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Abstract: Cognitive fatigue, a state of reduced mental capacity arising from prolonged cognitive
activity, poses significant challenges in various domains, from road safety to workplace productivity.
Accurately detecting and mitigating cognitive fatigue is crucial for ensuring optimal performance
and minimizing potential risks. This paper presents a comprehensive survey of the current landscape
in cognitive fatigue detection. We systematically review various approaches, encompassing physi-
ological, behavioral, and performance-based measures, for robust and objective fatigue detection.
The paper further analyzes different challenges, including the lack of standardized ground truth
and the need for context-aware fatigue assessment. This survey aims to serve as a valuable resource
for researchers and practitioners seeking to understand and address the multifaceted challenge of
cognitive fatigue detection.

Keywords: cognitive fatigue; fatigue detection; mental fatigue assessment; cognitive performance

1. Introduction

Cognitive fatigue, arising from prolonged and demanding cognitive activities [1],
represents a ubiquitous and significant phenomenon in our modern lives. It involves
varying degrees of mental exhaustion that can persist for hours to days, frequently emerging
as a rebound effect following periods of mental exertion [2]. This phenomenon can result
from a range of mentally taxing activities, from studying for exams and working long
hours to engaging in complex problem-solving tasks. Reductions in executive functions,
including executive attention [3,4], sustained attention [5–7], alternating attention [8], goal-
directed attention [9], divided attention [10], response inhibition [11], and planning [12,13],
are commonly associated with cognitive fatigue. As cognitive fatigue sets in, individuals
often find it increasingly challenging to sustain their focus and perform at their best, which
can lead to a cascade of adverse consequences.

Addressing cognitive fatigue clinically remains challenging, mainly due to the lack of
well-defined variables that contribute to its understanding [14]. The duration spent on a
task is commonly considered a significant predictor of cognitive fatigue [15–18]. However,
it is important to acknowledge that this predictor alone may not fully account for the
variability in cognitive fatigue levels. While prolonged task duration can indeed lead to
increased cognitive fatigue in many cases [15,19], it is noteworthy that there are instances
where extended time spent on a task can paradoxically result in improved performance.
This phenomenon can be attributed to the learning effect, wherein individuals develop
skills and strategies over time, leading to enhanced task performance despite the potential
for cognitive fatigue. Therefore, it is essential for future research to consider additional
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factors beyond task duration to provide a more comprehensive understanding of cognitive
fatigue dynamics.

Cognitive fatigue may be assessed either subjectively or objectively [20], as illustrated
in Figure 1. Subjective cognitive fatigue involves an ongoing perception of exhaustion.
Objective cognitive fatigue, referred to as fatigability, is measured by the change in cognitive
performance relative to a baseline [21]. Subjective fatigue can be further categorized into
trait and state components. State fatigue signifies a transient condition that may evolve
over time and fluctuate based on both internal and external factors, while trait fatigue
characterizes a relatively stable state in an individual and is not likely to undergo significant
changes over time [22].

Figure 1. Cognitive fatigue classification [20].

Assessing subjective trait fatigue can be performed through self-questionnaires, while
subjective state fatigue can be measured using visual analog scales (VASs) or numerical
rating scales. In contrast, objective fatigue (fatigability) is inherently state-dependent,
allowing for an objective assessment through behavioral or electrophysiological parameters.
Behavioral fatigue can be evaluated by observing alterations in reaction time and accuracy
during simple alertness or vigilance tests conducted over a period. Several studies have
demonstrated a trend towards lengthening reaction times [6,23–25], alongside declining
accuracy [26–29], as the duration of the task progresses. On the other hand, a study by
Pokryszko-Dragan et al. [30] delved into alterations in P300, an event-related potential
(ERP) component associated with cognitive processing, in patients. They discovered
that prolonged latencies and diminished amplitudes of P300 were linked to heightened
subjective cognitive fatigue among the participants. To sum up, cognitive fatigue can be
examined both qualitatively as a subjective phenomenon and quantitatively as an objective
phenomenon [20]. Studies have been conducted over time to examine both state and trait
fatigue across age and gender. The research paper [31] shows that there is no observed
correlation between age or gender and trait fatigue. Nevertheless, in the case of state
fatigue, an increase in age was linked to a lower level of fatigue.

Cognitive detection techniques, at the intersection of psychology, neuroscience, and
technology, have emerged as a pivotal field with profound implications for understanding,
monitoring, and enhancing human cognitive processes. These techniques encompass
a diverse array of methods and tools designed to assess and measure various facets of
cognitive function, including attention, memory, problem-solving, decision-making, and
emotional states. In an era marked by unprecedented technological advancements, the
development and refinement of cognitive detection techniques have provided a window
into the complexities of the human mind, offering insights that extend across numerous
domains, from healthcare to education and beyond. The human cognitive system is a
marvel of complexity, and its functioning underpins virtually every aspect of daily life.
Consequently, the ability to detect, assess, and ultimately enhance cognitive processes holds



Technologies 2024, 12, 38 3 of 25

immense significance. Cognitive detection techniques have evolved from rudimentary
observations to sophisticated methodologies that leverage cutting-edge technologies such
as neuroimaging, wearable devices, machine learning, and artificial intelligence. These
techniques empower researchers, clinicians, educators, and individuals themselves to gain
a deeper understanding of cognitive functioning and its dynamic interplay with various
external and internal factors.

In this comprehensive exploration of cognitive detection techniques, we delve into the
diverse landscape of methods, tools, and applications that characterize this burgeoning field.
We examine how cognitive detection techniques have transcended traditional boundaries,
fostering interdisciplinary collaborations that offer fresh perspectives on cognition and its
associated challenges. As we embark on this journey, it becomes increasingly evident that
the integration of cognitive detection techniques into our daily lives has the potential to
unlock new dimensions of human potential, fostering well-being, productivity, and overall
cognitive enhancement.

2. Impacts on Daily Life

The impact of cognitive fatigue extends to various aspects of human life. In the
realm of road safety, cognitive fatigue is a substantial concern. Fatigue among drivers
significantly contributes to the occurrence of road accidents [32]. Reaction times become
slower, attention wanes, and hazard perception becomes compromised, putting both the
fatigued individual and others in potentially life-threatening situations. A study [33] shows
that individuals tend to commit more errors as cognitive fatigue increases due to a reduction
in perceptual sensitivity. To counteract this, they tend to adopt a more cautious response
bias. This underscores the importance of recognizing the signs of cognitive fatigue and
taking appropriate measures, such as taking breaks or ensuring adequate rest, to mitigate
its impact on driving and public safety.

Beyond road safety, cognitive fatigue has far-reaching implications. It can impair
athletic performance [34], affecting an athlete’s ability to make split-second decisions, main-
tain physical coordination, and execute complex strategies. In professional and personal
decision-making, cognitive fatigue can lead to suboptimal choices and hinder problem-
solving abilities [35]. Moreover, in the context of health, cognitive fatigue can exert a
negative impact on diverse medical conditions, including multiple sclerosis [23,26,36],
Parkinson’s disease [37], and traumatic brain injury [2], where it can exacerbate the chal-
lenges of coping with these illnesses. A study [38] by Wylie et al. showed that individuals
who have suffered a traumatic brain injury (TBI) experience similar levels of cognitive
fatigue (CF) as those with multiple sclerosis (MS), but both groups reported higher levels
of CF compared to healthy control individuals.

People experiencing cognitive fatigue often find it challenging to focus their attention
on tasks for extended periods [1,39] and may become easily distracted [39,40], which
can hinder productivity and task completion. Cognitive fatigue can also result in slower
information processing, causing individuals to take more time to comprehend and respond
to stimuli [41]. Complex problem-solving becomes more arduous, leading to delays and
potential errors. This sluggishness in cognitive processing can hinder quick thinking and
decision-making, which is particularly problematic in situations requiring rapid responses.

A study conducted by Boksem et al. [9] revealed that cognitive fatigue significantly
affects behavior by impairing the efficient allocation of attention among fatigued individu-
als. However, it is essential to discern the impact of cognitive fatigue on two distinct types
of attention: goal-directed and stimulus-driven. While cognitive fatigue notably hampers
goal-directed attention, its influence on stimulus-driven attention is relatively limited. This
differentiation sheds light on the heightened susceptibility to distractions and reduced
adaptability observed in fatigued individuals.

In summary, addressing cognitive fatigue extends beyond mere enhancements in
daily productivity; it encompasses the vital aspects of safeguarding well-being, optimizing
performance, and promoting public safety. Understanding the signs of cognitive fatigue
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and implementing effective management strategies are essential for navigating the de-
mands of our modern, complex, and mentally taxing world. By prioritizing strategies to
combat cognitive fatigue, individuals can strive for greater resilience, improved decision-
making, and enhanced overall quality of life, ultimately contributing to a safer and more
productive society.

3. Causes of Cognitive Fatigue

Cognitive fatigue can result from various causes [42]. It typically develops gradually
over time as a person engages in prolonged and demanding mental activities. One primary
cause is the sustained mental effort required for tasks like studying for exams, working
on complex projects, or solving intricate problems. The brain consumes significant energy
and resources during such activities, leading to exhaustion if not managed effectively [43].
Another crucial contributor to cognitive fatigue is the lack of adequate sleep. Sleep is
essential for the brain to consolidate memories, repair tissues, and remove waste products.
When sleep is disrupted or insufficient, these vital processes are compromised, leaving the
brain less capable of optimal functioning. Chronic sleep deprivation is a significant factor
in persistent cognitive fatigue [44].

Stress and anxiety are emotional states that can also lead to cognitive fatigue. Chronic
stress triggers the release of stress hormones like cortisol, which can disrupt normal brain
function and result in mental exhaustion. Multitasking, attempting to handle multiple
tasks simultaneously, can tax cognitive resources and cause fatigue as the brain constantly
switches between tasks [45]. Information overload in our digital age, with constant streams
of information from smartphones, social media, and news outlets, can overwhelm the
brain, contributing to cognitive fatigue [46]. Fatigue and perceived stress have significant
negative effects on participants’ learning and cognitive performance [47].

Physical factors like dehydration, poor nutrition, and sedentary lifestyles also play a
role, as the brain relies on a steady supply of nutrients and oxygen for optimal function [48].
Certain medical conditions, including sleep disorders [49], chronic pain [50], neurological
disorders [51], and cancer-related fatigue, commonly observed in patients during and
after cancer treatments [52–54], can directly contribute to cognitive fatigue by impairing
the brain’s ability to function effectively. Medications and substances, such as certain
antidepressants [55], antihistamines [56], and alcohol [57], can have sedating or cognitive-
dulling effects, leading to mental fatigue [58]. Lifestyle choices, like excessive caffeine
consumption [59], irregular sleep patterns [49], and a lack of physical activity [60], can
disrupt the body’s natural rhythms, which can significantly impact cognitive function,
potentially leading to cognitive fatigue. Recognizing the various causes of cognitive fatigue
is essential for effective prevention and management. Addressing these causes often
involves lifestyle changes, stress management, improving sleep hygiene, and seeking
medical attention for underlying conditions when necessary. By identifying and mitigating
these factors, individuals can reduce the risk of cognitive fatigue and maintain optimal
cognitive function and overall well-being.

4. Measurement and Assessment Techniques
4.1. Physiological Indicators

Physiological markers provide measurable insights into the manifestation of cognitive
fatigue. Elevated levels of stress hormones, particularly cortisol, indicate a physiological
response to increased mental exertion. Fluctuations in heart rate variability, pupillometry
changes, and altered skin conductance reveal the autonomic nervous system’s intricate
adjustments during periods of cognitive fatigue. Additionally, variations in respiratory
rate, blood pressure, and muscle activity contribute to a comprehensive understanding of
the physiological changes associated with cognitive fatigue.
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4.1.1. Pupillometry

Pupillometry has evolved into a valuable tool for assessing cognitive and emotional
load that extends beyond its initial role in assessing responses to changes in light condi-
tions. As cognitive tasks become more demanding, the pupil’s size consistently increases, a
phenomenon observed across a diverse array of cognitive activities such as Stroop interfer-
ence tasks [61], information retrieval from memory [62], visual search [63], and cognitive
control [64], among others. Over the past two decades, there has been a resurgence of
pupillometry research driven by its cost-effectiveness and precision, as exemplified in
studies by [64–66].

Pupillometry was typically limited to controlled laboratory settings or specific scenarios
like simulated piloting and driving, requiring subjects to stay still with a restricted field
of vision due to potential eye-tracking system limitations [67]. Pupillometry is most
suitable for workplaces where employees predominantly sit [68]. However, the use of
head-mounted eye-tracking systems offers a promising path toward fully mobile mental
workload measurement [69]. Recent technological advancements have made this eye-
tracking method more compact by integrating eye-tracking cameras into eye-glass frames,
allowing researchers and practitioners to measure pupil size in mobile work settings where
individuals have freedom of movement [70].

Pupillometry has found applications in detecting cognitive fatigue during various
scenarios. Studies have shown increased pupil diameter in scenarios involving excessive
cognitive demands among drivers [67,69], air traffic controllers [71,72], and individuals
engaged in simulated piloting tasks [73].

4.1.2. Heart Rate Variability

Heart rate variability (HRV) has become a measure for evaluating fatigue because of its
connection to autonomic nervous system activity and its potential to reflect changes related
to cognitive fatigue [74]. HRV quantifies the variation in time intervals between heartbeats,
which indicates the activity of the system (ANS) [75]. It specifically measures the balance
between the sympathetic (fight-or-flight) and parasympathetic (rest-and-digest) branches
of the ANS [76,77]. When experiencing fatigue, there is usually an increase in sympathetic
activity and a decrease in parasympathetic activity, leading to reduced HRV. Therefore,
changes in HRV can provide insights into aspects of cognitive fatigue [78]. Research
has indicated that prolonged cognitive tasks or mental exertion can cause a decrease in
HRV [79].

Some studies indicate a decline in high-frequency (HF) power during episodes of
cognitive fatigue [80–82], signaling a dampening of parasympathetic activity. This decline
implies a transition towards sympathetic dominance, which correlates with the heightened
arousal and stress commonly observed during cognitive fatigue. On the other hand, certain
studies [82,83] have reported increased low-frequency (LF) power during cognitive tasks.
Elevated LF power is often associated with heightened sympathetic arousal, suggesting an
intensified physiological response to cognitive demands.

One of the advantages of using HRV as an indicator for assessing fatigue is its non-
invasive nature. Measuring HRV can be performed through methods such as electrocardio-
graphy (ECG) and photoplethysmography (PPG). Even using consumer-grade wearables
makes it easily accessible for both research purposes and practical applications [77].

Monitoring HRV in real-time makes it possible to assess individuals’ cognitive fatigue
levels during tasks. This allows for interventions at the time to optimize performance
and reduce the chances of making cognitive fatigue-related errors in different fields like
aviation, healthcare, and transportation [84,85]. Analyzing HRV can detect changes in
nervous system activity that may not be easily noticeable through other methods. This
sensitivity makes it valuable for identifying signs of fatigue before performance declines
significantly [86].

However, one important challenge in using HRV as an indicator for assessing fatigue is
the variation among individuals. People may have different baseline HRV levels, and their
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HRV responses to fatigue might vary. This creates difficulty in establishing HRV thresholds
for assessing fatigue. Additionally, factors like activity, stress levels, sleep quality, and
overall health conditions, apart from cognitive fatigue, can influence HRV. These factors
can complicate the interpretation of HRV data when evaluating fatigue [87].

4.1.3. Skin Conductance

Skin conductance, which measures the conductivity of the skin, has been studied as
a way to assess fatigue. It is also known as electrodermal activity (EDA) or galvanic skin
response (GSR) [88]. Skin conductance is primarily influenced by the activity of sweat
glands, which are controlled by the system’s sympathetic branch. When someone expe-
riences cognitive fatigue, changes in their nervous system activity can be seen through
skin conductance [89]. As cognitive fatigue sets in, the sympathetic nervous system be-
comes more active, resulting in increased sweat gland activity and higher levels of skin
conductance [90]. Research studies have demonstrated a correlation between skin con-
ductance and cognitive fatigue. For instance, studies conducted by Posada Quintero and
Chon [91] showed that prolonged computer tasks leading to fatigue were associated with
increased skin conductance levels.

Skin conductance provides real-time data that allow for the noninvasive assessment of
cognitive fatigue [85,92]. This can be especially valuable in high-stress environments like
aviation, healthcare, and emergency response situations. Skin conductance is a measure that
does not rely on self-reporting, reducing biases and improving the accuracy of assessing
cognitive fatigue. Measuring skin conductance is a non-intrusive method that participants
usually find comfortable, making it applicable in many different situations.

However, relying on skin conductance as an indicator for assessing fatigue has certain
limitations. It can be affected by stimuli beyond cognitive fatigue. Emotional arousal, stress,
and environmental factors can all influence skin conductance levels, which may lead to
misleading interpretations [93,94].

4.1.4. Cortisol Level

Scientists have examined indicators to evaluate cognitive fatigue, and one particular
candidate is cortisol, a hormone that is released in response to stress. Cortisol, which
is produced by the adrenal glands, plays a role in the body’s stress response system.
When we experience stress, cortisol levels increase to help us mobilize resources and deal
with the situation [47,95]. Long-term stress or extended periods of exertion have been
associated with changes in cortisol secretion, which has prompted investigations into its
connection with fatigue. Previous studies have indicated a correlation between levels
of cortisol and cognitive fatigue [47,96]. Engaging in prolonged tasks or being exposed
to situations often leads to an increase in cortisol production, potentially contributing to
mental exhaustion and a decline in cognitive performance. Research using stress-inducing
scenarios or continuous cognitive engagement has demonstrated an elevation in cortisol
levels, suggesting its association with fatigue [97].

When evaluating cortisol levels, it is typical to analyze parameters such as the cortisol
awakening response (CAR) or the area under the curve (AUC), which are calculated from
cortisol measurements taken at various points throughout the day [98–100]. Together, these
metrics contribute to a nuanced evaluation of the interplay between cortisol regulation,
stress, and cognitive function, aiding in the assessment of cognitive fatigue levels and their
impact on daily performance.

Cortisol levels provide a measure that is closely linked to our body’s response to
stress, offering a physiological basis for assessing cognitive fatigue. Furthermore, it can be
measured in real-time, enabling the evaluation of cognitive fatigue during tasks or when
facing stressful situations [101]. Unlike self-reports, measuring cortisol levels provides a
marker that reduces potential biases when assessing cognitive fatigue. However, there are
limitations to consider. Cortisol levels can differ greatly among individuals due to factors
like the body’s clock, age, and overall health status. This makes it difficult to establish
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thresholds for determining fatigue. Additionally, cortisol levels tend to vary throughout the
day. Stress-related spikes may not necessarily align with fatigue, potentially causing misin-
terpretation. Moreover, external factors such as caffeine consumption, physical activity, or
medications can also impact cortisol levels, further complicating the analysis [102].

4.1.5. Respiratory Rate

The rate at which we breathe, known as the respiratory rate, may be linked to fatigue.
Research has shown that when engaging in tasks, people tend to change their breathing
patterns. Long periods of activity often lead to an increase in rates as our bodies try to cope
with the heightened demands on our brains. This connection between the brain and the
respiratory centers in the brainstem means that changes in load can affect our breathing
patterns and vice versa. Additionally, individuals experiencing fatigue have been observed
to exhibit breathing patterns like an increased respiratory rate or irregular breathing. These
changes could potentially serve as indicators of the onset and progression of fatigue [103].
By monitoring our rate in time, we have a promising way of assessing cognitive fatigue
promptly and making necessary adjustments or interventions in tasks or environments to
minimize its impact [104].

The great thing about measuring the respiratory rate is that it does not need complex
methods; it can be easily performed using simple tools like wearable devices or sensors.
This accessibility allows for monitoring in multiple settings. Real-time data from measuring
the respiratory rate give us feedback so that we can intervene or make adjustments during
activities to prevent or alleviate cognitive fatigue effectively [105]. Unlike self-reported
measures, which are subjective, the respiratory rate provides an objective physiological
marker, reducing the potential biases associated with subjective assessments. However,
factors such as fitness, age, and environmental conditions can have an impact on respiratory
rate, which can make it difficult to associate it with cognitive fatigue directly. It is important
to note that an increased respiratory rate can be caused by factors other than cognitive
fatigue, such as physical exertion, stress, or medical conditions [106]. This means that we
should not rely solely on respiratory rate to indicate cognitive fatigue.

4.1.6. Blood Pressure

Various studies have shown a connection between blood pressure and cognitive fa-
tigue. It has been observed that fluctuations in blood pressure often occur alongside
episodes of fatigue. When we experience increased strain or prolonged mental exertion,
changes in both diastolic and systolic blood pressure levels have been recorded. Various
studies have revealed a link between cognitive demands and higher blood pressure, indi-
cating that changes in blood pressure might be an indicator of cognitive fatigue [107,108].
Moreover, engaging in tasks can activate the sympathetic nervous system, causing an
increase in blood pressure as a physiological response [109]. On the other hand, research
suggests that prolonged cognitive fatigue may lead to increased blood pressure due to
exhaustion and reduced physiological arousal [16,27]. This two-way relationship between
fatigue and blood pressure highlights the potential of using blood pressure as an indicator
to assess fatigue [110].

Using blood pressure as an index for assessing fatigue offers significant advantages.
Its non-invasive measurement allows for regular monitoring and provides real-time data
during tasks or activities. This immediate feedback enables interventions or breaks to
manage cognitive fatigue. Furthermore, blood pressure serves as an indicator of one’s state,
ensuring impartial measurements and providing a quantitative framework to evaluate lev-
els of cognitive fatigue. However, using blood pressure to gauge fatigue has its limitations.
It may be influenced by factors such as stress or physical exertion, which can complicate
the interpretation [107]. Additionally, individual variations in responses and changes in
the timing of blood pressure in relation to cognitive fatigue symptoms present challenges
in determining universal thresholds and precise assessment [110,111]. To address these
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limitations and improve the accuracy of fatigue evaluation tools, it is crucial to incorporate
other markers alongside blood pressure measurements.

4.1.7. Muscle Activity

Research has shown that there is a connection between increased effort and muscle
tension, especially in the upper body. When we engage in tasks that require demand, our
muscles tend to become tenser, highlighting the close relationship between our cognitive
and physiological systems [112]. Studies using electromyography (EMG) have demon-
strated increased muscle activity during demanding tasks, suggesting a potential link
between cognitive load and muscular response. Moreover, prolonged mental engagement
has been associated with muscle fatigue, which can be detected through signal changes.
This suggests that as we experience fatigue, changes in muscle activity patterns may serve
as an indicator of exhaustion, offering a way to assess cognitive fatigue indirectly by
measuring muscle activity [113].

By using muscle activity as an indicator to assess fatigue, we can gain insights into
the physical manifestations of mental tiredness without relying solely on subjective self-
assessment [114]. Real-time monitoring of muscle activity provides information that allows
for interventions to alleviate cognitive fatigue. Additionally, combining muscle activity
data with reports enhances our understanding of the relationship between physiological
responses and cognitive exhaustion on a more comprehensive level [115]. However, it is
important to note that interpreting patterns of muscle activity requires knowledge of elec-
tromyography, which limits its applicability without expertise for accurately deciphering
complex physiological data.

Moreover, there are diverse ways in which muscles respond to individuals’ difficulties
when trying to establish accepted standards for evaluating cognitive fatigue. This can result
in variations in how fatigue levels are interpreted among people. Furthermore, the impact
of factors like exertion or emotional stress on muscle activity, which goes beyond fatigue,
and the presence of physical fatigue add further complexities and potential variables that
need to be considered during the assessment process [42].

4.2. Behavioral Indicators

Behavioral markers provide observable signs that offer insights into the behavioral
consequences of cognitive fatigue. Indicators of cognitive fatigue include delayed reaction
times, reduced accuracy, extended task completion, microsleep episodes, and repetitive
behaviors. Self-reported fatigue scores provide subjective information on an individual’s
feelings of exhaustion and mental weariness. Furthermore, microsleep episodes, which
are defined as brief periods of unplanned and unrecognized sleep, are widespread during
cognitive fatigue, impacting attention and performance. Repetitive behaviors, such as
tapping fingers or making the same mistakes, frequently emerge as the mind attempts to
maintain focus and effectively deal with cognitive demands.

4.2.1. Reaction Time

Reaction time, which refers to the time it takes for a person to respond after being
presented with a stimulus, is closely connected to our processes. Research suggests that en-
gaging in prolonged activities can result in fatigue, leading to changes in reaction time [116].
Cognitive fatigue often presents itself in reaction times, indicating a delayed or impaired
ability to process information due to mental exhaustion [117]. Studies have found a link
between increased fatigue and longer reaction times across various tasks like attention,
memory, decision-making, and motor responses [6]. For example, individuals experienc-
ing fatigue may exhibit delayed responses when it comes to tasks that require sustained
attention or complex decision-making, highlighting the impact of fatigue on our thinking
abilities [118].

Using reaction time as an indicator for assessing fatigue offers advantages. Firstly,
measuring reaction time is relatively simple and non-invasive, making it convenient for
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both lab-based research and real-world settings. Additionally, because reaction time is
sensitive to changes caused by fatigue, researchers and professionals can track changes in
performance over time and take early measures when needed [119]. Furthermore, analyzing
reaction time provides data that allow for comparisons between individuals and different
experimental conditions. This quantitative aspect helps make assessments of fatigue more
objective and aids in establishing evaluation methods across different populations and
contexts [113,120].

However, despite how useful it is, using reaction time as a way to assess fatigue has
its limitations. First and foremost, reaction time alone may not solely indicate fatigue; other
factors, like motivation, arousal levels, and individual differences, can also impact reaction
time, which could potentially complicate the interpretation of results [120]. Additionally,
while reaction time does capture changes in how our brains process information, it might
not fully capture the aspects of cognitive fatigue, such as personal experiences or specific
areas of thinking that are affected [119]. This limitation emphasizes the importance of
an assessment that considers measures in order to gain a well-rounded understanding of
cognitive fatigue.

4.2.2. Accuracy

The relationship between accuracy and cognitive fatigue is quite complex. Research
suggests that as fatigue increases, accuracy tends to decrease. This is because fatigue can
negatively impact attention, working memory, decision-making abilities, and reaction
times. As a result, tasks that require engagement may be prone to errors and reduced
accuracy [28,121]. As we become mentally exhausted, we tend to make errors, have lapses
in judgment, and struggle with accuracy when completing tasks. Various studies using tasks
like reaction time tests, memory assessments, and decision-making exercises consistently
demonstrate that errors rise as fatigue accumulates [122,123]. A study conducted by Boksem
and his colleagues [124] found that prolonged cognitive tasks led to decreased accuracy
due to increased fatigue. Similarly, research on the effects of sleep deprivation by Van
Dongen et al. [125] demonstrated a decline in accuracy across tasks. These studies highlight
a connection between fatigue and diminished accuracy.

Using accuracy as an indicator for assessing fatigue offers advantages. Firstly, it
provides a quantifiable measure that allows for evaluation across different individuals
and cognitive tasks [126]. This objectivity enhances comparability and consistency when
evaluating performance, enabling researchers and professionals to track changes over time
or compare interventions. Additionally, accuracy often serves as a warning sign of fatigue,
allowing for timely interventions and adjustments to mitigate its impact. Monitoring real-
time accuracy levels during tasks provides a way to proactively address fatigue, potentially
preventing more significant declines in performance [123].

Relying only on accuracy to assess fatigue has its limitations, despite its usefulness.
The context in which tasks are performed can greatly affect accuracy, with task complexity,
novelty, and familiarity skewing interpretations of fatigue levels. Furthermore, individual
differences in performance can complicate the establishment of a threshold for assessing
fatigue based on accuracy. Contextual factors like stress, environmental conditions, and task
complexity can also independently affect error rates, introducing confounding variables
that make it difficult to attribute changes to cognitive fatigue [127]. Managing these factors
becomes crucial for interpreting error rates when assessing cognitive fatigue.

4.2.3. Task Completion Time

Task completion time often correlates with cognitive fatigue levels. Prolonged engagement
in cognitive tasks can lead to reduced attention, impaired decision-making, and slower
information processing, ultimately elongating the time required to complete tasks. Studies,
such as those employing reaction time tests or complex cognitive tasks, have shown a
direct association between increased cognitive fatigue and prolonged task completion
time [43]. Moreover, cognitive fatigue adversely affects executive functions, memory, and
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attentional resources, impacting task efficiency. As cognitive fatigue escalates, individuals
may experience diminished cognitive abilities, leading to errors, decreased accuracy, and a
heightened need for breaks during task execution. These factors collectively contribute to a
lengthened task completion time [128,129].

Task completion time serves as an objective measure, offering a quantifiable metric
that enables straightforward comparisons across individuals and tasks. Moreover, its
cost-effectiveness and non-invasive nature make it easily implementable in various set-
tings, enabling continuous monitoring of cognitive fatigue without significant resource
investment [130]. However, the multifaceted nature of cognitive fatigue poses challenges.
Task completion time alone is an incomplete indicator of cognitive fatigue, as it can be
affected by factors such as emotional state, sleep quality, and individual differences. Ad-
ditionally, the dependency of task completion time on the nature and complexity of tasks
introduces variability, making it challenging to use as a universal index for cognitive fatigue.
Furthermore, external factors like motivation or environmental distractions can confound
the accuracy of task completion time as a sole measure of cognitive fatigue, limiting its
reliability [131]. Considering these limitations, integrating task completion time within a
comprehensive framework may enhance its utility in assessing cognitive fatigue.

4.2.4. Self-Reported Fatigue Scales

Self-reported measures of fatigue have the potential to be tools for assessing fatigue,
but it is important to examine their effectiveness, advantages, and limitations thoroughly.
These measures, such as the Multidimensional Fatigue Inventory (MFI) [132–134], Fatigue
Severity Scale (FSS) [135–137], and Visual Analog Scale (VAS) [138], aim to capture expe-
riences of fatigue that encompass mental and emotional aspects. These scales correlate
with cognitive fatigue due to their ability to capture perceived tiredness, mental weariness,
and decreased motivation, all of which are components of cognitive fatigue. Research has
shown correlations between scores on self-report measures of fatigue and performance
on tasks, suggesting that self-report measures could be useful as indicators of cognitive
fatigue [139].

One advantage of self-report measures is their accessibility and ease of use, making
them suitable for application in multiple research settings. They provide insights into an
individual’s experience by capturing dimensions of fatigue, including its cognitive aspects,
that may not be evident through objective measures alone. Moreover, these measures allow
for the tracking of fatigue levels over time, which can help evaluate the effectiveness of
interventions or treatments. However, relying on perceptions introduces variability due
to differences in how people report and perceive their own fatigue levels. This subjective
nature presents difficulties when it comes to ensuring accuracy and dependability, which
can have an impact on the reliability of assessments. Additionally, the absence of specific
indicators for fatigue and reliance on individuals’ feelings on self-reported scales restrict
their precision and validity. External factors like mood, motivation, and contextual influ-
ences can also introduce bias in self-reporting, potentially leading to inaccuracies in fatigue
evaluations [140,141].

4.2.5. Microsleep Episodes

Episodes of microsleep, which are involuntary periods of sleep lasting from a fraction
of a second to seconds, have been linked to cognitive fatigue [142]. These episodes are often
characterized by lapses in attention and awareness. Research indicates that individuals who
experience fatigue are more prone to experiencing microsleep, especially when engaging in
prolonged tasks that require sustained attention [143]. On the other hand, cognitive fatigue
is associated with feelings of tiredness, reduced motivation, and impaired cognitive abili-
ties [144,145]. Studies have shown that cognitive fatigue can negatively impact attention,
memory, decision-making, and reaction times [42]. The occurrence of episodes aligns with
these impairments, suggesting a possible connection between the two phenomena.



Technologies 2024, 12, 38 11 of 25

Microsleep episodes provide a measurable way to assess fatigue. They give data about
the frequency and duration of attention lapses, which allow for the monitoring and early
detection of cognitive decline [146]. Detecting microsleep in time also provides feedback,
helping to identify critical periods of fatigue. This valuable insight can lead to interventions
that prevent errors or accidents in safe environments [147]. However, relying on episodes
to assess cognitive fatigue has limitations. Contextual factors like task characteristics and
environmental conditions can influence the occurrence of microsleep, making it challeng-
ing to differentiate between fatigue-related episodes and those caused by other factors.
Subjective interpretation is also a drawback when using technologies that require judgment
to distinguish between microsleep and momentary lapses in attention [148,149].

4.2.6. Repetitive Behaviors

Repetitive actions cover a range of behaviors that people often engage in, such as
pacing, tapping fingers, or following rituals. These behaviors are commonly seen as
coping mechanisms when dealing with stress, anxiety, or cognitive overload. Research has
shown a link between the occurrence of actions and cognitive fatigue. When individuals
experience fatigue, they may resort to actions as a way to regulate themselves or handle
the overwhelming mental demands. This suggests that repetitive behaviors can be used as
an indicator to assess someone’s state [150].

There are advantages to using repetitive behaviors as a potential measure of cognitive
fatigue. Firstly, they provide a measurable aspect that allows for observation and recording,
enhancing objectivity in assessment. This tangibility makes it easier for clinical practitioners
and researchers to measure and evaluate behaviors consistently [151]. Additionally, these
behaviors often occur before obvious signs of fatigue appear, providing an opportunity for
early detection and intervention. This system for detection could help provide support
and strategies to minimize the impact of mental exhaustion on a person’s daily function-
ing. Additionally, since repetitive behaviors can be easily observed in situations and age
groups without methods, they offer a relatively convenient and cost-effective way to assess
cognitive fatigue.

However, there are limitations to using behaviors as an indicator for assessing cogni-
tive fatigue. One significant challenge is the nature of interpreting these behaviors. The
definition of what qualifies as a behavior and its intensity may vary among individuals,
cultural backgrounds, and contexts, which can lead to variations in assessment results.
Moreover, while repetitive behaviors can indicate fatigue, they are not specific enough
because factors like anxiety or habitual tendencies can also cause these behaviors. This lack
of specificity raises concerns about attributing these behaviors to cognitive fatigue, which
could potentially lead to misinterpretations during assessments. Additionally, contextual
variations in how repetitive behaviors manifest complicate their interpretation; therefore, it
is crucial to consider cultural factors and individual differences when developing assess-
ment protocols [151,152].

5. Neurophysiological Approaches

Neurophysiological approaches are pivotal in the realm of cognitive neuroscience,
particularly in unraveling the complex dynamics of cognitive fatigue. These methods
provide an invaluable window into the brain’s functioning, revealing the intricate patterns
of neural activity that underpin mental exhaustion. Among the most prominent techniques
in this field are electroencephalography (EEG), functional magnetic resonance imaging
(fMRI), and functional near-infrared spectroscopy (fNIRS), each offering unique insights
into how our brains respond to prolonged cognitive demands. This section delves into the
contributions of these methodologies, shedding light on their effectiveness in detecting and
understanding the neurophysiological underpinnings of cognitive fatigue.

Recent studies indicate that the neural mechanisms driving mental fatigue during
cognitive tasks are more complex than previously believed, challenging the traditional
understanding that mental fatigue arises solely from diminished activity in brain regions
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relevant to the task. Accumulating evidence suggests the existence of mental facilitation and
inhibition systems, which intricately modulate cognitive task performance by regulating
the activity of task-relevant brain regions. These systems are essential components of the
neural mechanisms underlying mental fatigue, significantly influencing cognitive task
execution [153].

EEG stands as a pivotal tool in cognitive fatigue research, offering real-time insights
into brain activity alterations due to fatigue. This technique measures the brain’s electrical
activity, with a particular focus on fluctuating patterns within specific frequency bands.
EEG signals provide fundamental information about brain states and cognitive function,
where the analysis of different frequency bands in the EEG can reveal insights into alertness,
attention, workload, and emotion [154]. Research indicates that cognitive fatigue manifests
as distinct changes in these frequencies: a notable increase in theta waves (4–7 Hz) and a
concurrent decrease in alpha waves (8–12 Hz). These alterations are considered biomarkers
of mental fatigue and cognitive strain. For instance, theta waves, commonly associated with
drowsy or meditative states, tend to escalate as the brain struggles with prolonged cognitive
demands. Conversely, alpha waves, which are linked to a relaxed but alert state, diminish,
reflecting a reduction in cognitive vigilance. Studies have consistently shown that cognitive
fatigue is marked by specific alterations in these frequencies, such as increased theta and
decreased alpha activities, which are indicative of mental strain and exhaustion [155].

Studies using EEG have shown varying impacts of mental fatigue on the central ner-
vous system. For example, Li et al. [156] found that mental arithmetic tasks induce mental
fatigue, with the alpha frequency band’s division into alpha1 and alpha2 being crucial in
fatigue studies. Different types of mental fatigue produced different alterations of the EEG
variables, such as beta, alpha, and theta power densities on various electrodes. These alter-
ations reflected the deterioration of multi-modal and high-level information processing in
the brain due to mental fatigue [157]. Additionally, Trejo et al. [158] demonstrated that EEG
could track mental fatigue development over time, with theta and alpha power increases
correlating with mood and behavioral changes. A study by Wang et al [159] developed
a real-time EEG-based system for detecting cognitive fatigue while driving. The system
used power spectrum density (PSD) and sample entropy (SE) methods to detect cognitive
fatigue in real-time.

fMRI, known for its high spatial resolution, is a tool that tracks brain activity by detect-
ing changes associated with blood flow. It has proven particularly effective in identifying
brain regions most affected by cognitive fatigue, as it can observe reduced activity in the
fronto-parietal network during prolonged cognitive tasks, indicating fatigue [7].

fNIRS is a non-invasive optical brain monitoring technique that measures blood
oxygenation changes, similar to fMRI. fNIRS estimates the concentration of hemoglobin
from changes in the absorption of near-infrared light, allowing the measurement of cortical
hemodynamic activity [160]. It offers the advantage of being less restrictive and more
suitable for real-time monitoring compared to EEG and fMRI. However, it has a lower
spatial resolution and limited depth of recording. Moreover, the effectiveness of the
method is constrained by inherent variations among individuals. For instance, data quality
is inherently lower for individuals with thick, dark hair compared to those who are bald.
Similarly, variations in skin pigmentation, influencing light penetration through the skin,
can result in systematic differences in data quality. Despite this, fNIRS is a promising tool
for multimodal imaging studies, as it can be easily combined with other imaging modalities
like fMRI and EEG to capitalize on the strengths of each method [161]. This study [162]
highlights how fNIRS can be effectively used to assess mental workload and fatigue in
operational settings. A system combining fNIRS with EEG has been developed to measure
cognitive fatigue in pilots during both flight simulation and actual flight, utilizing metrics
such as the EEG engagement ratio and wavelet coherence fNIRS-based metrics to classify
fatigue levels [163].

Research suggests that functional connectivity among various brain regions, including
the striatum of the basal ganglia, the dorsolateral prefrontal cortex (DLPFC), the dorsal
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anterior cingulate cortex (dACC), the ventro-medial prefrontal cortex (vmPFC), and the
anterior insula, varies with the levels of cognitive fatigue. For instance, a study by Wylie
et al. [164] found that as cognitive fatigue increased, functional connectivity between these
regions and other frontal areas decreased, while connectivity with more posterior regions
increased. Furthermore, the striatum, DLPFC, insula, and vmPFC were identified as central
nodes or hubs within the fatigue network.

Together, these studies showcase the evolution and current capabilities of neurophysi-
ological techniques for detecting cognitive fatigue. Comparing EEG, fMRI, and fNIRS, each
method presents unique advantages and limitations in cognitive fatigue research. EEG
offers real-time monitoring of brain activity, making it ideal for dynamic or longitudinal
studies. However, its spatial resolution is limited compared to fMRI. In contrast, fMRI
provides detailed spatial mapping of brain activity, which is essential for localizing specific
brain regions affected by fatigue. Nonetheless, fMRI is less suited for real-time or long-
duration monitoring due to its restrictive nature and susceptibility to movement artifacts.
fNIRS strikes a balance, offering portability and the capability for real-time monitoring,
though its spatial resolution and depth of penetration are inferior to fMRI.

6. Machine Learning and AI

Cognitive fatigue detection is a multidisciplinary field that benefits significantly from
the integration of machine learning and artificial intelligence (AI) techniques. These tech-
nologies provide the foundation for developing predictive models and systems that can
effectively monitor and detect cognitive fatigue. In this section, we explore the various
ways in which machine learning and AI have been employed in this context and provide
examples of specific models and techniques.

The analysis of electroencephalography (EEG) signals is a popular method for detect-
ing cognitive fatigue. The integration of EEG with advanced machine learning techniques,
especially deep learning approaches, has demonstrated considerable promise in this realm.
A study of particular note employed a long short-term memory (LSTM) network—a variant
of recurrent neural networks—to analyze EEG signals for predicting cognitive load [165].
This methodology surpassed the performance of other machine learning models such as ran-
dom forest, AdaBoost, support vector machine, and extreme gradient boosting, attaining a
remarkable accuracy of 87.1% in cognitive load recognition. In a separate investigation, EEG
signals were coupled with convolutional neural networks (CNNs) to detect cognitive fa-
tigue among construction workers [166]. Another significant study highlighted the efficacy
of machine learning algorithms, particularly random forests, in conjunction with functional
near-infrared spectroscopy (fNIRS) data. This approach successfully classified four levels
of cognitive workload with an exceptional accuracy rate of approximately 99.99% [167].
Additionally, the application of CNNs in conjunction with EEG data has proven effective in
identifying mental fatigue during language comprehension tasks, especially when combin-
ing frequency and entropy features [167]. These recent studies collectively underscore the
prevalent use of EEG signals and machine learning for identifying or classifying cognitive
fatigue and mental load across various domains. However, this field is not without its
challenges. Key issues include the need for artifact removal from EEG data and the limita-
tions posed by dataset sizes. Despite these hurdles, the synergy of EEG data and machine
learning techniques has consistently shown its effectiveness in detecting and classifying
cognitive fatigue.

The utilization of machine learning techniques to analyze eye movement and pupil di-
lation has emerged as a reliable method for detecting cognitive fatigue. Extensive research
has been conducted in this domain, particularly in identifying cognitive fatigue or mental
load through eye-tracking integrated with machine learning methodologies [168,169]. A
noteworthy study in this area applied pupillometry alongside machine learning techniques,
such as classification methods and convolutional neural networks (CNNs), to evaluate the
cognitive workload of ultrasound operators. This was achieved by observing variations
in pupil diameter during routine scans, which correlated with the complexity of ultra-
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sound tasks and the operator’s level of expertise [170]. Another significant research effort
employed machine learning algorithms, including k-nearest neighbors (KNN), random
forest, and multilayer perceptron (MLP), to gauge cognitive workload intensities. This
study leveraged eye-tracking data collected during a digit symbol test. The findings en-
hanced our understanding of brain functionality and mental fatigue, improved the quality
of classifications with a reduced set of features, and offered insights into different levels
of cognitive workload [171]. Additionally, a recent publication introduced COLET, an
eye-tracking dataset designed for cognitive workload estimation. This study analyzed eye
movements from 47 individuals engaged in tasks of varying complexity and employed ma-
chine learning for predicting workload levels. It revealed notable impacts of multitasking
and time pressure on eye movement characteristics and achieved an accuracy of up to 88%
in estimating workload levels [172].

Apart from EEG signals and eye movement, a fusion of physiological sensors and
behavioral biometrics has been used to detect or classify cognitive fatigue. To obtain a more
holistic perspective on cognitive fatigue, researchers have explored the fusion of data from
various physiological sensors. Electrocardiogram (ECG), electrodermal (EDA), and elec-
tromyography (EMG) sensors provide valuable input. Machine learning and deep learning
techniques like random forest, gradient boosting, and long short-term memory (LSTM) net-
works are then used to fuse and analyze these multimodal data, offering a comprehensive
view of the user’s cognitive state [173–176]. Behavioral biometrics, specifically keystroke
dynamics, have shown promise in identifying cognitive fatigue. Machine learning models
can analyze changes in typing patterns, providing an indirect but informative indicator of
the cognitive state [177,178].

Recognizing the emergence of immersive virtual reality (VR) in the realm of cognitive
fatigue detection is paramount, as it offers a unique platform for conducting controlled
experiments, enabling researchers to simulate various cognitive tasks and environmental
conditions. Research conducted by Siravenha et al. [179] employed a residual multilayer
perceptron (MLP) network known as ResMLPNet to evaluate its efficacy in the intricate task
of classifying mental fatigue from cognitive electrophysiology data. The data were gathered
during VR training sessions designed to replicate real-world scenarios encountered by
excavator operators in the mining industry. In their study [180], Kamińska et al. developed a
data acquisition protocol involving alternating sequences of relaxing and stressful scenarios
presented via a VR interactive simulation. Following this, stress levels were classified using
a convolutional neural network (CNN), and the classification performance was compared
with that of traditional machine learning algorithms.

These examples illustrate the versatility of machine learning and AI techniques in
the context of cognitive fatigue detection. Table 1 provides a comprehensive summary of
machine learning techniques and their associated features utilized in cognitive fatigue de-
tection over the last decade. It outlines their individual accuracies, the features utilized, and
the classification methods applied, providing insights into the methodologies employed.
The selection process involved considering techniques that have been utilized frequently
or cited prominently in the literature, as well as those that have demonstrated promising
results in cognitive fatigue detection tasks. While each method has its unique strengths and
limitations, the integration of these approaches is crucial for developing comprehensive
systems for real-time cognitive fatigue assessment. It is essential to note that the cited
research articles represent only a fraction of the vast body of work in this field, emphasizing
the growing importance and potential of AI-driven cognitive fatigue detection.
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Table 1. Cognitive fatigue detection techniques.

Ref Features Method Avg. Acc

Li et al. [181] Single-channel-based EEG signals Deep belief network (DBN) 98.86%

Mu et al. [182] EEG signals based on combined
entropy features Support vector machine (SVM) 98.8%

Savas et al. [183] Facial features (eye and mouth
openings) Convolutional neural network (CNN) 98.81%

Ansari et al. [184] Angular acceleration of head
collected from MT sensor

Coarse decision tree (CDT)
RUSBoostedTrees (RT)
Coarse k-nearest neighbor (Coarse kNN)
Gaussian kernel-based SVM (GSVM)
Long short-term memory (LSTM)
Rectified linear unit layer-based bidirectional long
short-term memory (reLU-BiLSTM)

63.55%
67.37%
73.2%
73.55%
90.15%

97.83%

Hu et al. [185] EEG signals AdaBoost 97.5%

Wang et al. [186] EEG signals Pulse-coupled neural network (PCNN) 97%

Zorzos et al. [187] EEG signals Time-frequency (TF) features + CNN 97%

Cos et al. [188] EDA, ECG, and respiration rate Random forest (RF) 96%

Butkevivciute
et al. [189] ECG signals

Linear discriminant analysis (LDA)
Support vector machine (SVM)
Decision tree (DT)
K-nearest neighbor (KNN)
Random forest (RF)

76.82%
90.89%
92.31%
94.19%
95.08%

Zhang et al. [78] EEG and HRV
Linear discriminant analysis based on Mahalanobis
distance (MDBC)
Support vector machine (SVM)

80%

91%

Wang et al. [190] Respiratory signals Convolutional neural network (CNN)
Long short-term memory (LSTM)

77.29%
89.16%

Wang et al. [166] EEG signals Continuous wavelet transform (CWT) + CNN 88.85%

Karim et al. [191] Individual spectral components
extracted from raw EEG data

One-dimensional CNN (1D-CNN)
Recurrent neural network (RNN)
Long short-term memory (LSTM)
A compact convolutional network (EEGNet)

63.62%
65.53%
70.81%
88.17%

Ramírez-Moreno
et al. [192] EEG, HR, HRV, and EDA Multiple linear regression (MLR) 88%

Jaiswal et al. [193] fMRI data Encoder (CNN + LSTM) + linear
Self-supervised + Fine-tuning

74.35%
86.84%

Mu et al. [194] EEG signals Support vector machine (SVM) 85%

Jaiswal et al. [176] EEG, ECG, EDA, and EMG

Logistic regression (Log Reg)
Support vector machine (SVM)
Random forest (RF)
Long short-term memory (LSTM)

60.4%
70.3%
74.5%
84.1%
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Table 1. Cont.

Ref Features Method Avg. Acc

Li et al. [195] Eye movement data (blink behavior,
pupil measure, gaze point)

K-nearest neighbor (KNN)
Boosted tree (BT)
Decision tree (DT)
Linear discriminant analysis (LDA)
Support vector machine (SVM)

69.42%
75.37%
81.15%
81.62%
82.47%

Pavel et al. [196] Keypoints extracted from Gait Cycle

Multilayer perceptron (MLP)
Long short-term memory (LSTM)
Recurrent neural network (RNN)
One-dimensional CNN (1D-CNN)
1D-CNN + fully connected layer (FC)

54.81%
58.24%
63.1%
67.5%
81.64%

Chai et al. [197] EEG Signals Fuzzy particle swarm optimization with cross
mutated artificial neural network (FPSOCM -ANN) 80.51%

Zadeh et al. [198] fMRI data
Convolutional neural network (CNN)
Linear regression (with softmax layer)
Logistic regression (Log Reg)

34%
67%
73%

7. Research Gaps and Future Directions

Despite progress in cognitive fatigue detection, several research gaps hinder practical
implementation. Cognitive fatigue arises from a complex interplay of factors, encompass-
ing physical, social, environmental, and emotional influences [199]. While research has
explored individual features like heart rate [200,201], eye movement [202], and EEG sig-
nals [203,204], a holistic approach integrating diverse features remains elusive. Datasets like
Cogbeacon [205] showcase the multi-faceted nature of fatigue, but pinpointing individual
triggers proves challenging due to inter-personal differences. This complexity necessitates
sophisticated analysis techniques to disentangle and prioritize relevant features for robust
fatigue detection.

Current fatigue detection often relies on bulky sensors like EEG headsets or eye-
tracking glasses [163,206]. Such tools often restrict applicability to controlled lab settings,
limiting real-world feasibility. Recent advancements in miniaturized sensors and wearables
have shown promise [189,207], but challenges remain in balancing data quality with user
comfort. Furthermore, the precision and reliability of identifying cognitive fatigue through
wearables are lower compared to the detection of physical fatigue, primarily due to the
influence of concurrent factors like emotions or exercise [105]. Research should prioritize the
development of unobtrusive, portable sensing systems that capture diverse physiological
and behavioral markers seamlessly during daily activities. Furthermore, cognitive fatigue
manifests differently across contexts. Repetitive tasks like assembly lines induce distinct
fatigue patterns compared to complex decision-making in high-risk environments like
aviation [208,209]. This variability demands context-aware fatigue detection models that
adapt to various task demands and environmental factors. Future research needs to address
this challenge by building scenario-specific models trained on data collected in real-world
settings representing diverse occupations and activities.

Exploring the integration of data from diverse sources, including physiological, behav-
ioral, and environmental inputs, through the application of machine learning algorithms
facilitates the creation of a comprehensive overview of individual fatigue states. This
approach offers a more nuanced understanding by combining various data streams. In
the realm of personalized fatigue models, the development of adaptive models becomes
crucial to account for inherent differences in individuals’ responses to fatigue. By tailoring
interventions based on personal sensitivities and fatigue profiles, these models enhance
the effectiveness of fatigue management strategies, recognizing and addressing the unique
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needs of each individual. Efficient fatigue detection systems should be designed to consider
the broader context of user activity, environmental factors, and task demands. This con-
textual awareness enables the provision of accurate and timely fatigue alerts, taking into
account the specific circumstances influencing an individual’s cognitive state. Emphasizing
research on miniaturized, wearable sensors is pivotal for unobtrusive fatigue monitoring.
These sensors aim to seamlessly integrate into daily life, facilitating continuous and non-
invasive monitoring of fatigue. The unobtrusive nature of these technologies enhances user
compliance and allows for more naturalistic data collection.

Addressing the identified research gaps requires collaborative efforts across various
disciplines, including neuroscience, computer science, engineering, and human factors
psychology. Bridging these interdisciplinary gaps is crucial for advancing the development
of robust, personalized, and context-aware cognitive fatigue detection systems. Ultimately,
such systems have the potential to enhance safety, productivity, and overall well-being
across diverse populations and scenarios.

8. Limitations of the Study

This survey on cognitive fatigue detection faces several limitations inherent to its scope
and methodology. Given the vastness of the field, it is challenging to encompass every study
or aspect comprehensively, potentially resulting in overlooked or omitted methodologies.
Moreover, the survey may exhibit bias towards published research, potentially excluding
relevant but unpublished studies or gray literature. Variability in the quality and reliability
of included sources, such as small sample sizes or subjective measures, could impact
the survey’s conclusions. Additionally, temporal constraints may limit the survey to
studies published up to a certain date, potentially missing recent developments. Lastly,
generalized interpretations of findings from individual studies may overlook nuanced or
context-specific factors crucial to fully understanding cognitive fatigue detection.

9. Conclusions

In conclusion, cognitive fatigue stands as a pervasive and impactful aspect of modern
life, gradually diminishing mental resources and affecting energy, motivation, and con-
centration. Linked to reductions in various executive functions, cognitive fatigue poses
challenges to sustaining focus and optimal performance. The classification of cognitive
fatigue, both subjectively and objectively, provides a nuanced understanding through
trait and state components. The intersection of psychology, neuroscience, and technology
has given rise to cognitive detection techniques, offering a profound window into the
complexities of the human mind. These evolving methodologies, fueled by cutting-edge
technologies, hold immense potential to enhance our comprehension of cognitive processes
and contribute to well-being, productivity, and overall cognitive advancement in various
domains of life. The integration of these techniques into daily life marks a promising
journey toward unlocking new dimensions of human potential.
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