partial Observation MARL Method for AoI Management in Multi-UAV Network. IEEE Internet Things J. 2024, 11, 34541–34553. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X. GraphKAN: Enhancing Feature Extraction with Graph Kolmogorov Arnold Networks. arXiv 2024, arXiv:2406.13597. [Google Scholar]
- Bresson, R.; Nikolentzos, G.; Panagopoulos, G.; Chatzianastasis, M.; Pang, J.; Vazirgiannis, M. Kagnns: Kolmogorov-Arnold networks meet graph learning. arXiv 2024, arXiv:2406.18380. [Google Scholar]
- Dong, F.; Li, S.; Li, W. TCKAN: A novel integrated network model for predicting mortality risk in sepsis patients. Med. Biol. Eng. Comput. 2024, 63, 1013–1025. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.; Wu, D.; Kong, Y.; Huang, J.; Han, S. Radiation Pneumonitis Prediction Using Dual-Modal Data Fusion Based on Med3D Transfer Network. J. Digit. Imaging Inform. Med. 2024, 1–17. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, J.; Chen, S.; Sun, L.; Li, K.; Lai, G.; Peng, B.; Zhong, X.; Xie, B. Artificial intelligence in ovarian cancer drug resistance advanced 3PM approach: Subtype classification and prognostic modeling. EPMA J. 2024, 15, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaness, M.A.A.; Ni, S. TCNN-KAN: Optimized CNN by Kolmogorov-Arnold Network and Pruning Techniques for sEMG Gesture Recognition. IEEE J. Biomed. Health Inform. 2024, 29, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; Du, Z.; Zhuo, L.; Fu, X.; Cao, D.; Xie, B.; Li, K. CardiOT: Towards Interpretable Drug Cardiotoxicity Prediction Using Optimal Transport and Kolmogorov-Arnold Networks. IEEE J. Biomed. Health Inform. 2024, 29, 1759–1770. [Google Scholar] [CrossRef]
- Carneros-Prado, D.; Cabañero-Gómez, L.; Johnson, E.; González, I.; Fontecha, J.; Hervás, R. A Comparison Between Multilayer Perceptrons and Kolmogorov-Arnold Networks for Multi-Task Classification in Sitting Posture Recognition. IEEE Access 2024, 12, 180198–180209. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Zhu, S.; Qiu, L.; Zou, B.; Jia, F.; Zhu, Y.; Zhang, C.; Fang, Z.; Qin, F.; et al. SCKansformer: Fine-Grained Classification of Bone Marrow Cells via Kansformer Backbone and Hierarchical Attention Mechanisms. IEEE J. Biomed. Health Inform. 2024, 29, 558–571. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Pang, S.; Cui, X.; Zhao, X.; Feng, Y. Deep learning models for hepatitis E incidence prediction leveraging Baidu index. BMC Public Health 2024, 24, 3014. [Google Scholar] [CrossRef]
- Zhu, X.; Xing, M.; Ye, J.; Liu, X.; Ren, Z. Design and optimization of a novel solenoid with high magnetic uniformity. Sci. Rep. 2024, 14, 24650. [Google Scholar] [CrossRef]
- Elaziz, A.; Fares, I.A.; Aseeri, A.O. CKAN: Convolutional Kolmogorov–Arnold Networks Model for Intrusion Detection in IoT Environment. IEEE Access 2024, 12, 134837–134851. [Google Scholar] [CrossRef]
- Guo, J.; Xie, Z.; Liu, M.; Hu, J.; Dai, Z.; Guo, J. Data-Driven Enhancements for MPC-Based Path Tracking Controller in Autonomous Vehicles. Sensors 2024, 24, 7657. [Google Scholar] [CrossRef]
- Yeonjeong, H.; Kang, H.; Kim, H. Robust Credit Card Fraud Detection Based on Efficient Kolmogorov-Arnold Network Models. IEEE Access 2024, 12, 157006–157020. [Google Scholar]
- Ibrahum, A.D.M.; Shang, Z.; Hong, J.E. How Resilient Are Kolmogorov–Arnold Networks in Classification Tasks? A Robustness Investigation. Appl. Sci. 2024, 14, 10173. [Google Scholar] [CrossRef]
- Liu, T.; Xu, J.; Lei, T.; Wang, Y.; Du, X.; Zhang, W.; Lv, Z.; Gong, M. AEKAN: Exploring Superpixel-Based AutoEncoder Kolmogorov-Arnold Network for Unsupervised Multimodal Change Detection. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5601114. [Google Scholar] [CrossRef]
- Firsov, N.; Myasnikov, E.; Lobanov, V.; Khabibullin, R.; Kazanskiy, N.; Khonina, S.; Butt, M.A.; Nikonorov, A. HyperKAN: Kolmogorov–Arnold Networks Make Hyperspectral Image Classifiers Smarter. Sensors 2024, 24, 7683. [Google Scholar] [CrossRef]
- Jamali, A.; Roy, S.K.; Hong, D.; Lu, B.; Ghamisi, P. How to Learn More? Exploring Kolmogorov–Arnold Networks for Hyperspectral Image Classification. Remote Sens. 2024, 16, 4015. [Google Scholar] [CrossRef]
- Gu, X.; Chen, Y.; Tong, W. KARAN: Mitigating Feature Heterogeneity and Noise for Efficient and Accurate Multimodal Medical Image Segmentation. Electronics 2024, 13, 4594. [Google Scholar] [CrossRef]
- Li, M.; Ye, P.; Cui, S.; Zhu, P.; Liu, J. HKAN: A Hybrid Kolmogorov–Arnold Network for Robust Fabric Defect Segmentation. Sensors 2024, 24, 8181. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, C.; Liu, K.; Xu, S.; Huang, L. A resource optimization scheduling model and algorithm for heterogeneous computing clusters based on GNN and RL. J. Supercomput. 2024, 80, 24138–24172. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Z.; He, Y.; Liu, H.; Zhang, Z.; Liu, l.; Meng, R.; Zeng, Y. Predictive methods for the evolution of oil well cement strength based on porosity. Mater. Struct. 2024, 57, 215. [Google Scholar] [CrossRef]
- Xu, R.; Liu, X.; Wei, J.; Ai, X.; Li, Z.; He, H. Predicting the Deformation of a Concrete Dam Using an Integration of Long Short-Term Memory (LSTM) Networks and Kolmogorov–Arnold Networks (KANs) with a Dual-Stage Attention Mechanism. Water 2024, 16, 3043. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; Liu, X.; Zhang, C.; Sun, G.; Zhou, Y.; Yang, Z.; Liu, X.; Chen, S.; Dong, X.; et al. Advanced State-of-Health Estimation for Lithium-Ion Batteries Using Multi-Feature Fusion and KAN-LSTM Hybrid Model. Batteries 2024, 10, 433. [Google Scholar] [CrossRef]
- Cabral, T.W.; Gomes, F.V.; de Lima, E.R.; Filho, J.C.; Meloni, L.G. Kolmogorov–Arnold Network in the Fault Diagnosis of Oil-Immersed Power Transformers. Sensors 2024, 24, 7585. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Hou, X.; Wang, X.; Zou, J. A Cross-Working Condition-Bearing Diagnosis Method Based on Image Fusion and a Residual Network Incorporating the Kolmogorov–Arnold Representation Theorem. Appl. Sci. 2024, 14, 2076–3417. [Google Scholar] [CrossRef]
- Khan, P.; Chaudhuri, S.; Singh, D.S.; Amaan, F. KGAN-Based Semisupervised Domain Adapted Human Activity Recognition. IEEE Sens. Lett. 2024, 8, 7006004. [Google Scholar] [CrossRef]
- Liu, C.Z.; Zhang, Y.; Qin, L.; Liu, Y. Kolmogorov–Arnold Finance-Informed Neural Network in Option Pricing. Appl. Sci. 2024, 14, 11618. [Google Scholar] [CrossRef]
- Hao, Z.; Zhang, D.; Honarvar Shakibaei Asli, B. Motion Prediction and Object Detection for Image-Based Visual Servoing Systems Using Deep Learning. Electronics 2024, 13, 3487. [Google Scholar] [CrossRef]
- Shen, H.; Zeng, C.; Wang, J.; Wang, Q. Reduced effectiveness of Kolmogorov-Arnold networks on functions with noise. arXiv 2024, arXiv:2407.14882. [Google Scholar]
- Zeng, C.; Wang, J.; Shen, H.; Wang, Q. KAN versus MLP on Irregular or Noisy Functions. arXiv 2024, arXiv:2408.07906. [Google Scholar]
- Alam, K.S.; Bhowmik, S.; Prosun, P.R.K. Cyberbullying detection: An ensemble based machine learning approach. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 710–715. [Google Scholar]
- Olson, D. Advanced Data Mining Techniques; Springer: Berlin/Heidelberg, Germany, 2008; Available online: https://ezpro.fa.ru:2696/10.1007/978-3-540-76917-0 (accessed on 22 May 2025).
- Aldhyani, T.H.; Alsubari, S.N.; Alshebami, A.S.; Alkahtani, H.; Ahmed, Z.A. Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. Int. J. Environ. Res. Public Health 2022, 19, 12635. [Google Scholar] [CrossRef]
- Cheon, M.; Mun, C. Towards efficient patent classification: Kolmogorov Arnold networks as an alternative to MLP. J. Theor. Appl. Inf. Technol. 2024, 102, 7688–7696. [Google Scholar]
- Aryan, N.P.; Trivedi, R.B.; Goyal, S.R. Cyberbullying Detection Using CNN Prediction Model. In Cyber Security and Intelligent Systems; ISDIA 2024. Lecture Notes in Networks and Systems; Bhateja, V., Lin, H., Simic, M., Attique Khan, M., Garg, H., Eds.; Springer: Singapore, 2024; Volume 1056. [Google Scholar]
- Hashmi, E.; Yayilgan, S.Y. Multi-class hate speech detection in the Norwegian language using FAST-RNN and multilingual fine-tuned transformers. Complex Intell. Syst. 2024, 10, 4535–4556. [Google Scholar] [CrossRef]
- Bhowmik, S.; Sultana, S.; Sajid, A.A.; Reno, S.; Manjrekar, A. Robust multi-domain descriptive text classification leveraging conventional and hybrid deep learning models. Int. J. Inf. Tecnol. 2024, 16, 3219–3231. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Al-Adhaileh, M.H.; Alsubari, S.N. Cyberbullying Identification System Based Deep Learning Algorithms. Electronics 2022, 11, 3273. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, B.; Wang, Y. TS-MEFM: A New Multimodal Speech Emotion Recognition Network Based on Speech and Text Fusion. In Proceedings of the International Conference on Multimedia Modeling 2025, Nara, Japan, 8–10 January 2025; pp. 454–467. [Google Scholar]
- Fang, L.; Chai, B.; Xu, Y.; Wang, S.J. KANFeel: A Novel Kolmogorov-Arnold Network-Based Multimodal Emotion Recognition Framework. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 26 April–1 May 2025; pp. 1–8. [Google Scholar]
- Raj, M.; Singh, S.; Solanki, K.; Selvanambi, R. An Application to Detect Cyberbullying Using Machine Learning and Deep Learning Techniques. SN Comput. Sci. 2022, 3, 401. [Google Scholar] [CrossRef]
- Mohaouchane, H.; Mourhir, A.; Nikolov, N.S. Detecting offensive language on arabic social media using deep learning. In Proceedings of the 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 22–25 October 2019; pp. 466–471. [Google Scholar]
- Iwendi, C.; Srivastava, G.; Khan, S.; Maddikunta, P.K.R. Cyberbullying detection solutions based on deep learning architectures. Multimed. Syst. 2023, 29, 1839–1852. [Google Scholar] [CrossRef]
- Jahin, M.A.; Shovon, M.S.H.; Islam, M.S.; Shin, J.; Mridha, M.F.; Okuyama, Y. QAmplifyNet: Pushing the boundaries of supply chain backorder prediction using interpretable hybrid quantum-classical neural network. Sci. Rep. 2023, 13, 18246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chechkin, A.; Pleshakova, E.; Gataullin, S. A Hybrid KAN-BiLSTM Transformer with Multi-Domain Dynamic Attention Model for Cybersecurity. Technologies 2025, 13, 223. https://doi.org/10.3390/technologies13060223
Chechkin A, Pleshakova E, Gataullin S. A Hybrid KAN-BiLSTM Transformer with Multi-Domain Dynamic Attention Model for Cybersecurity. Technologies. 2025; 13(6):223. https://doi.org/10.3390/technologies13060223
Chicago/Turabian StyleChechkin, Aleksandr, Ekaterina Pleshakova, and Sergey Gataullin. 2025. "A Hybrid KAN-BiLSTM Transformer with Multi-Domain Dynamic Attention Model for Cybersecurity" Technologies 13, no. 6: 223. https://doi.org/10.3390/technologies13060223
APA StyleChechkin, A., Pleshakova, E., & Gataullin, S. (2025). A Hybrid KAN-BiLSTM Transformer with Multi-Domain Dynamic Attention Model for Cybersecurity. Technologies, 13(6), 223. https://doi.org/10.3390/technologies13060223