Synthesis of Sm-Doped CuO–SnO2:FSprayed Thin Film: An Eco-Friendly Dual-Function Solution for the Buffer Layer and an Effective Photocatalyst for Ampicillin Degradation
Abstract
1. Introduction
2. Experimental Details
2.1. Thin Film Synthesis and Characterization
2.2. Numerical Model Description
2.3. Pharmaceutical Application (Antibiotic Degradation)
3. Results
3.1. Structural Properties
3.2. Morphological Properties
3.3. BET Surface Area
3.4. XPS Studies
3.5. Optical Properties
3.6. Solar Cell Simulation
3.7. Antibiotic Degradation: Ampicillin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Zhang, H.; Ji, X.; Yao, H.; Fan, Q.; Yu, B.; Li, J. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy 2022, 233, 421–434. [Google Scholar] [CrossRef]
- Romeo, A.; Artegiani, E. CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies 2021, 14, 1684. [Google Scholar] [CrossRef]
- Ngqoloda, S.; Ngwenya, T.; Raphulu, M. Recent Advances on the Deposition of Thin Film Solar Cells; IntechOpen: London, UK, 2025. [Google Scholar]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Kumar, V.; Prasad, R.; Chaure, N.B.; Singh, U.P. Advancement in Copper Indium Gallium Sel-enide (CIGS)-Based Thin-Film Solar Cells. In Recent Advances in Thin Film Photovoltaics; Springer: Singapore, 2022; pp. 5–39. [Google Scholar]
- Tobbeche, S.; Kalache, S.; Elbar, M.; Kateb, M.N.; Serdouk, M.R. Improvement of the CIGS solar cell performance: Structure based on a ZnS buffer layer. Opt. Quantum Electron. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Kanchan, K.; Sahu, A.; Yadav, S. The Improved Performance with Reduction in Toxicity in CIGS Solar Cell Using Ultra-Thin BaSi2 BSF Layer. J. Nano-Electron. Phys. 2023, 15, 02025. [Google Scholar] [CrossRef]
- Nkuissi, H.J.T.; Konan, F.K.; Hartiti, B.; Ndjaka, J.-M. Toxic materials used in thin film photovoltaics and their impacts on environment. In Reliability and Ecological Aspects of Photovoltaic Modules; IntechOpen: London, UK, 2020. [Google Scholar]
- Soni, P.; Raghuwanshi, M.; Wuerz, R.; Berghoff, B.; Knoch, J.; Raabe, D.; Cojocaru-Mirédin, O. Sputtering as a viable route for In2S3 buffer layer deposition in high efficiency Cu (In, Ga) Se2 solar cells. Energy Sci. Eng. 2019, 7, 478–487. [Google Scholar] [CrossRef]
- Charrada, G.; Hajji, M.; Ajili, M.; Garcia-Loureiro, A.; Kamoun, N.T. Unlocking the potential of CIGS solar cells: Harnessing CZTS as a second absorber layer for enhanced performance and sustainability. J. Opt. 2024, 1–10. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Aziz, H.S.; Zhang, H.; Li, Z.; Chen, Y.; Zeng, Y.; Zheng, Z.; Hu, J.; Su, Z.; et al. A Cd-Free Electron Transport Layer Simultaneously Enhances Charge Carrier Separation and Transfer in Sb2Se3 Photocathodes for Efficient Solar Hydrogen Production. Adv. Funct. Mater. 2024, 35, 2420912. [Google Scholar] [CrossRef]
- Naffouti, W.; Ben Nasr, T.; Battaglini, N.; Ammar, S.; Turki-Kamoun, N. Effect of samarium doping on the physical properties of chemically sprayed titanium dioxide thin films. J. Renew. Sustain. Energy 2015, 7, 063132. [Google Scholar] [CrossRef]
- Chahkandi, M.; Zargazi, M. New water based EPD thin BiVO4 film: Effective photocatalytic degradation of Amoxicillin antibiotics. J. Hazard. Mater. 2020, 389, 121850. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.-J. Recent Advances in TiO2 Films Prepared by Sol-gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings 2019, 9, 613. [Google Scholar] [CrossRef]
- Tiwari, D.; Lee, S.-M.; Kim, D.-J. Photocatalytic degradation of amoxicillin and tetracycline by template synthesized nano-structured Ce3+@TiO2 thin film catalyst. Environ. Res. 2022, 210, 112914. [Google Scholar]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef] [PubMed]
- Kyuchukova, R. Antibiotic residues and human health hazard-review. Bulg. J. Agric. Sci. 2020, 26, 3. [Google Scholar]
- Feng, L.; Cheng, Y.; Zhang, Y.; Li, Z.; Yu, Y.; Feng, L.; Zhang, S.; Xu, L. Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. Environ. Res. 2020, 185, 109386. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.-U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 360. [Google Scholar] [CrossRef]
- Leonard, A.F.; Morris, D.; Schmitt, H.; Gaze, W.H. Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Curr. Opin. Microbiol. 2021, 65, 40–46. [Google Scholar] [CrossRef]
- Huemer, M.; Shambat, S.M.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. Embo Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.-S. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 2022, 311, 136977. [Google Scholar] [CrossRef]
- Montoya-Rodríguez, D.M.; Serna-Galvis, E.A.; Ferraro, F.; Torres-Palma, R.A. Degradation of the emerging concern pollutant ampicillin in aqueous media by nonchemical advanced oxidation processes-Parameters effect, removal of antimicrobial activity and pollutant treatment in hydrolyzed urine. J. Environ. Manag. 2020, 261, 110224. [Google Scholar] [CrossRef]
- Charrada, G.; Ajili, M.; Jebbari, N.; Kamoun, N.T. Investigation on physical properties of CuO and SnO2: F mixed oxide sprayed thin films for photocatalytic application: Coupling effect between oxides. J. Mater. Sci. Mater. Electron. 2024, 35, 685. [Google Scholar] [CrossRef]
- Charrada, G.; Ajili, M.; Jebbari, N.; Hajji, M.; Bernardini, S.; Aguir, K.; Kamoun, N.T. Investigation on thermal annealing effect on the physical properties of CuO-SnO2:F sprayed thin films for NO2 gas sensor and solar cell simulation. Mater. Lett. 2024, 367, 136666. [Google Scholar] [CrossRef]
- Hajji, M.; Jebbari, N.; Ajili, M.; Thebti, A.; Ouzari, H.-I.; Garcia-Loureiro, A.; Kamoun, N.T. Bismuth doping for enhanced physical and electrochemical properties of CuO–ZnO thin films for complete degradation of Rifampicin and other antibiotics alongside organic dyes. Opt. Mater. 2024, 157, 116048. [Google Scholar] [CrossRef]
- Charrada, G.; Ajili, M.; Jebbari, N.; Bernardini, S.; Aguir, K.; Kamoun, N.T. Improvement of ozone sensing parameters by CuO–SnO2: F mixed oxide sprayed thin films. J. Mater. Sci. Mater. Electron. 2024, 35, 1120. [Google Scholar] [CrossRef]
- Hajji, M.; Dabbabi, S.; Ajili, M.; Jebbari, N.; Loureiro, A.G.; Kamoun, N.T. Investigations on physical properties of CuO–ZnO couple oxide sprayed thin films for environmental applications (ozone gas sensing and MB degradation). J. Mater. Sci. Mater. Electron. 2024, 35, 663. [Google Scholar] [CrossRef]
- Souli, M.; Reghima, M.; Secu, M.; Bartha, C.; Enculescu, M.; Mejri, A.; Kamoun-Turki, N.; Badica, P. Physical properties investigation of samarium doped calcium sulfate thin films under high gamma irradiations for space photovoltaic and dosimetric applications. Superlattices Microstruct. 2019, 126, 103–119. [Google Scholar] [CrossRef]
- Kamoun, O.; Gassoumi, A.; Shkir, M.; Gorji, N.E.; Turki-Kamoun, N. Synthesis and Characterization of Highly Photocatalytic Active Ce and Cu Co-Doped Novel Spray Pyrolysis Developed MoO3 Films for Photocatalytic Degradation of Eosin-Y Dye. Coatings 2022, 12, 823. [Google Scholar] [CrossRef]
- Yahmadi, B.; Kamoun, O.; Alhalaili, B.; Alleg, S.; Vidu, R.; Turki, N.K. Physical Investigations of (Co, Mn) Co-Doped ZnO Nanocrystalline Films. Nanomaterials 2020, 10, 1507. [Google Scholar] [CrossRef]
- Zaidi, B.; Hajji, M.; Bouarroudj, T.; Akhtar, M.S.; Alam Saeed, M.; Charrada, G.; Hadjoudja, B.; Chouial, B.; Jebbari, N.; Kamoun-Turki, N. Synthesis, Characterization, and Photocatalytic Performance of (Eu, Ni) Co-Doped ZnO Thin Films for Environmental Applications. J. Nano Res. 2024, 86, 77–88. [Google Scholar] [CrossRef]
- Hajji, M.; Jebbari, N.; Ajili, M.; Garcia-Loureiro, A.; Vidu, R.; Kamoun, N. Advanced oxidation processes (AOPs): Navigating from MOS to COS and X-COS systems-Unraveling strategies, tackling challenges, and pioneering advances. Opt. Mater. 2024, 152, 115399. [Google Scholar] [CrossRef]
- Kumar, N.; Limbu, S.; Sharma, S.; Chand, P.; Yadav, P.; Chauhan, R.N. Impact of Sm3+ on Cu2O: Co and subsequent attributes in structural, optical and electrochemical aspects. Opt. Mater. 2025, 162, 116874. [Google Scholar] [CrossRef]
- Srinivasan, K.; Rukkumani, V.; Radhika, V.; Saravanakumar, M.; Kavitha, S. Characterization of CuO–SnO2 composite nano powder by hydrothermal method for solar cell. In Machine Learning and the Internet of Things in Solar Power Generation; CRC Press: Boca Raton, FL, USA, 2023; pp. 123–140. [Google Scholar]
- Hedau, B.; Ha, T.-J. Indium-doped iron-coordinated covalent organic framework as an efficient bifunctional oxygen electrocatalyst for energy applications. J. Alloy. Compd. 2024, 1010, 178134. [Google Scholar] [CrossRef]
- Gupta, J.; Shaik, H.; Kumar, K.N. A review on the prominence of porosity in tungsten oxide thin films for electrochromism. Ionics 2021, 27, 2307–2334. [Google Scholar] [CrossRef]
- Faisal, A.D.; Kalef, W.K.; Salim, E.T.; Alsultany, F.H. Synthesis of CuO/SnO2 NPs on quartz substrate for temperature sensors application. J. Ovonic Res. 2022, 18, 205–212. [Google Scholar] [CrossRef]
- Berwal, P.; Rani, S.; Sihag, S.; Singh, P.; Bulla, M.; Jatrana, A.; Kumar, A.; Kumar, A.; Kumar, V. Fabrication of NiO based thin film for high-performance NO2 gas sensors at low concentrations. Phys. B Condens. Matter 2024, 685, 416023. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, F.; Yang, Z.; Tang, C.Y. Modeling nanovoid-enhanced water permeance of thin film composite membranes. J. Membr. Sci. 2023, 675, 121555. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Wang, S.; Zhu, B.; Zhang, S.; Huang, W.; Wu, S. A comparative study of CuO/TiO2-SnO2, CuO/TiO2 and CuO/SnO2 catalysts for low-temperature CO oxidation. J. Nat. Gas Chem. 2009, 18, 449–452. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Wang, S.; Zhang, R.; Zhang, Y. CuO–SnO2 sensor for room-temperature CO detection: Experiments and DFT calculations. Sens. Actuators B Chem. 2024, 420, 136427. [Google Scholar] [CrossRef]
- Ivchenko, V. Theory of Burstein-Moss effect in semiconductors with anisotropic energy bands. Phys. Scr. 2024, 99, 035952. [Google Scholar] [CrossRef]
- Jrad, A.; Naouai, M.; Ammar, S.; Turki-Kamoun, N. Investigation of molybdenum dopant effect on ZnS thin films: Chemical composition, structural, morphological, optical and luminescence surveys. Mater. Sci. Semi-Conduct. Process. 2021, 130, 105825. [Google Scholar] [CrossRef]
- Akkari, A.; Guasch, C.; Castagne, M.; Kamoun-Turki, N. Optical study of zinc blend SnS and cubic In2S3:Al thin films prepared by chemical bath deposition. J. Mater. Sci. 2011, 46, 6285–6292. [Google Scholar] [CrossRef]
- Mandal, P.; Singh, U.P.; Roy, S. Optical performance of europium-doped β gallium oxide PVD thin films. J. Mater. Sci. Mater. Electron. 2021, 32, 3958–3965. [Google Scholar] [CrossRef]
- Charrada, G.; Ajili, M.; Bernardini, S.; Aguir, K.; Kamoun, N.T. Dual-Functional Green Facile synthesis of graphene dopedCuO-SnO2:F sprayed thin film as an efficient photocatalyst and ammonia gas sensor at low concentration. Ceram. Int. 2025, in press. [Google Scholar] [CrossRef]
- Panachikkool, M.; Aparna, E.T.; Asaithambi, P.; Pandiyarajan, T. Design and numerical simulation of CuBi2O4 solar cells with graphene quantum dots as hole transport layer under ideal and non-ideal conditions. Sci. Rep. 2025, 15, 100. [Google Scholar] [CrossRef]
- Ajili, M.; Ayed, R.B.; Kamoun, N.T. Structural, optical, photoluminescence and electrical properties of p-CuO/n-ZnO: Sn and p-CuO/n-α-Fe2O3 efficient hetero-junctions for optoelectronic applications. J. Lumin. 2022, 241, 118457. [Google Scholar] [CrossRef]
- Marpally, J. Photocatalytic Degradation of Malachite Green and Rhodamine B Dye over SnO2-CuO Binary Metal Oxide Nanocomposite under UV Light. Ph.D. Thesis, Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India, 2015. [Google Scholar]
- Zhang, C.; Lin, J. Defect-related luminescent materials: Synthesis, emission properties and applications. Chem. Soc. Rev. 2012, 41, 7938–7961. [Google Scholar] [CrossRef]
- Ghadikolaei, S.S.C. Solar photovoltaic cells performance improvement by cooling technology: An overall review. Int. J. Hydrogen Energy 2021, 46, 10939–10972. [Google Scholar] [CrossRef]
- Machkih, K.; Oubaki, R.; Makha, M. A Review of CIGS Thin Film Semiconductor Deposition via Sputtering and Thermal Evaporation for Solar Cell Applications. Coatings 2024, 14, 1088. [Google Scholar] [CrossRef]
- Barbato, M.; Artegiani, E.; Bertoncello, M.; Meneghini, M.; Trivellin, N.; Mantoan, E.; Romeo, A.; Mura, G.; Ortolani, L.; Zanoni, E. CdTe solar cells: Technology, operation and reliability. J. Phys. D: Appl. Phys. 2021, 54, 333002. [Google Scholar] [CrossRef]
- Paul, R.; Shukla, S.; Lenka, T.R.; Talukdar, F.A.; Goyal, V.; Boukortt, N.E.I.; Menon, P.S. Recent progress in CZTS (CuZnSn sulfide) thin-film solar cells: A review. J. Mater. Sci. Mater. Electron. 2024, 35, 226. [Google Scholar] [CrossRef]
- Kim, D.S.; Min, B.K. Strategies to Enhance the Performance of Cu (In, Ga)(S, Se) 2 Thin-Film Solar Cells by Doping Approaches. Korean J. Chem. Eng. 2024, 41, 3771–3781. [Google Scholar] [CrossRef]
- Yang, A.; Hou, Q.; Yin, X.; Sha, S. First-principle study of the effects of biaxial strain on the photocatalytic and magnetic mechanisms of ZnO with Sm doping and point defects (VZn, Hi). Vacuum 2021, 189, 110225. [Google Scholar] [CrossRef]
- Shah, U.A.; Wang, A.; Irfan Ullah, M.; Ishaq, M.; Shah, I.A.; Zeng, Y.; Abbasi, M.S.; Umair, M.A.; Farooq, U.; Liang, G.-X.; et al. A deep dive into Cu2ZnSnS4 (CZTS) solar cells: A review of exploring roadblocks, breakthroughs, and shaping the future. Small 2024, 20, 2310584. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yang, G.; Shao, Z.; Ciucci, F. NanoscaledSm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 2013, 35, 131–134. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Rajiv, P.; Mengelizadeh, N.; Arghavan, F.S.; Balarak, D. Photocatalytic efficiency of CuNiFe2O4 nanoparticles loaded on multi-walled carbon nanotubes as a novel photocatalyst for ampicillin degradation. J. Mol. Liq. 2021, 337, 116470. [Google Scholar] [CrossRef]
- de Carvalho Costa, L.R.; de Oliveira, J.T.; Jurado-Davila, V.; Féris, L.A. Degradation of ampicillin by combined process: Adsorption and Fenton reaction. Environ. Technol. Innov. 2022, 26, 102365. [Google Scholar] [CrossRef]
- Yde Carvalho Costa, L.R.; de Oliveira, J.T.; Jurado-Davila, V.; Féris, L.A. Caffeine and ampicillin degradation by ozonation: Addressing pathways, performance and eco-toxicity. Chem. Eng. Sci. 2024, 288, 119817. [Google Scholar] [CrossRef]
- Nguyen, V.N.; Wang, S.L.; Nguyen, T.H.; Nguyen, V.B.; Doan, M.D.; Nguyen, A.D. Preparation and Characterization of Chitosan/Starch Nanocomposites Loaded with Ampicillin to Enhance Antibacterial Activity against Escherichia coli. Polymers 2024, 16, 2647. [Google Scholar] [CrossRef]
- Batool, I.; Albalawi, K.; Khan, A.U.; Tahir, K.; Khan, Z.U.H.; Zaki, M.E.; Saleh, E.A.M.; Alabbad, E.A.; Althagafi, T.M.; Abdulaziz, F. The construction of novel CuO/SnO2@g-C3N4 photocatalyst for efficient degradation of ciprofloxacin, methylene blue and photoinhibition of bacteria through efficient production of reactive oxygen species. Environ. Res. 2023, 231, 116086. [Google Scholar] [CrossRef]
- Singh, J.; Singh, G.P.; Kumar, S.; Jain, R.K.; Gasso, S.; Singh, B.; Singh, K.; Singh, A.; Singh, R.C. Probing structural, optical and magnetic properties of Sm-doped ZnO nanomaterials via experimental and DFT approach: Enhanced photocatalytic degradation and antibacterial performance. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 668, 131470. [Google Scholar] [CrossRef]
- Li, G.; Wang, R.; Wang, B.; Zhang, J. Sm-doped mesoporous g-C3N4 as efficient catalyst for degradation of tylosin: Influencing factors and toxicity assessment. Appl. Surf. Sci. 2020, 517, 146212. [Google Scholar] [CrossRef]
- Nosrati, R.; Olad, A.; Maramifar, R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. 2012, 19, 2291–2299. [Google Scholar] [CrossRef] [PubMed]
- Raizada, P.; Kumari, J.; Shandilya, P.; Singh, P. Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater. Desalination Water Treat. 2017, 79, 204–213. [Google Scholar] [CrossRef]
- Hajji, M.; Ajili, M.; Jebbari, N.; Loreiro, A.G.; Kamoun, N.T. Photocatalytic performance and solar cell applications of coupled semiconductor CuO–ZnO sprayed thin films: Coupling effect between oxides. Opt. Mater. 2023, 140, 113798. [Google Scholar] [CrossRef]
Thin Layer | D (nm) | δ (×10−4 nm−2) | Lattice Parameters (A°) |
---|---|---|---|
CuO–SnO2:F | 28 | 12.7 | a = 4.683 b = 3.421 c = 5.146 |
2% Sm-doped CuO–SnO2:F | 31 | 10.4 | a = 4.685 b = 3.426 c = 5.147 |
4% Sm-doped CuO–SnO2:F | 18 | 30.8 | a = 4.686 b = 3.428 c = 5.149 |
6% Sm-doped CuO–SnO2:F | 15 | 44.4 | a = 4.689 b = 3.429 c = 5.151 |
Thin Layers | Gap Energy (eV) |
---|---|
CuO–SnO2:F | 1.91 |
2% Sm-doped CuO–SnO2:F | 2.34 |
4% Sm-doped CuO–SnO2:F | 2.52 |
6% Sm-doped CuO–SnO2:F | 2.04 |
Absorber Layer | Voc (V) | Jsc (mA) | FF (%) | Efficiency (%) |
---|---|---|---|---|
CdTe | 0.28 | 12.66 | 70 | 9.36 |
CZTS | 1.39 | 12.72 | 72 | 13.22 |
CIGS | 0.72 | 30 | 86 | 15.98 |
Metal Oxide | Deposition Method | Degradation Efficiency in 2 Hunder Sunlight Irradiation | Reference |
---|---|---|---|
ZnO | Hydrothermal synthesis | 41% | [67] |
ZnO/ZnWO4 nanocomposite | Activated carbon-supported method | 83% | [68] |
8% bismuth-dopedCuO–ZnO | Spray pyrolysis | 77% | [26] |
6% Sm-doped CuO–SnO2 | Spray pyrolysis | 86% | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charrada, G.; Yahmadi, B.; Alhalaili, B.; Hajji, M.; Derouich, S.G.; Vidu, R.; Kamoun, N.T. Synthesis of Sm-Doped CuO–SnO2:FSprayed Thin Film: An Eco-Friendly Dual-Function Solution for the Buffer Layer and an Effective Photocatalyst for Ampicillin Degradation. Technologies 2025, 13, 197. https://doi.org/10.3390/technologies13050197
Charrada G, Yahmadi B, Alhalaili B, Hajji M, Derouich SG, Vidu R, Kamoun NT. Synthesis of Sm-Doped CuO–SnO2:FSprayed Thin Film: An Eco-Friendly Dual-Function Solution for the Buffer Layer and an Effective Photocatalyst for Ampicillin Degradation. Technologies. 2025; 13(5):197. https://doi.org/10.3390/technologies13050197
Chicago/Turabian StyleCharrada, Ghofrane, Bechir Yahmadi, Badriyah Alhalaili, Moez Hajji, Sarra Gam Derouich, Ruxandra Vidu, and Najoua Turki Kamoun. 2025. "Synthesis of Sm-Doped CuO–SnO2:FSprayed Thin Film: An Eco-Friendly Dual-Function Solution for the Buffer Layer and an Effective Photocatalyst for Ampicillin Degradation" Technologies 13, no. 5: 197. https://doi.org/10.3390/technologies13050197
APA StyleCharrada, G., Yahmadi, B., Alhalaili, B., Hajji, M., Derouich, S. G., Vidu, R., & Kamoun, N. T. (2025). Synthesis of Sm-Doped CuO–SnO2:FSprayed Thin Film: An Eco-Friendly Dual-Function Solution for the Buffer Layer and an Effective Photocatalyst for Ampicillin Degradation. Technologies, 13(5), 197. https://doi.org/10.3390/technologies13050197