Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey
Abstract
:1. Introduction
2. Impacts on Daily Life
3. Causes of Cognitive Fatigue
4. Measurement and Assessment Techniques
4.1. Physiological Indicators
4.1.1. Pupillometry
4.1.2. Heart Rate Variability
4.1.3. Skin Conductance
4.1.4. Cortisol Level
4.1.5. Respiratory Rate
4.1.6. Blood Pressure
4.1.7. Muscle Activity
4.2. Behavioral Indicators
4.2.1. Reaction Time
4.2.2. Accuracy
4.2.3. Task Completion Time
4.2.4. Self-Reported Fatigue Scales
4.2.5. Microsleep Episodes
4.2.6. Repetitive Behaviors
5. Neurophysiological Approaches
6. Machine Learning and AI
7. Research Gaps and Future Directions
8. Limitations of the Study
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Boksem, M.A.; Tops, M. Mental fatigue: Costs and benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef]
- Wylie, G.R.; Flashman, L.A. Understanding the interplay between mild traumatic brain injury and cognitive fatigue: Models and treatments. Concussion 2017, 2, CNC50. [Google Scholar] [CrossRef]
- Van Der Linden, D.; Frese, M.; Sonnentag, S. The impact of mental fatigue on exploration in a complex computer task: Rigidity and loss of systematic strategies. Hum. Factors 2003, 45, 483–494. [Google Scholar] [CrossRef]
- Holtzer, R.; Shuman, M.; Mahoney, J.R.; Lipton, R.; Verghese, J. Cognitive fatigue defined in the context of attention networks. Aging Neuropsychol. Cogn. 2010, 18, 108–128. [Google Scholar] [CrossRef]
- Dorrian, J.; Roach, G.D.; Fletcher, A.; Dawson, D. Simulated train driving: Fatigue, self-awareness and cognitive disengagement. Appl. Ergon. 2007, 38, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Langner, R.; Steinborn, M.B.; Chatterjee, A.; Sturm, W.; Willmes, K. Mental fatigue and temporal preparation in simple reaction-time performance. Acta Psychol. 2010, 133, 64–72. [Google Scholar] [CrossRef]
- Lim, J.; Wu, W.c.; Wang, J.; Detre, J.A.; Dinges, D.F.; Rao, H. Imaging brain fatigue from sustained mental workload: An ASL perfusion study of the time-on-task effect. Neuroimage 2010, 49, 3426–3435. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, D.; Frese, M.; Meijman, T.F. Mental fatigue and the control of cognitive processes: Effects on perseveration and planning. Acta Psychol. 2003, 113, 45–65. [Google Scholar] [CrossRef]
- Boksem, M.A.; Meijman, T.F.; Lorist, M.M. Effects of mental fatigue on attention: An ERP study. Cogn. Brain Res. 2005, 25, 107–116. [Google Scholar] [CrossRef]
- Van der Linden, D.; Eling, P. Mental fatigue disturbs local processing more than global processing. Psychol. Res. 2006, 70, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Endo, H.; Kizuka, T. Mental fatigue and impaired response processes: Event-related brain potentials in a Go/NoGo task. Int. J. Psychophysiol. 2009, 72, 204–211. [Google Scholar] [CrossRef]
- Lorist, M.M.; Klein, M.; Nieuwenhuis, S.; De Jong, R.; Mulder, G.; Meijman, T.F. Mental fatigue and task control: Planning and preparation. Psychophysiology 2000, 37, 614–625. [Google Scholar] [CrossRef]
- Lorist, M.M. Impact of top-down control during mental fatigue. Brain Res. 2008, 1232, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Sandry, J.; Genova, H.M.; Dobryakova, E.; DeLuca, J.; Wylie, G. Subjective cognitive fatigue in multiple sclerosis depends on task length. Front. Neurol. 2014, 5, 214. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, P.L. (Ed.) 100 years without resting. In Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications; American Psychological Association: Washington, DC, USA, 2011; pp. 11–43. [Google Scholar]
- DeLuca, J. Fatigue, cognition, and mental effort. In Fatigue as a Window to the Brain; MIT Press: Cambridge, MA, USA, 2005; Volume 37. [Google Scholar]
- Kanfer, R. Determinants and consequences of subjective cognitive fatigue. In Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications; Ackerman, P.L., Ed.; American Psychological Association: Washington, DC, USA, 2011; pp. 189–207. [Google Scholar]
- Van Dongen, H.; Belenky, G.; Krueger, J.M. Investigating the temporal dynamics and underlying mechanisms of cognitive fatigue. In Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications; Ackerman, P.L., Ed.; American Psychological Association: Washington, DC, USA, 2011; pp. 127–147. [Google Scholar]
- Jensen, J.L.; Berry, D.A.; Kummer, T.A. Investigating the effects of exam length on performance and cognitive fatigue. PLoS ONE 2013, 8, e70270. [Google Scholar] [CrossRef] [PubMed]
- Linnhoff, S.; Fiene, M.; Heinze, H.J.; Zaehle, T. Cognitive fatigue in multiple sclerosis: An objective approach to diagnosis and treatment by transcranial electrical stimulation. Brain Sci. 2019, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Kluger, B.M.; Krupp, L.B.; Enoka, R.M. Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology 2013, 80, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Genova, H.M.; Rajagopalan, V.; DeLuca, J.; Das, A.; Binder, A.; Arjunan, A.; Chiaravalloti, N.; Wylie, G. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE 2013, 8, e78811. [Google Scholar] [CrossRef] [PubMed]
- Claros-Salinas, D.; Bratzke, D.; Greitemann, G.; Nickisch, N.; Ochs, L.; Schröter, H. Fatigue-related diurnal variations of cognitive performance in multiple sclerosis and stroke patients. J. Neurol. Sci. 2010, 295, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Fiene, M.; Rufener, K.S.; Kuehne, M.; Matzke, M.; Heinze, H.J.; Zaehle, T. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. J. Neurol. 2018, 265, 607–617. [Google Scholar] [CrossRef]
- Junior, A.F.; Chierotti, P.; Gabardo, J.M.; Giovanini, B.; Okano, A.H.; Buzzachera, C.F.; Okazaki, V.H.; Okuno, N.M.; Altimari, L.R. Residual effects of mental fatigue on subjective fatigue, reaction time and cardiac responses. Rev. Psicol. Deporte. 2020, 29, 27–34. [Google Scholar]
- Bailey, A.; Channon, S.; Beaumont, J. The relationship between subjective fatigue and cognitive fatigue in advanced multiple sclerosis. Mult. Scler. J. 2007, 13, 73–80. [Google Scholar] [CrossRef]
- Bryant, D.; Chiaravalloti, N.D.; DeLuca, J. Objective measurement of cognitive fatigue in multiple sclerosis. Rehabil. Psychol. 2004, 49, 114. [Google Scholar] [CrossRef]
- Yung, M.; Manji, R.; Wells, R.P. Exploring the relationship of task performance and physical and cognitive fatigue during a daylong light precision task. Hum. Factors 2017, 59, 1029–1047. [Google Scholar] [CrossRef] [PubMed]
- Chinnadurai, S.A.; Venkatesan, S.A.; Shankar, G.; Samivel, B.; Ranganathan, L.N. A study of cognitive fatigue in Multiple Sclerosis with novel clinical and electrophysiological parameters utilizing the event related potential P300. Mult. Scler. Relat. Disord. 2016, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pokryszko-Dragan, A.; Zagrajek, M.; Slotwinski, K.; Bilinska, M.; Gruszka, E.; Podemski, R. Event-related potentials and cognitive performance in multiple sclerosis patients with fatigue. Neurol. Sci. 2016, 37, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Wylie, G.R.; Pra Sisto, A.J.; Genova, H.M.; DeLuca, J. Fatigue across the lifespan in men and women: State vs. trait. Front. Hum. Neurosci. 2022, 16, 790006. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, V.; Adalarasu, K.; Gupta, A. EEG based analysis of cognitive fatigue during simulated driving. Int. J. Ind. Syst. Eng. 2011, 7, 135–149. [Google Scholar] [CrossRef]
- Wylie, G.R.; Yao, B.; Sandry, J.; DeLuca, J. Using signal detection theory to better understand cognitive fatigue. Front. Psychol. 2021, 11, 579188. [Google Scholar] [CrossRef]
- Pageaux, B.; Lepers, R. The effects of mental fatigue on sport-related performance. Prog. Brain Res. 2018, 240, 291–315. [Google Scholar]
- Smith, M.R.; Zeuwts, L.; Lenoir, M.; Hens, N.; De Jong, L.M.; Coutts, A.J. Mental fatigue impairs soccer-specific decision-making skill. J. Sport. Sci. 2016, 34, 1297–1304. [Google Scholar] [CrossRef]
- Chen, M.H.; Wylie, G.R.; Sandroff, B.M.; Dacosta-Aguayo, R.; DeLuca, J.; Genova, H.M. Neural mechanisms underlying state mental fatigue in multiple sclerosis: A pilot study. J. Neurol. 2020, 267, 2372–2382. [Google Scholar] [CrossRef]
- Havlikova, E.; Rosenberger, J.; Nagyova, I.; Middel, B.; Dubayova, T.; Gdovinova, Z.; Van Dijk, J.P.; Groothoff, J.W. Impact of fatigue on quality of life in patients with Parkinson’s disease. Eur. J. Neurol. 2008, 15, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Wylie, G.R.; Genova, H.M.; Yao, B.; Chiaravalloti, N.; Román, C.A.; Sandroff, B.M.; DeLuca, J. Evaluating the effects of brain injury, disease and tasks on cognitive fatigue. Sci. Rep. 2023, 13, 20166. [Google Scholar] [CrossRef] [PubMed]
- Hockey, G.R.J. A motivational control theory of cognitive fatigue. In Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications; Ackerman, P.L., Ed.; American Psychological Association: Washington, DC, USA, 2011; pp. 167–187. [Google Scholar]
- Csathó, A.; van der Linden, D.; Hernádi, I.; Buzás, P.; Kalmar, G. Effects of mental fatigue on the capacity limits of visual attention. J. Cogn. Psychol. 2012, 24, 511–524. [Google Scholar] [CrossRef]
- Diamond, B.J.; Johnson, S.K.; Kaufman, M.; Graves, L. Relationships between information processing, depression, fatigue and cognition in multiple sclerosis. Arch. Clin. Neuropsychol. 2008, 23, 189–199. [Google Scholar] [CrossRef]
- McMorris, T.; Barwood, M.; Hale, B.J.; Dicks, M.; Corbett, J. Cognitive fatigue effects on physical performance: A systematic review and meta-analysis. Physiol. Behav. 2018, 188, 103–107. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, C.; Schücker, L.; Hagemann, N.; Strauss, B. Cognitive fatigue effects on physical performance during running. J. Sport Exerc. Psychol. 2014, 36, 375–381. [Google Scholar] [CrossRef]
- Rogers, L.Q.; Courneya, K.S.; Robbins, K.T.; Rao, K.; Malone, J.; Seiz, A.; Reminger, S.; Markwell, S.J.; Burra, V. Factors associated with fatigue, sleep, and cognitive function among patients with head and neck cancer. Head Neck J. Sci. Spec. Head Neck 2008, 30, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Kudesia, R.S.; Pandey, A.; Reina, C.S. Doing more with less: Interactive effects of cognitive resources and mindfulness training in coping with mental fatigue from multitasking. J. Manag. 2022, 48, 410–439. [Google Scholar] [CrossRef]
- Goswami, S. Analysing effects of information overload on decision quality in an online environment. J. Manag. Res. 2015, 15, 231–245. [Google Scholar]
- Palmer, L.; Economou, P.; Cruz, D.; Abraham-Cook, S.; Huntington, J.; Maris, M.; Makhija, N.; Welsh, T.; Maley, L. The relationship between stress, fatigue, and cognitive functioning. Coll. Stud. J. 2014, 48, 198–211. [Google Scholar]
- Ochi, G.; Kuwamizu, R.; Suwabe, K.; Fukuie, T.; Hyodo, K.; Soya, H. Cognitive fatigue due to exercise under normobaric hypoxia is related to hypoxemia during exercise. Sci. Rep. 2022, 12, 9835. [Google Scholar] [CrossRef]
- Waters, F.; Bucks, R.S. Neuropsychological effects of sleep loss: Implication for neuropsychologists. J. Int. Neuropsychol. Soc. 2011, 17, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, M.C.; Čeko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Hachinski, V.; Iadecola, C.; Petersen, R.C.; Breteler, M.M.; Nyenhuis, D.L.; Black, S.E.; Powers, W.J.; DeCarli, C.; Merino, J.G.; Kalaria, R.N.; et al. National Institute of Neurological Disorders and Stroke–Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 2006, 37, 2220–2241. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Milzer, M.; Weiß, C.; Reinke, P.; Grapp, M.; Steindorf, K. Cancer-related fatigue: Benefits of information booklets to improve patients’ knowledge and empowerment. Support. Care Cancer 2022, 30, 4813–4821. [Google Scholar] [CrossRef] [PubMed]
- Robben, M.; Hajighasemi, A.; Nasr, M.S.; Veerla, J.P.; Alsup, A.M.; Rout, B.; Shang, H.H.; Fowlds, K.; Malidarreh, P.B.; Koomey, P.; et al. The state of applying artificial intelligence to tissue imaging for cancer research and early detection. arXiv 2023, arXiv:2306.16989. [Google Scholar] [CrossRef]
- Shang, H.H.; Nasr, M.S.; Veerla, J.P.; Malidarreh, P.B.; Saurav, M.; Hajighasemi, A.; Huber, M.; Moleta, C.; Makker, J.; Luber, J.M. Histopathology Slide Indexing and Search: Are We There Yet? arXiv 2023, arXiv:2306.17019. [Google Scholar]
- Goldberg, J. Adverse cognitive effects of psychotropic medications. In Cognitive Dysfunction in Bipolar Disorder: A Guide for Clinicians; American Psychiatric Publishing: Washington, DC, USA, 2008; pp. 137–158. [Google Scholar]
- Kay, G.G. The effects of antihistamines on cognition and performance. J. Allergy Clin. Immunol. 2000, 105, S622–S627. [Google Scholar] [CrossRef]
- Gorelick, P.B. The status of alcohol as a risk factor for stroke. Stroke 1989, 20, 1607–1610. [Google Scholar] [CrossRef]
- Zeigler, D.W.; Wang, C.C.; Yoast, R.A.; Dickinson, B.D.; McCaffree, M.A.; Robinowitz, C.B.; Sterling, M.L. The neurocognitive effects of alcohol on adolescents and college students. Prev. Med. 2005, 40, 23–32. [Google Scholar] [CrossRef]
- Van Boxtel, M.; Schmitt, J.; Bosma, H.; Jolles, J. The effects of habitual caffeine use on cognitive change: A longitudinal perspective. Pharmacol. Biochem. Behav. 2003, 75, 921–927. [Google Scholar] [CrossRef]
- Lautenschlager, N.T.; Cox, K.L.; Flicker, L.; Foster, J.K.; Van Bockxmeer, F.M.; Xiao, J.; Greenop, K.R.; Almeida, O.P. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. JAMA 2008, 300, 1027–1037. [Google Scholar] [CrossRef]
- Laeng, B.; Ørbo, M.; Holmlund, T.; Miozzo, M. Pupillary stroop effects. Cogn. Process. 2011, 12, 13–21. [Google Scholar] [CrossRef]
- Wierda, S.M.; van Rijn, H.; Taatgen, N.A.; Martens, S. Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proc. Natl. Acad. Sci. USA 2012, 109, 8456–8460. [Google Scholar] [CrossRef] [PubMed]
- Porter, G.; Troscianko, T.; Gilchrist, I.D. Effort during visual search and counting: Insights from pupillometry. Q. J. Exp. Psychol. 2007, 60, 211–229. [Google Scholar] [CrossRef] [PubMed]
- van der Wel, P.; Van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Sirois, S.; Brisson, J. Pupillometry. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 679–692. [Google Scholar] [CrossRef]
- Mathôt, S. Pupillometry: Psychology, physiology, and function. J. Cogn. 2018, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Recarte, M.A.; Nunes, L.M. Mental workload while driving: Effects on visual search, discrimination, and decision making. J. Exp. Psychol. Appl. 2003, 9, 119–137. [Google Scholar] [CrossRef]
- Marinescu, A.C.; Sharples, S.; Ritchie, A.C.; Sanchez Lopez, T.; McDowell, M.; Morvan, H.P. Physiological parameter response to variation of mental workload. Hum. Factors 2018, 60, 31–56. [Google Scholar] [CrossRef]
- Tsai, Y.F.; Viirre, E.; Strychacz, C.; Chase, B.; Jung, T.P. Task performance and eye activity: Predicting behavior relating to cognitive workload. Aviat. Space Environ. Med. 2007, 78, B176–B185. [Google Scholar] [PubMed]
- Vansteenkiste, P.; Zeuwts, L.; van Maarseveen, M.; Cardon, G.; Savelsbergh, G.; Lenoir, M. The implications of low quality bicycle paths on the gaze behaviour of young learner cyclists. Transp. Res. Part F Traffic Psychol. Behav. 2017, 48, 52–60. [Google Scholar] [CrossRef]
- Ahlstrom, U.; Friedman-Berg, F.J. Using eye movement activity as a correlate of cognitive workload. Int. J. Ind. Ergon. 2006, 36, 623–636. [Google Scholar] [CrossRef]
- Truschzinski, M.; Betella, A.; Brunnett, G.; Verschure, P.F. Emotional and cognitive influences in air traffic controller tasks: An investigation using a virtual environment? Appl. Ergon. 2018, 69, 1–9. [Google Scholar] [CrossRef]
- Causse, M.; Peysakhovich, V.; Fabre, E.F. High working memory load impairs language processing during a simulated piloting task: An ERP and pupillometry study. Front. Hum. Neurosci. 2016, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Elliott, T.; Knowles, M.; Howard, R. Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101539. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Regulation 2016, 37, 125. [Google Scholar]
- Alugubelli, N.; Abuissa, H.; Roka, A. Wearable Devices for Remote Monitoring of Heart Rate and Heart Rate Variability—What We Know and What Is Coming. Sensors 2022, 22, 8903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, X. Estimating mental fatigue based on electroencephalogram and heart rate variability. Pol. J. Med Phys. Eng. 2010, 16, 67–84. [Google Scholar] [CrossRef]
- Melo, H.M.; Nascimento, L.M.; Takase, E. Mental fatigue and heart rate variability (HRV): The time-on-task effect. Psychol. Neurosci. 2017, 10, 428–436. [Google Scholar] [CrossRef]
- Mizuno, K.; Tanaka, M.; Yamaguti, K.; Kajimoto, O.; Kuratsune, H.; Watanabe, Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav. Brain Funct. 2011, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Mizuno, K.; Tajima, S.; Sasabe, T.; Watanabe, Y. Central nervous system fatigue alters autonomic nerve activity. Life Sci. 2009, 84, 235–239. [Google Scholar] [CrossRef]
- Tanaka, M.; Mizuno, K.; Yamaguti, K.; Kuratsune, H.; Fujii, A.; Baba, H.; Matsuda, K.; Nishimae, A.; Takesaka, T.; Watanabe, Y. Autonomic nervous alterations associated with daily level of fatigue. Behav. Brain Funct. 2011, 7, 46. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, C.X.; Yu, X.L. Automatic recognition of cognitive fatigue from physiological indices by using wavelet packet transform and kernel learning algorithms. Expert Syst. Appl. 2009, 36, 4664–4671. [Google Scholar] [CrossRef]
- Goumopoulos, C.; Potha, N. Mental fatigue detection using a wearable commodity device and machine learning. J. Ambient Intell. Humaniz. Comput. 2023, 14, 10103–10121. [Google Scholar] [CrossRef]
- Adão Martins, N.R.; Annaheim, S.; Spengler, C.M.; Rossi, R.M. Fatigue monitoring through wearables: A state-of-the-art review. Front. Physiol. 2021, 12, 2285. [Google Scholar] [CrossRef]
- Mendes, W.B. Assessing autonomic nervous system activity. Methods Soc. Neurosci. 2009, 118, 21. [Google Scholar]
- Ishaque, S.; Khan, N.; Krishnan, S. Trends in heart-rate variability signal analysis. Front. Digit. Health 2021, 3, 639444. [Google Scholar] [CrossRef]
- Heaton, K.J.; Williamson, J.R.; Lammert, A.C.; Finkelstein, K.R.; Haven, C.C.; Sturim, D.; Smalt, C.J.; Quatieri, T.F. Predicting changes in performance due to cognitive fatigue: A multimodal approach based on speech motor coordination and electrodermal activity. Clin. Neuropsychol. 2020, 34, 1190–1214. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Yoda, T.; Sugiura, K.; Horiguchi, A.; Iwanaga, K.; Katsuura, T. Use of frequency domain analysis of skin conductance for evaluation of mental workload. J. Physiol. Anthropol. 2008, 27, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Ayres, P.; Lee, J.Y.; Paas, F.; van Merriënboer, J.J. The validity of physiological measures to identify differences in intrinsic cognitive load. Front. Psychol. 2021, 12, 702538. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Kong, Y.; Nguyen, K.; Tran, C.; Beardslee, L.; Chen, L.; Guo, T.; Cong, X.; Feng, B.; Chon, K.H. Using electrodermal activity to validate multilevel pain stimulation in healthy volunteers evoked by thermal grills. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 319, R366–R375. [Google Scholar] [CrossRef] [PubMed]
- Bustos, D.; Guedes, J.C.; Vaz, M.P.; Pombo, E.; Fernandes, R.J.; Costa, J.T.; Baptista, J.S. Non-invasive physiological monitoring for physical exertion and fatigue assessment in military personnel: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 8815. [Google Scholar] [CrossRef] [PubMed]
- Prokasy, W. Electrodermal Activity in Psychological Research; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- James, K.A.; Stromin, J.I.; Steenkamp, N.; Combrinck, M.I. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front. Endocrinol. 2023, 14, 1085950. [Google Scholar] [CrossRef]
- Österberg, K.; Karlson, B.; Hansen, Å. Cognitive performance in patients with burnout, in relation to diurnal salivary cortisol: Original research report. Stress 2009, 12, 70–81. [Google Scholar] [CrossRef]
- Bohnen, N.; Houx, P.; Nicolson, N.; Jolles, J. Cortisol reactivity and cognitive performance in a continuous mental task paradigm. Biol. Psychol. 1990, 31, 107–116. [Google Scholar] [CrossRef]
- Nicolson, N.A. Measurement of cortisol. Handb. Physiol. Res. Methods Health Psychol. 2008, 1, 37–74. [Google Scholar]
- Klaassen, E.B.; de Groot, R.H.; Evers, E.A.; Nicolson, N.A.; Veltman, D.J.; Jolles, J. Cortisol and induced cognitive fatigue: Effects on memory activation in healthy males. Biol. Psychol. 2013, 94, 167–174. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Yoneyama, T.; Ikuji, T.; Tsuchiya, H.; Sugo, T. Cortisol awakening response is associated with fatigue following a single bench press exercise. J. Phys. Educ. Sport 2022, 22, 1990–1998. [Google Scholar]
- Shin, J.; Kim, S.; Yoon, T.; Joo, C.; Jung, H.I. Smart Fatigue Phone: Real-time estimation of driver fatigue using smartphone-based cortisol detection. Biosens. Bioelectron. 2019, 136, 106–111. [Google Scholar] [CrossRef]
- Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology 2017, 83, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, M.; Vlemincx, E.; Von Leupoldt, A.; Mittelstädt, J.M.; Van den Bergh, O. Respiratory changes in response to cognitive load: A systematic review. Neural Plast. 2016, 2016, 8146809. [Google Scholar] [CrossRef]
- Behrens, M.; Gube, M.; Chaabene, H.; Prieske, O.; Zenon, A.; Broscheid, K.C.; Schega, L.; Husmann, F.; Weippert, M. Fatigue and human performance: An updated framework. Sport. Med. 2023, 53, 7–31. [Google Scholar] [CrossRef]
- Kodithuwakku Arachchige, S.N.; Burch V, R.F.; Chander, H.; Turner, A.J.; Knight, A.C. The use of wearable devices in cognitive fatigue: Current trends and future intentions. Theor. Issues Ergon. Sci. 2022, 23, 374–386. [Google Scholar] [CrossRef]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The importance of respiratory rate monitoring: From healthcare to sport and exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef]
- Novak, V.; Hajjar, I. The relationship between blood pressure and cognitive function. Nat. Rev. Cardiol. 2010, 7, 686–698. [Google Scholar] [CrossRef]
- Alipour, H.; Goldust, M. The association between blood pressure components and cognitive functions and cognitive reserve. Clin. Exp. Hypertens. 2016, 38, 95–99. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. Exposed to events that never happen: Generalized unsafety, the default stress response, and prolonged autonomic activity. Neurosci. Biobehav. Rev. 2017, 74, 287–296. [Google Scholar] [CrossRef]
- Forte, G.; Casagrande, M. Effects of blood pressure on cognitive performance in aging: A systematic review. Brain Sci. 2020, 10, 919. [Google Scholar] [CrossRef]
- Goldstein, F.C.; Levey, A.I.; Steenland, N.K. High blood pressure and cognitive decline in mild cognitive impairment. J. Am. Geriatr. Soc. 2013, 61, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, A.; Knyazeva, V. Effects of cognitive loading on the development of muscle fatigue. Neurosci. Behav. Physiol. 2017, 47, 960–966. [Google Scholar] [CrossRef]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The effects of mental fatigue on physical performance: A systematic review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.K.; Parasuraman, R. Effects of mental fatigue on the development of physical fatigue: A neuroergonomic approach. Hum. Factors 2014, 56, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Trejo, L.J.; Kochavi, R.; Kubitz, K.; Montgomery, L.D.; Rosipal, R.; Matthews, B. Measures and models for predicting cognitive fatigue. In Proceedings of the Biomonitoring for Physiological and Cognitive Performance during Military Operations, SPIE, Orlando, FL, USA, 30 March–1 April 2005; Volume 5797, pp. 105–115. [Google Scholar]
- Wascher, E.; Rasch, B.; Sänger, J.; Hoffmann, S.; Schneider, D.; Rinkenauer, G.; Heuer, H.; Gutberlet, I. Frontal theta activity reflects distinct aspects of mental fatigue. Biol. Psychol. 2014, 96, 57–65. [Google Scholar] [CrossRef]
- Rozand, V.; Lebon, F.; Papaxanthis, C.; Lepers, R. Effect of mental fatigue on speed–accuracy trade-off. Neuroscience 2015, 297, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Möckel, T.; Beste, C.; Wascher, E. The effects of time on task in response selection-an ERP study of mental fatigue. Sci. Rep. 2015, 5, 10113. [Google Scholar] [CrossRef]
- Kuratsune, D.; Tajima, S.; Koizumi, J.; Yamaguti, K.; Sasabe, T.; Mizuno, K.; Tanaka, M.; Okawa, N.; Mito, H.; Tsubone, H.; et al. Changes in reaction time, coefficient of variance of reaction time, and autonomic nerve function in the mental fatigue state caused by long-term computerized Kraepelin test workload in healthy volunteers. World J. Neurosci. 2012, 2, 19445. [Google Scholar] [CrossRef]
- Migliaccio, G.M.; Di Filippo, G.; Russo, L.; Orgiana, T.; Ardigò, L.P.; Casal, M.Z.; Peyré-Tartaruga, L.A.; Padulo, J. Effects of mental fatigue on reaction time in sportsmen. Int. J. Environ. Res. Public Health 2022, 19, 14360. [Google Scholar] [CrossRef]
- Nikishkova, I.; Kutikov, D.; Kutikov, O.; Kizurina, J. Peculiarities of an assessment of a cognitive efficacy in multiple sclerosis. Ukrains’kyi Visnyk Psykhonevrolohii 2020, 28, 21–26. [Google Scholar] [CrossRef]
- Korkmaz, S.G.; Korkmaz, O.; Aydemir, Ö. Detection of Cognitive Fatigue Based on Mathematical and Auditory Tasks using Gamma Band of EEG Signals. Eur. J. Sci. Technol. 2022, 6–15. [Google Scholar] [CrossRef]
- Fang, D.; Jiang, Z.; Zhang, M.; Wang, H. An experimental method to study the effect of fatigue on construction workers’ safety performance. Saf. Sci. 2015, 73, 80–91. [Google Scholar] [CrossRef]
- Boksem, M.A.; Meijman, T.F.; Lorist, M.M. Mental fatigue, motivation and action monitoring. Biol. Psychol. 2006, 72, 123–132. [Google Scholar] [CrossRef]
- Van Dongen, H.P.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Tian, H. Cognitive Fatigue in Memory Task Error of Middle School Students based on Brain Evoked Potential. Neuroquantology 2018, 16, 669–675. [Google Scholar] [CrossRef]
- Arévalo-Romero, C.; Costa-Cordella, S.; Rojas-Líbano, D. The role of contextual factors on neurocognitive processing: A systematic review with meta-analysis of the effect of response types in cognitive tasks. J. Cogn. Psychol. 2023, 35, 763–794. [Google Scholar] [CrossRef]
- Poliakoff, E.; Smith-Spark, J. Everyday cognitive failures and memory problems in Parkinson’s patients without dementia. Brain Cogn. 2008, 67, 340–350. [Google Scholar] [CrossRef]
- Maaß, S.C.; Riemer, M.; Wolbers, T.; Rijn, H. Timing deficiencies in amnestic Mild Cognitive Impairment: Disentangling clock and memory processes. Behav. Brain Res. 2019, 373, 112110. [Google Scholar] [CrossRef]
- Filipas, L.; Gallo, G.; Pollastri, L.; Torre, A.L. Mental fatigue impairs time trial performance in sub-elite under 23 cyclists. PLoS ONE 2019, 14, e0218405. [Google Scholar] [CrossRef] [PubMed]
- Herlambang, M.B.; Taatgen, N.; Cnossen, F. The Role of Motivation as a Factor in Mental Fatigue. Hum. Factors 2019, 61, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, L.; Gyllensten, A.L.; Hansson, L. A Psychometric Study of the Multidimensional Fatigue Inventory to Assess Fatigue in Patients with Schizophrenia Spectrum Disorders. Community Ment. Health J. 2015, 51, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Yu, B.Y.; ping Yung, K.; Yeung, W.; Ng, T.H.; Ho, F. Assessment of fatigue using the Multidimensional Fatigue Inventory in patients with major depressive disorder. Compr. Psychiatry 2014, 55 7, 1671–1678. [Google Scholar] [CrossRef]
- Lin, J.M.S.; Brimmer, D.J.; Maloney, E.M.; Nyarko, E.; Belue, R.; Reeves, W. Further validation of the Multidimensional Fatigue Inventory in a US adult population sample. Popul. Health Metrics 2009, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Ferentinos, P.; Kontaxakis, V.; Havaki-kontaxaki, B.; Dikeos, D.; Lykouras, L. Psychometric evaluation of the Fatigue Severity Scale in patients with major depression. Qual. Life Res. 2011, 20, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Ozyemisçi-Taskiran, O.; Batur, E.; Yuksel, S.; Cengiz, M.; Karataş, G. Validity and reliability of fatigue severity scale in stroke. Top. Stroke Rehabil. 2018, 26, 122–127. [Google Scholar] [CrossRef]
- Lerdal, A. Fatigue severity scale. In Encyclopedia of Quality of Life and Well-Being Research; Springer: Dordrecht, The Netherlands, 2021; pp. 1–5. [Google Scholar]
- Jamison, R.; Gracely, R.; Raymond, S.; Levine, J.; Katz, N. Comparative study of electronic vs. paper VAS ratings: A randomized, crossover trial using healthy volunteers. PAIN 2002, 99, 341–347. [Google Scholar] [CrossRef]
- Mallinson, T.; Cella, D.; Cashy, J.; Holzner, B. Giving meaning to measure: Linking self-reported fatigue and function to performance of everyday activities. J. Pain Symptom Manag. 2006, 31 3, 229–241. [Google Scholar] [CrossRef]
- Poller, D.N.; Perez-Machado, M. When is it time to stop working due to fatigue? A simple human factors (HF) self-assessment test. J. Clin. Pathol. 2020, 73, 523. [Google Scholar] [CrossRef]
- Elbers, R.G.; Rietberg, M.B.; Van Wegen, E.E.; Verhoef, J.; Kramer, S.F.; Terwee, C.B.; Kwakkel, G. Self-report fatigue questionnaires in multiple sclerosis, Parkinson’s disease and stroke: A systematic review of measurement properties. Qual. Life Res. 2012, 21, 925–944. [Google Scholar] [CrossRef]
- Sharma, P.; Justus, J.C.; Poudel, G.R. Sensors and Systems for Monitoring Mental Fatigue: A systematic review. arXiv 2023, arXiv:2307.01666. [Google Scholar]
- Wang, Q.; Wang, H.; Zhao, C.; Yang, J. Driver fatigue detection technology in active safety systems. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 3097–3100. [Google Scholar]
- Kim, S.; Cranor, B.D.; Ryu, Y.S. Fatigue: Working under the influence. In Proceedings of the XXIst Annual International Occupational Ergonomics and Safety Conference, Dallas, TX, USA, 11–12 June 2009; Volume 317322. [Google Scholar]
- Phillips, R.O. A review of definitions of fatigue—And a step towards a whole definition. Transp. Res. Part F Traffic Psychol. Behav. 2015, 29, 48–56. [Google Scholar] [CrossRef]
- Shen, J.; Barbera, J.; Shapiro, C.M. Distinguishing sleepiness and fatigue: Focus on definition and measurement. Sleep Med. Rev. 2006, 10, 63–76. [Google Scholar] [CrossRef]
- Dawson, D.; Searle, A.K.; Paterson, J.L. Look before you (s) leep: Evaluating the use of fatigue detection technologies within a fatigue risk management system for the road transport industry. Sleep Med. Rev. 2014, 18, 141–152. [Google Scholar] [CrossRef]
- De Fazio, R.; Mattei, V.; Al-Naami, B.; De Vittorio, M.; Visconti, P. Methodologies and wearable devices to monitor biophysical parameters related to sleep dysfunctions: An overview. Micromachines 2022, 13, 1335. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lodewijks, G. Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. J. Saf. Res. 2020, 72, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Dirnberger, G.; Duregger, C.; Trettler, E.; Lindinger, G.; Lang, W. Fatigue in a simple repetitive motor task: A combined electrophysiological and neuropsychological study. Brain Res. 2004, 1028, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Searle, B.L.; Spathis, D.; Constantinides, M.; Quercia, D.; Mascolo, C. Anticipatory detection of compulsive body-focused repetitive behaviors with wearables. In Proceedings of the 23rd International Conference on Mobile Human-Computer Interaction, Virtual Event, 27 September–1 October 2021; pp. 1–15. [Google Scholar]
- Gilchrist, K.H.; Hegarty-Craver, M.; Christian, R.B.; Grego, S.; Kies, A.C.; Wheeler, A.C. Automated detection of repetitive motor behaviors as an outcome measurement in intellectual and developmental disabilities. J. Autism Dev. Disord. 2018, 48, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Ishii, A.; Tanaka, M.; Watanabe, Y. Neural mechanisms of mental fatigue. Rev. Neurosci. 2014, 25, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Vora, N.R.; Hajighasemi, A.; Reynolds, C.T.; Radmehr, A.; Mohamed, M.; Saurav, J.R.; Aziz, A.; Veerla, J.P.; Nasr, M.S.; Lotspeich, H.; et al. Real-Time Diagnostic Integrity Meets Efficiency: A Novel Platform-Agnostic Architecture for Physiological Signal Compression. arXiv 2023, arXiv:2312.12587. [Google Scholar]
- Craig, A.; Tran, Y.; Wijesuriya, N.; Nguyen, H. Regional brain wave activity changes associated with fatigue. Psychophysiology 2012, 49, 574–582. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Xu, W.; Jiao, W.; Jiang, Y.; Gao, Z.; Zhang, J. The impact of mental fatigue on brain activity: A comparative study both in resting state and task state using EEG. BMC Neurosci. 2020, 21, 20. [Google Scholar] [CrossRef]
- Tanaka, M.; Shigihara, Y.; Ishii, A.; Funakura, M.; Kanai, E.; Watanabe, Y. Effect of mental fatigue on the central nervous system: An electroencephalography study. Behav. Brain Funct. 2012, 8, 48. [Google Scholar] [CrossRef]
- Trejo, L.J.; Kubitz, K.; Rosipal, R.; Kochavi, R.L.; Montgomery, L.D. EEG-based estimation and classification of mental fatigue. Psychology 2015, 6, 55452. [Google Scholar] [CrossRef]
- Wang, H.; Dragomir, A.; Abbasi, N.; Li, J.; Thakor, N.; Bezerianos, A. A novel real-time driving fatigue detection system based on wireless dry EEG Cogn. Cogn. Neurodynamics 2018, 12, 365–376. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Scarapicchia, V.; Brown, C.; Mayo, C.; Gawryluk, J.R. Functional magnetic resonance imaging and functional near-infrared spectroscopy: Insights from combined recording studies. Front. Hum. Neurosci. 2017, 11, 419. [Google Scholar] [CrossRef]
- Ayaz, H.; Shewokis, P.A.; Bunce, S.; Izzetoglu, K.; Willems, B.; Onaral, B. Optical brain monitoring for operator training and mental workload assessment. Neuroimage 2012, 59, 36–47. [Google Scholar] [CrossRef]
- Dehais, F.; Dupres, A.; Di Flumeri, G.; Verdiere, K.; Borghini, G.; Babiloni, F.; Roy, R. Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI. In Proceedings of the 2018 IEEE international conference on systems, man, and cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 544–549. [Google Scholar]
- Wylie, G.; Yao, B.; Genova, H.; Chen, M.; DeLuca, J. Using functional connectivity changes associated with cognitive fatigue to delineate a fatigue network. Sci. Rep. 2020, 10, 21927. [Google Scholar] [CrossRef]
- Yoo, G.; Kim, H.; Hong, S. Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network. Bioengineering 2023, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.; Gu, B.; Cao, S.; Fang, D. Identifying mental fatigue of construction workers using EEG and deep learning. Autom. Constr. 2023, 151, 104887. [Google Scholar] [CrossRef]
- Khan, M.A.; Asadi, H.; Hoang, T.; Lim, C.P.; Nahavandi, S. Measuring Cognitive Load: Leveraging fNIRS and Machine Learning for Classification of Workload Levels. In International Conference on Neural Information Processing; Springer: Singapore, 2023; pp. 313–325. [Google Scholar]
- Souchet, A.D.; Philippe, S.; Lourdeaux, D.; Leroy, L. Measuring visual fatigue and cognitive load via eye tracking while learning with virtual reality head-mounted displays: A review. Int. J. Hum.-Comput. Interact. 2022, 38, 801–824. [Google Scholar] [CrossRef]
- Bafna, T.; Hansen, J.P. Mental fatigue measurement using eye metrics: A systematic literature review. Psychophysiology 2021, 58, e13828. [Google Scholar] [CrossRef]
- Sharma, H.; Drukker, L.; Papageorghiou, A.T.; Noble, J.A. Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging. Comput. Biol. Med. 2021, 135, 104589. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowska, M.; Plechawska-Wójcik, M.; Tokovarov, M. Interpretable machine learning models for three-way classification of cognitive workload levels for eye-tracking features. Brain Sci. 2021, 11, 210. [Google Scholar] [CrossRef]
- Ktistakis, E.; Skaramagkas, V.; Manousos, D.; Tachos, N.S.; Tripoliti, E.; Fotiadis, D.I.; Tsiknakis, M. COLET: A dataset for COgnitive workLoad estimation based on eye-tracking. Comput. Methods Programs Biomed. 2022, 224, 106989. [Google Scholar] [CrossRef] [PubMed]
- Ul Alam, M.A. Activity-Aware Deep Cognitive Fatigue Assessment using Wearables. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1–5 November 2021; pp. 7433–7436. [Google Scholar] [CrossRef]
- Kanal, V. Kopos: A Framework to Study and Detect Physical and Cognitive Fatigue Concurrently; The University of Texas at Arlington: Arlington, TX, USA, 2021. [Google Scholar]
- Ding, Y.; Cao, Y.; Duffy, V.G.; Wang, Y.; Zhang, X. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning. Ergonomics 2020, 63, 896–908. [Google Scholar] [CrossRef]
- Jaiswal, A.; Zaki Zadeh, M.; Hebri, A.; Ramesh Babu, A.; Makedon, F. A Smart Sensor Suit (SSS) to Assess Cognitive and Physical Fatigue with Machine Learning. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2023; pp. 120–134. [Google Scholar]
- Acien, A.; Morales, A.; Vera-Rodriguez, R.; Fierrez, J.; Mondesire-Crump, I.; Arroyo-Gallego, T. Detection of Mental Fatigue in the General Population: Feasibility Study of Keystroke Dynamics as a Real-world Biomarker. JMIR Biomed. Eng. 2022, 7, e41003. [Google Scholar] [CrossRef]
- Pimenta, A.; Carneiro, D.; Novais, P.; Neves, J. Monitoring mental fatigue through the analysis of keyboard and mouse interaction patterns. In Proceedings of the Hybrid Artificial Intelligent Systems: 8th International Conference, HAIS 2013, Salamanca, Spain, 11–13 September 2013; Proceedings 8; pp. 222–231. [Google Scholar]
- Siravenha, A.C.; Reis, M.N.; Cordeiro, I.; Tourinho, R.A.; Gomes, B.D.; Carvalho, S.R. Residual mlp network for mental fatigue classification in mining workers from brain data. In Proceedings of the 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), Salvador, BA, Brazil, 15–18 October 2019; pp. 407–412. [Google Scholar]
- Kamińska, D.; Smółka, K.; Zwoliński, G. Detection of mental stress through EEG signal in virtual reality environment. Electronics 2021, 10, 2840. [Google Scholar] [CrossRef]
- Li, P.; Jiang, W.; Su, F. Single-channel EEG-based mental fatigue detection based on deep belief network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 367–370. [Google Scholar]
- Mu, Z.; Hu, J.; Min, J. Driver fatigue detection system using electroencephalography signals based on combined entropy features. Appl. Sci. 2017, 7, 150. [Google Scholar] [CrossRef]
- Savaş, B.K.; Becerikli, Y. Real time driver fatigue detection system based on multi-task ConNN. IEEE Access 2020, 8, 12491–12498. [Google Scholar] [CrossRef]
- Ansari, S.; Naghdy, F.; Du, H.; Pahnwar, Y.N. Driver mental fatigue detection based on head posture using new modified reLU-BiLSTM deep neural network. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10957–10969. [Google Scholar] [CrossRef]
- Hu, J. Automated detection of driver fatigue based on AdaBoost classifier with EEG signals. Front. Comput. Neurosci. 2017, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Shi, T.; Wang, F.; Ma, S. Real-time EEG-based detection of fatigue driving danger for accident prediction. Int. J. Neural Syst. 2015, 25, 1550002. [Google Scholar] [CrossRef] [PubMed]
- Zorzos, I.; Kakkos, I.; Miloulis, S.T.; Anastasiou, A.; Ventouras, E.M.; Matsopoulos, G.K. Applying Neural Networks with Time-Frequency Features for the Detection of Mental Fatigue. Appl. Sci. 2023, 13, 1512. [Google Scholar] [CrossRef]
- Cos, C.A.; Lambert, A.; Soni, A.; Jeridi, H.; Thieulin, C.; Jaouadi, A. Enhancing Mental Fatigue Detection through Physiological Signals and Machine Learning Using Contextual Insights and Efficient Modelling. J. Sens. Actuator Netw. 2023, 12, 77. [Google Scholar] [CrossRef]
- Butkevičiūtė, E.; Michalkovič, A.; Bikulčienė, L. Ecg signal features classification for the mental fatigue recognition. Mathematics 2022, 10, 3395. [Google Scholar] [CrossRef]
- Wang, J.; Shi, J.; Xu, Y.; Zhong, H.; Li, G.; Tian, J.; Xu, W.; Gao, Z.; Jiang, Y.; Jiao, W.; et al. A New Strategy for Mental Fatigue Detection Based on Deep Learning and Respiratory Signal. In Proceedings of the 11th International Conference on Computer Engineering and Networks, Beijing, China, 9–11 December 2022; pp. 543–552. [Google Scholar]
- Karim, E.; Pavel, H.R.; Jaiswal, A.; Zadeh, M.Z.; Theofanidis, M.; Wylie, G.; Makedon, F. An EEG-based Cognitive Fatigue Detection System. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 5–7 July 2023; pp. 131–136. [Google Scholar]
- Ramírez-Moreno, M.A.; Carrillo-Tijerina, P.; Candela-Leal, M.O.; Alanis-Espinosa, M.; Tudón-Martínez, J.C.; Roman-Flores, A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Evaluation of a fast test based on biometric signals to assess mental fatigue at the workplace—A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 11891. [Google Scholar] [CrossRef]
- Jaiswal, A.; Ramesh Babu, A.; Zaki Zadeh, M.; Wylie, G.; Makedon, F. Detecting Cognitive Fatigue in Subjects with Traumatic Brain Injury from FMRI Scans Using Self-Supervised Learning. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 5–7 July 2023; pp. 83–90. [Google Scholar]
- Mu, Z.; Hu, J.; Yin, J. Driving fatigue detecting based on EEG signals of forehead area. Int. J. Pattern Recognit. Artif. Intell. 2017, 31, 1750011. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Umer, W.; Wang, H.; Xing, X.; Zhao, S.; Hou, J. Identification and classification of construction equipment operators’ mental fatigue using wearable eye-tracking technology. Autom. Constr. 2020, 109, 103000. [Google Scholar] [CrossRef]
- Pavel, H.R.; Karim, E.; Jaiswal, A.; Acharya, S.; Nale, G.; Theofanidis, M.; Makedon, F. Assessment of Cognitive Fatigue from Gait Cycle Analysis. Technologies 2023, 11, 18. [Google Scholar] [CrossRef]
- Chai, R.; Tran, Y.; Craig, A.; Ling, S.H.; Nguyen, H.T. Enhancing accuracy of mental fatigue classification using advanced computational intelligence in an electroencephalography system. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1318–1341. [Google Scholar]
- Zadeh, M.Z.; Babu, A.R.; Lim, J.B.; Kyrarini, M.; Wylie, G.; Makedon, F. Towards cognitive fatigue detection from functional magnetic resonance imaging data. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Virtual, 30 June–3 July 2020; pp. 1–2. [Google Scholar]
- Price, E.; Moore, G.; Galway, L.; Linden, M. Towards mobile cognitive fatigue assessment as indicated by physical, social, environmental, and emotional factors. IEEE Access 2019, 7, 116465–116479. [Google Scholar] [CrossRef]
- Lee, K.F.A.; Gan, W.S.; Christopoulos, G. Biomarker-informed machine learning model of cognitive fatigue from a heart rate response perspective. Sensors 2021, 21, 3843. [Google Scholar] [CrossRef]
- Lee, K.F.A.; Chan, E.; Car, J.; Gan, W.S.; Christopoulos, G. Lowering the sampling rate: Heart rate response during cognitive fatigue. Biosensors 2022, 12, 315. [Google Scholar] [CrossRef]
- Schweizer, T.; Wyss, T.; Gilgen-Ammann, R. Detecting Soldiers’ Fatigue Using Eye-Tracking Glasses: Practical Field Applications and Research Opportunities. Mil. Med. 2021, 187, e1330–e1337. [Google Scholar] [CrossRef]
- Ren, Z.; Li, R.; Chen, B.; Zhang, H.; Ma, Y.; Wang, C.; Lin, Y.; Zhang, Y. EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function. Front. Neurorobot. 2021, 15, 618408. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, T.; Dogan, S.; Subasi, A. EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomed. Signal Process. Control 2021, 68, 102591. [Google Scholar] [CrossRef]
- Papakostas, M.; Rajavenkatanarayanan, A.; Makedon, F. CogBeacon: A Multi-Modal Dataset and Data-Collection Platform for Modeling Cognitive Fatigue. Technologies 2019, 7, 46. [Google Scholar] [CrossRef]
- Tag, B.; Vargo, A.W.; Gupta, A.; Chernyshov, G.; Kunze, K.; Dingler, T. Continuous alertness assessments: Using EOG glasses to unobtrusively monitor fatigue levels In-the-Wild. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Tjolleng, A.; Jung, K.; Hong, W.; Lee, W.; Lee, B.; You, H.; Son, J.; Park, S. Classification of a Driver’s cognitive workload levels using artificial neural network on ECG signals. Appl. Ergon. 2017, 59, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Tiwari, A.; Routray, A. Analysis of cognitive fatigue using EEG parameters. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 2554–2557. [Google Scholar]
- Sieber, W.K.; Chen, G.X.; Krueger, G.P.; Lincoln, J.E.; Menéndez, C.C.; O’Connor, M.B. Research gaps and needs for preventing worker fatigue in the transportation and utilities industries. Am. J. Ind. Med. 2022, 65, 857–866. [Google Scholar] [CrossRef] [PubMed]
Ref | Features | Method | Avg. Acc |
---|---|---|---|
Li et al. [181] | Single-channel-based EEG signals | Deep belief network (DBN) | 98.86% |
Mu et al. [182] | EEG signals based on combined entropy features | Support vector machine (SVM) | 98.8% |
Savas et al. [183] | Facial features (eye and mouth openings) | Convolutional neural network (CNN) | 98.81% |
Ansari et al. [184] | Angular acceleration of head collected from MT sensor | Coarse decision tree (CDT) RUSBoostedTrees (RT) Coarse k-nearest neighbor (Coarse kNN) Gaussian kernel-based SVM (GSVM) Long short-term memory (LSTM) Rectified linear unit layer-based bidirectional long short-term memory (reLU-BiLSTM) | 63.55% 67.37% 73.2% 73.55% 90.15% 97.83% |
Hu et al. [185] | EEG signals | AdaBoost | 97.5% |
Wang et al. [186] | EEG signals | Pulse-coupled neural network (PCNN) | 97% |
Zorzos et al. [187] | EEG signals | Time-frequency (TF) features + CNN | 97% |
Cos et al. [188] | EDA, ECG, and respiration rate | Random forest (RF) | 96% |
Butkevivciute et al. [189] | ECG signals | Linear discriminant analysis (LDA) Support vector machine (SVM) Decision tree (DT) K-nearest neighbor (KNN) Random forest (RF) | 76.82% 90.89% 92.31% 94.19% 95.08% |
Zhang et al. [78] | EEG and HRV | Linear discriminant analysis based on Mahalanobis distance (MDBC) Support vector machine (SVM) | 80% 91% |
Wang et al. [190] | Respiratory signals | Convolutional neural network (CNN) Long short-term memory (LSTM) | 77.29% 89.16% |
Wang et al. [166] | EEG signals | Continuous wavelet transform (CWT) + CNN | 88.85% |
Karim et al. [191] | Individual spectral components extracted from raw EEG data | One-dimensional CNN (1D-CNN) Recurrent neural network (RNN) Long short-term memory (LSTM) A compact convolutional network (EEGNet) | 63.62% 65.53% 70.81% 88.17% |
Ramírez-Moreno et al. [192] | EEG, HR, HRV, and EDA | Multiple linear regression (MLR) | 88% |
Jaiswal et al. [193] | fMRI data | Encoder (CNN + LSTM) + linear Self-supervised + Fine-tuning | 74.35% 86.84% |
Mu et al. [194] | EEG signals | Support vector machine (SVM) | 85% |
Jaiswal et al. [176] | EEG, ECG, EDA, and EMG | Logistic regression (Log Reg) Support vector machine (SVM) Random forest (RF) Long short-term memory (LSTM) | 60.4% 70.3% 74.5% 84.1% |
Li et al. [195] | Eye movement data (blink behavior, pupil measure, gaze point) | K-nearest neighbor (KNN) Boosted tree (BT) Decision tree (DT) Linear discriminant analysis (LDA) Support vector machine (SVM) | 69.42% 75.37% 81.15% 81.62% 82.47% |
Pavel et al. [196] | Keypoints extracted from Gait Cycle | Multilayer perceptron (MLP) Long short-term memory (LSTM) Recurrent neural network (RNN) One-dimensional CNN (1D-CNN) 1D-CNN + fully connected layer (FC) | 54.81% 58.24% 63.1% 67.5% 81.64% |
Chai et al. [197] | EEG Signals | Fuzzy particle swarm optimization with cross mutated artificial neural network (FPSOCM -ANN) | 80.51% |
Zadeh et al. [198] | fMRI data | Convolutional neural network (CNN) Linear regression (with softmax layer) Logistic regression (Log Reg) | 34% 67% 73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, E.; Pavel, H.R.; Nikanfar, S.; Hebri, A.; Roy, A.; Nambiappan, H.R.; Jaiswal, A.; Wylie, G.R.; Makedon, F. Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey. Technologies 2024, 12, 38. https://doi.org/10.3390/technologies12030038
Karim E, Pavel HR, Nikanfar S, Hebri A, Roy A, Nambiappan HR, Jaiswal A, Wylie GR, Makedon F. Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey. Technologies. 2024; 12(3):38. https://doi.org/10.3390/technologies12030038
Chicago/Turabian StyleKarim, Enamul, Hamza Reza Pavel, Sama Nikanfar, Aref Hebri, Ayon Roy, Harish Ram Nambiappan, Ashish Jaiswal, Glenn R. Wylie, and Fillia Makedon. 2024. "Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey" Technologies 12, no. 3: 38. https://doi.org/10.3390/technologies12030038
APA StyleKarim, E., Pavel, H. R., Nikanfar, S., Hebri, A., Roy, A., Nambiappan, H. R., Jaiswal, A., Wylie, G. R., & Makedon, F. (2024). Examining the Landscape of Cognitive Fatigue Detection: A Comprehensive Survey. Technologies, 12(3), 38. https://doi.org/10.3390/technologies12030038