Empowering Government Efficiency Through Civic Intelligence: Merging Artificial Intelligence and Blockchain for Smart Citizen Proposals
Abstract
:1. Introduction
- CI capacity framework components: knowledge, motivation, system capital, relational capital, and tangible assets through distributed ledger technologies;
- Multilevel participation theory through an AI-driven multi-agent architecture;
- Social capital formation principles via Git-inspired branching logic for proposal management.
2. Theoretical Framework
2.1. Theoretical Background
- Participation level theory [30] to inform the design of engagement mechanisms;
- Scaling civic participation through blockchain-based governance structures;
- Optimizing engagement efficiency through AI-driven process automation;
- Implementing sustainable incentive mechanisms for civic participation.
- Resource barriers (recessive factors): Time and cost constraints that limit sustained participation;
- Access barriers (exclusive factors): Technical or physical limitations preventing citizen involvement;
- Trust barriers (inclusive factors): Concerns about accountability, privacy, and data security.
2.2. Current Challenges
2.3. Research Contributions
- We formulate an analytical framework to quantify and evaluate civic participation mechanisms, introducing metrics for engagement quality, decision-making efficiency, and community impact.
- We develop an integrated architecture that combines AI-driven policy optimization with blockchain-based governance, establishing a theoretical foundation for tokenized civic engagement platforms that ensure sustainable participation through incentive mechanisms.
- We propose a practical implementation model for CI-based governance, orchestrating smart citizen participation through transparent, decentralized decision-making processes while maintaining system efficiency.
3. System Architecture of CI Governance
3.1. Consensus and Distribution
3.2. Civic Intelligence Metrics
3.3. Theory–System Integration
3.3.1. CI Framework Components Mapping
- (1)
- A web DApp for browser-based access and interaction;
- (2)
- A mobile DApp for on-the-go participation;
- (3)
- An API gateway enabling third-party service integration.
- (1)
- A base agent service handling citizen inputs and activity logging;
- (2)
- An expert agent service for workflow optimization and proposal analysis;
- (3)
- A broker agent service managing consensus and decision execution.
- (1)
- A token management service handling three token types:
- ERC-721 ID tokens for digital citizenship proof;
- Stable coins pegged to local currency;
- DAO tokens for governance participation.
- (2)
- DAO governance service managing proposals and voting;
- (3)
- Oracle services connecting off-chain data and AI computations.
- (1)
- Ethereum-based smart contracts for governance logic;
- (2)
- Layer-2 solutions for economical scaling;
- (3)
- IPFS integration for decentralized storage.
3.3.2. Participation Theory Implementation
- Consultation level: implemented through the basic DAO token voting mechanism, allowing citizens to provide input on proposed initiatives;
- Active participation: enabled via the Git-inspired branching system where citizens can create and modify proposals;
- Co-creation level: achieved through the integration of AI agents and smart contracts that facilitate collaborative policy development.
- Crowdsourced resource allocation via stable coin mechanisms;
- Consensus building through the multiagent AI architecture;
- Decision execution tracking via blockchain’s immutable ledger.
3.3.3. Social Capitalization Comparison Framework
3.3.4. Barrier Resolution Through Technical Solutions
- Immutable record keeping through blockchain ledger;
- Real-time proposal tracking via IPFS storage;
- Automated audit trails through smart contracts.
- Mult-language support through AI agents;
- Layer-2 solutions reducing transaction costs;
- Mobile-first DApp interfaces.
- Gas optimization for reduced operational costs;
- Automated proposal categorization reducing manual effort;
- Incentivization through DAO token rewards.
- (1)
- maintaining system efficiency () and
- (2)
- minimizing processing delays () [35].
3.4. Implementation Analysis
3.4.1. Efficiency Comparison in Municipal Decision Making
3.4.2. Scalability Challenges in Regional Governance
3.4.3. Cost Efficiency in Large-Scale Implementation
4. Discussion
4.1. Recommendations
4.2. Research Contributions and Implications
4.3. Practical Implications
5. Conclusions
5.1. Study Limitations
5.2. Future Research Directions
- i.
- Development of adaptive gas optimization algorithms to maintain cost efficiency during varying network conditions;
- ii.
- Investigation of cross-chain implementations to enhance scalability and reduce network dependency;
- iii.
- Integration of advanced privacy-preserving mechanisms while maintaining system transparency;
- iv.
- Exploration of hybrid governance models that combine traditional and DAO-based approaches;
- v.
- Study of long-term social impacts and participation patterns in communities using CIG systems;
- vi.
- Development of standardized frameworks for measuring civic engagement quality in automated systems.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CI | Civic Intelligence |
CIG | Civic Intelligence Governance |
CIQ | Civic Intelligence Quotient |
DAO | Decentralized Autonomous Organization |
DApp | Decentralized Application |
DT | Digital Twin |
ICT | Information and Communication Technology |
IPFS | InterPlanetary File System |
IoT | Internet of Things |
KB | Kilobyte |
MB | Megabyte |
N/A | Not Applicable |
P2P | Peer-to-Peer |
References
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Lea, R.; Blackstock, M.; Giang, N.; Vogt, D. Smart cities: Engaging users and developers to foster innovation ecosystems. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers—UbiComp ’15, Osaka, Japan, 7–11 September 2015; ACM Press: New York, NY, USA, 2015; pp. 1535–1542. [Google Scholar] [CrossRef]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef]
- Shahat, E.; Hyun, C.T.; Yeom, C. City Digital Twin Potentials: A Review and Research Agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Mohammadi, N.; Taylor, J.E. Smart city digital twins. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Young, I.M. (Ed.) Inclusion and Democracy; Oxford Political Theory; Oxford University Press: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Fraser, N. Rethinking the Public Sphere: A Contribution to the Critique of Actually Existing Democracy; Duke University Press: Durham, NC, USA, 1990; pp. 56–80. [Google Scholar] [CrossRef]
- Nochta, T.; Badstuber, N.; Wahby, N. On the Governance of City Digital Twins—Insights from the Cambridge Case Study; Technical Report; Centre for Digital Built Britain: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Granier, B.; Kudo, H. How are citizens involved in smart cities? Analysing citizen participation in Japanese “Smart Communities”. Inf. Polity 2016, 21, 61–76. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? J. Urban Technol. 2019, 26, 21–46. [Google Scholar] [CrossRef]
- De Waal, M.; Dignum, M. The citizen in the smart city. How the smartcity could transform citizenship. IT-Inf. Technol. 2017, 59, 263–273. [Google Scholar] [CrossRef]
- Schuler, D. Pieces of Civic Intelligence: Towards a Capacities Framework. E-Learn. Digit. Media 2014, 11, 518–529. [Google Scholar] [CrossRef]
- Schuler, D. Smart Cities + Smart Citizens = Civic Intelligence? In Human Smart Cities: Rethinking the Interplay Between Design and Planning; Springer: Cham, Switzerland, 2016; pp. 41–60. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Jun, M. Blockchain government-a next form of infrastructure for the twenty-first century. J. Open Innov. Technol. Mark. Complex. 2018, 4, 7. [Google Scholar] [CrossRef]
- De Filippi, P.; Wright, A. Blockchain and the Law: The Rule of Code; Harvard University Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Clemen, T.; Ahmady-Moghaddam, N.; Lenfers, U.A.; Ocker, F.; Osterholz, D.; Ströbele, J.; Glake, D. Multi-Agent Systems and Digital Twins for Smarter Cities. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Virtual Event USA, 31 May–2 June 2021; SIGSIM-PADS ’21. Association for Computing Machinery: New York, NY, USA, 2021; pp. 45–55. [Google Scholar] [CrossRef]
- Somae, G.; Rakuasa, H. Utilization of Artificial Intelligence for Spatial Decision Support System. J. Loomingulisus Ja Innov. 2024, 1, 91–97. [Google Scholar] [CrossRef]
- Wolniak, R.; Stecuła, K. Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. Smart Cities 2024, 7, 1346–1389. [Google Scholar] [CrossRef]
- Son, T.H.; Weedon, Z.; Yigitcanlar, T.; Sanchez, T.; Corchado, J.M.; Mehmood, R. Algorithmic urban planning for smart and sustainable development: Systematic review of the literature. Sustain. Cities Soc. 2023, 94, 104562. [Google Scholar] [CrossRef]
- Initiative, M.G. People-Powered Gen AI: Collaborating with Generative AI for Civic Engagement—From Novel Chemicals to Opera. 2024. Available online: https://mit-genai.pubpub.org/pub/6uejzuox/release/2 (accessed on 2 November 2024).
- ITU. Measuring Digital Development: Facts and Figures; ITU: Geneva, Switzerland, 2023; Available online: https://www.itu.int/itu-d/reports/statistics/wp-content/uploads/sites/5/2023/11/Measuring-digital-development-Facts-and-figures-2023-E.pdf (accessed on 5 October 2024).
- Sinha, S. Insights Release-State of IoT-Number of Connected IoT Devices Growing 16% to 16.0 Billion Globally. 2023. Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 8 November 2024).
- Verba, S.; Schlozman, K.L.; Brady, H.E. Voice and Equality: Civic Voluntarism in American Politics; Harvard University Press: Cambridge, MA, USA, 1995. [Google Scholar] [CrossRef]
- Gutman, E.E. Review of The Good Citizen: How a Younger Generation is Reshaping American Politics; Harvard University Press: Cambridge, MA, USA, 2021; Volume 2, pp. 115–118. [Google Scholar] [CrossRef]
- Bennett, W.L.; Segerberg, A. The Logic of Connective Action: Digital Media and the Personalization of Contentious Politics, 1st ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Theocharis, Y.; Van Deth, J.W. The continuous expansion of citizen participation: A new taxonomy. Eur. Political Sci. Rev. 2018, 10, 139–163. [Google Scholar] [CrossRef]
- Gil De Zúñiga, H.; Molyneux, L.; Zheng, P. Social Media, Political Expression, and Political Participation: Panel Analysis of Lagged and Concurrent Relationships. J. Commun. 2014, 64, 612–634. [Google Scholar] [CrossRef]
- Smith, G. Democratic Innovations: Designing Institutions for Citizen Participation—Theories of Institutional Design. In Democratic Innovations: Designing Institutions for Citizen Participation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Cardullo, P.; Kitchin, R. Being a ‘citizen’ in the smart city: Up and down the scaffold of smart citizen participation in Dublin, Ireland. GeoJournal 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Nabatchi, T.; Leighninger, M. Public Participation for 21st Century Democracy; Jossey-Bass: San Francisco, CA, USA, 2015. [Google Scholar] [CrossRef]
- Yang, M.; Fry, M.J.; Kelton, W.D.; Allen, T.T. Improving Voting Systems through ServiceOperations Management. Prod. Oper. Manag. 2014, 23, 1083–1097. [Google Scholar] [CrossRef]
- Jackson, J.E. A Computational Theory of Electoral Competition. In Political Complexity: Nonlinear Models of Politics; Richards, D., Ed.; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar] [CrossRef]
- Wadowski, G.M.; Otte, L.S.; Bernardo, N.D.; Macht, G.A. A Comparative Study of Electronic Voting and Paper Ballot Systems in Modern Elections. In Proceedings of the Election Science, Reform, & Administration Conference, 2 June 2023. Available online: https://esra-conference.org/files/election-science-conference/files/a_comparative_study_of_electronic_voting_and_paper_ballot_systems_in_modern_elections_wadowski_-_uri_club_tennis.pdf (accessed on 3 November 2024).
- Liu, Y.Y.; Cho, W.K.T.; Wang, S. PEAR: A massively parallel evolutionary computation approach for political redistricting optimization and analysis. Swarm Evol. Comput. 2016, 30, 78–92. [Google Scholar] [CrossRef]
- Sæbø, O.; Rose, J.; Flak, L.S. The shape of eParticipation: Characterizing an emerging research area. Gov. Inf. Q. 2008, 25, 400–428. [Google Scholar] [CrossRef]
- Macintosh, A. Characterizing e-participation in policy-making. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 5–8 January 2004; p. 10. [Google Scholar] [CrossRef]
- Huang, S. Waiting Lines and System Selection in Constrained Service Systems with Applications in Election Resource Allocation. Ph.D Thesis, The Ohio State University, Columbus, OH, USA, 2016. [Google Scholar]
- Ghosal, S.; Lockwood, B. Costly Voting and Inefficient Participation; Working Paper; University of Warwick: Coventry, UK, 2004. [Google Scholar]
- Bertot, J.; Jaeger, P.; Grimes, J. Promoting Transparency and Accountability through ICTs, Social Media, and Collaborative E-Government. Transform. Gov. People Process Policy 2012, 6, 78–91. [Google Scholar] [CrossRef]
- Grofman, B. Perspectives on the Comparative Study of Electoral Systems. Annu. Rev. Political Sci. 2016, 19, 523–540. [Google Scholar] [CrossRef]
- Fung, A. Putting the Public Back into Governance: The Challenges of Citizen Participation and Its Future. Public Adm. Rev. 2015, 75, 513–522. [Google Scholar] [CrossRef]
- Bardhan, P. State and Development: The Need for a Reappraisal of the Current Literature. J. Econ. Lit. 2016, 54, 862–892. [Google Scholar] [CrossRef]
- Peters, B.G. The challenge of policy coordination. Policy Des. Pract. 2018, 1, 1–11. [Google Scholar] [CrossRef]
- Bloom, N.; Brynjolfsson, E.; Foster, L.; Jarmin, R.; Patnaik, M.; Saporta-Eksten, I.; Van Reenen, J. What drives differences in management practices? Am. Econ. Rev. 2019, 109, 1648–1683. [Google Scholar] [CrossRef]
- Galbraith, J.R. Organizational design challenges resulting from big data. J. Organ. Des. 2014, 3, 2–13. [Google Scholar] [CrossRef]
- Ansell, C.K.; Trondal, J.; Øgård, M. Governance in Turbulent Times; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Day, D.V.; Fleenor, J.W.; Atwater, L.E.; Sturm, R.E.; McKee, R.A. Advances in leader and leadership development: A review of 25 years of research and theory. Leadersh. Q. 2014, 25, 63–82. [Google Scholar] [CrossRef]
- Hood, C. The Blame Game: Spin, Bureaucracy, and Self-Preservation in Government; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Tsebelis, G. Veto Players and Institutional Analysis. Governance 2000, 13, 441–474. [Google Scholar] [CrossRef]
- Caplan, B. Veto Players: How Political Institutions Work. J. Politics 2004, 66, 993–996. [Google Scholar] [CrossRef]
- Fung, A.; Wright, E.O. Deepening Democracy: Innovations in Empowered Participatory Governance. Politics Soc. 2001, 29, 5–41. [Google Scholar] [CrossRef]
- Michels, A. Innovations in democratic governance: How does citizen participation contribute to a better democracy? Int. Rev. Adm. Sci. 2011, 77, 275–293. [Google Scholar] [CrossRef]
- Norris, P. Why Elections Fail; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Urbinati, N. Democracy Disfigured: Opinion, Truth, and the People; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Warren, M.E. A problem-based approach to democratic theory. Am. Political Sci. Rev. 2017, 111, 39–53. [Google Scholar] [CrossRef]
- Przeworski, A. Why Bother with Elections? John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Dunleavy, P.; Margetts, H. Design Principles for Essentially Digital Governance; Technical Report; London School of Economics: London, UK, 2015. [Google Scholar]
- Gibson, J.P.; Krimmer, R.; Teague, V.; Pomares, J. A review of E-voting: The past, present and future. Ann. Telecommun. 2016, 71, 279–286. [Google Scholar] [CrossRef]
- Mergel, I.; Edelmann, N.; Haug, N. Defining digital transformation: Results from expert interviews. Gov. Inf. Q. 2019, 36, 101385. [Google Scholar] [CrossRef]
- Castells, M. Communication Power; Oxford University Press: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Noveck, B.S. Smart Citizens, Smarter State: The Technologies of Expertise and the Future of Governing; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Oliver, J.E. Democracy in Suburbia; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Dahl, R.A. On Democracy; Yale University Press: New Haven, CT, USA, 2020. [Google Scholar] [CrossRef]
- Linders, D. From e-government to we-government: Defining a typology for citizen coproduction in the age of social media. Gov. Inf. Q. 2012, 29, 446–454. [Google Scholar] [CrossRef]
- Sun, J.; Yan, J.; Zhang, K.Z.K. Blockchain-based sharing services: What blockchain technology can contribute to smart cities. Financ. Innov. 2016, 2, 26. [Google Scholar] [CrossRef]
- Pieroni, A.; Scarpato, N.; Di Nunzio, L.; Fallucchi, F.; Raso, M. Smarter City: Smart Energy Grid based on Blockchain Technology. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 298. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Cugurullo, F. The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities. Sustainability 2020, 12, 8548. [Google Scholar] [CrossRef]
- Zygiaris, S.; Saleh, M.; Al-Imamy, S. The Smart City Blockchain Governance: A Literature Review. Smart Cities 2023, 31, 313–332. [Google Scholar] [CrossRef]
- Pérez González, D.; Díaz Díaz, R. Public Services Provided with ICT in the Smart City Environment: The Case of Spanish Cities. J. Univers. Comput. Sci. 2015, 21, 248–267. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, A.Z. On Big Data, Artificial Intelligence and Smart Cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Matheus, R.; Janssen, M.; Maheshwari, D. Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Gov. Inf. Q. 2020, 37, 101284. [Google Scholar] [CrossRef]
- Ertiö, T.P. Participatory Apps for Urban Planning—Space for Improvement. Plan. Pract. Res. 2015, 30, 303–321. [Google Scholar] [CrossRef]
- Michels, A. Citizen Participation in Local Policy Making: Design and Democracy. Int. J. Public Adm. 2012, 35, 285–292. [Google Scholar] [CrossRef]
- Gil De Zúñiga, H.; Jung, N.; Valenzuela, S. Social Media Use for News and Individuals’ Social Capital, Civic Engagement and Political Participation. J. Comput.-Mediat. Commun. 2012, 17, 319–336. [Google Scholar] [CrossRef]
- Randma-Liiv, T.; Lember, V. (Eds.) Engaging Citizens in Policy Making: E-Participation Practices in Europe; Edward Elgar Publishing: Cheltenham, UK, 2022. [Google Scholar] [CrossRef]
- Kleinhans, R. Beyond technology: Identifying local government challenges for using digital platforms for citizen engagement. Int. J. Inf. Manag. 2018, 38, 77–85. [Google Scholar] [CrossRef]
- Afzalan, N.; Muller, B. Online Participatory Technologies: Opportunities and Challenges for Enriching Participatory Planning. J. Am. Plan. Assoc. 2018, 84, 162–177. [Google Scholar] [CrossRef]
- Sieber, R.E.; Johnson, P.A. Civic open data at a crossroads: Dominant models and current challenges. Gov. Inf. Q. 2015, 32, 308–315. [Google Scholar] [CrossRef]
- Van Zoonen, L. Privacy concerns in smart cities. Gov. Inf. Q. 2016, 33, 472–480. [Google Scholar] [CrossRef]
- Lim, C.; Kim, K.J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Goncharov, S.; Nechesov, A. AI-Driven Digital Twins for Smart Cities. Eng. Proc. 2023, 58, 94. [Google Scholar] [CrossRef]
- Durov, N. Telegram Open Network Virtual Machine; White Paper, TON Labs: Zug, Switzerland, 2020. [Google Scholar]
- Goncharov, S.; Nechesov, A. Polynomial-Computable Representation of Neural Networks in Semantic Programming. J—Multidiscip. Sci. J. 2023, 6, 48–57. [Google Scholar] [CrossRef]
- Janssen, M.; Hartog, M.; Matheus, R.; Yi Ding, A.; Kuk, G. Will Algorithms Blind People? The Effect of Explainable AI and Decision-Makers’ Experience on AI-supported Decision-Making in Government. Soc. Sci. Comput. Rev. 2022, 40, 478–493. [Google Scholar] [CrossRef]
- Boulianne, S.; Theocharis, Y. Young People, Digital Media, and Engagement: A Meta-Analysis of Research. Soc. Sci. Comput. Rev. 2020, 38, 111–127. [Google Scholar] [CrossRef]
- Desouza, K.C.; Bhagwatwar, A. Technology-Enabled Participatory Platforms for Civic Engagement: The Case of U.S. Cities. J. Urban Technol. 2014, 21, 25–50. [Google Scholar] [CrossRef]
- Cugurullo, F. Urban Artificial Intelligence: From Automation to Autonomy in the Smart City. Front. Sustain. Cities 2020, 2, 38. [Google Scholar] [CrossRef]
- Solyst, J.; Yang, E.; Xie, S.; Ogan, A.; Hammer, J.; Eslami, M. The Potential of Diverse Youth as Stakeholders in Identifying and Mitigating Algorithmic Bias for a Future of Fairer AI. Proc. ACM Hum.-Comput. Interact. 2023, 7, 364:1–364:27. [Google Scholar] [CrossRef]
- Zheng, L.; Kwok, W.M.; Aquaro, V.; Qi, X. Digital Government, Smart Cities and Sustainable Development. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance, Melbourne, VIC, Australia, 3–5 April 2019; ICEGOV ’19. Association for Computing Machinery: New York, NY, USA, 2019; pp. 291–301. [Google Scholar] [CrossRef]
- Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A. Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges. Comput. Sci. Rev. 2022, 43, 100452. [Google Scholar] [CrossRef]
- Goncharov, S.; Nechesov, A. Semantic programming for AI and Robotics. In Proceedings of the 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Yekaterinburg, Russia, 11–13 November 2022; pp. 810–815. [Google Scholar] [CrossRef]
- Goncharov, S.; Nechesov, A. Solution of the Problem P = L. Mathematics 2022, 10, 113. [Google Scholar] [CrossRef]
- Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Sirer, E.G.; et al. On scaling decentralized blockchains (A position paper). In Proceedings of the International Workshops on Financial Cryptography and Data Security, FC 2016 and 3rd Workshop on Bitcoin and Blockchain Research, BITCOIN 2016, 1st Workshop on Advances in Secure Electronic Voting Schemes, VOTING 2016, and 4th Workshop on Encrypted Computing and Applied Homomorphic Cryptography, WAHC, Christ Church, Barbados, 22–26 February 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 106–125. [Google Scholar] [CrossRef]
- Back, A.; Corallo, M.; Dashjr, L.; Friedenbach, M.; Maxwell, G.; Miller, A.; Poelstra, A.; Timón, J.; Wuille, P. Enabling Blockchain Innovations with Pegged Sidechains. Tech. Rep. Blockstream 2014, 72, 201–224. [Google Scholar]
- Poon, J.; Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments; Technical Report; Lightning Network; 2016. [Google Scholar]
- Bonneau, J.; Miller, A.; Clark, J.; Narayanan, A.; Kroll, J.A.; Felten, E.W. SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 104–121. [Google Scholar] [CrossRef]
- de Filippi, P.; Mcmullen, G. Governance of Blockchain Systems: Governance of and by Distributed Infrastructure. Research Report; Blockchain Research Institute and COALA, 2018; Available online: https://coala.global/wp-content/uploads/2019/02/BRI-COALA-Governance-of-Blockchains.pdf (accessed on 2 November 2024).
- Hassan, S.; Filippi, P.D. Decentralized Autonomous Organization. Internet Policy Rev. 2021, 10. [Google Scholar] [CrossRef]
- Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.Y. Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]
- Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts (SoK). In Principles of Security and Trust; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10204, pp. 164–186. [Google Scholar] [CrossRef]
- Antonopoulos, A.M. Mastering Ethereum: Building Smart Contracts and DApps; O’Reilly Media: Sebastopol, CA, USA, 2018. [Google Scholar]
- Ulpiani, G.; Sailor, D.J. Future-proofing the built environment: Towards a holistic approach. Energy Build. 2023, 300, 113498. [Google Scholar] [CrossRef]
- Junaid, L.; Bilal, K.; Shuja, J.; Balogun, A.O.; Rodrigues, J.J. Blockchain-Enabled Framework for Transparent Land Lease and Mortgage Management. IEEE Access 2024, 12, 1–15. [Google Scholar] [CrossRef]
- Sadawi, A.A.; Hassan, M.S.; Ndiaye, M. A Survey on the Integration of Blockchain With IoT to Enhance Performance and Eliminate Challenges. IEEE Access 2021, 9, 54478–54497. [Google Scholar] [CrossRef]
- Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Smart City IoT Platform Respecting GDPR Privacy and Security Aspects. IEEE Access 2020, 8, 23601–23623. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Kumari, S.; Surve, T. Integration of Digital Twin and Blockchain for Smart Cities. In Digital Twin and Blockchain for Smart Cities; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 81–100. [Google Scholar] [CrossRef]
- Glomann, L.; Schmid, M.; Kitajewa, N. Improving the Blockchain User Experience—An Approach to Address Blockchain Mass Adoption Issues from a Human-Centred Perspective. In Proceedings of the Advances in Artificial Intelligence, Software and Systems Engineering, San Diego, CA, USA, 16–20 July; Ahram, T., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 608–616. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, V.R.P. Integrating blockchain technology success factors in the supply chain of circular economy-driven construction materials: An environmentally sustainable paradigm. J. Clean. Prod. 2024, 460, 142577. [Google Scholar] [CrossRef]
- Deakin, M. Smart Cities: Governing, Modelling and Analysing the Transition; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Bracciali, A.; Chatzigiannakis, I.; Vitaletti, A.; Zecchini, M. Citizens Vote to Act: Smart contracts for the management of water resources in smart cities. In Proceedings of the 2019 First International Conference on Societal Automation (SA), Krakow, Poland, 4–6 September 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Onwubiko, A.; Singh, R.; Awan, S.; Pervez, Z.; Ramzan, N. Enabling Trust and Security in Digital Twin Management: A Blockchain-Based Approach with Ethereum and IPFS. Sensors 2023, 23, 6641. [Google Scholar] [CrossRef] [PubMed]
- Gorbunova, M.; Masek, P.; Komarov, M.; Ometov, A. Distributed ledger technology: State-of-the-art and current challenges. Comput. Sci. Inf. Syst. 2022, 19, 65–85. [Google Scholar] [CrossRef]
- Pandey, A. A Decentralized, Secure, Peer-to-Peer Multi-Voting System on Ethereum Blockchain. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 1354–1359. [Google Scholar] [CrossRef]
- Department of Artificial Intelligence and Data Science; Bannari Amman Institute of Technology, Sathyamangalam. E-Voting System Using Ethereum Blockchain. Interantional J. Sci. Res. Eng. Manag. 2023, 7, 1–11. [Google Scholar] [CrossRef]
- Shi, J. The Evolution and Future of DAOs: Embracing AI and New Technologies. Tech. Rom. J. Appl. Sci. Technol. 2023, 13, 117–123. [Google Scholar] [CrossRef]
- Amhaz, R.; Bobenrieth, C.; Marz, M. Impact of Decentralized Autonomous Organizations (DAO) on Society 5.0. In Proceedings of the Machine Learning, IOT and Blockchain, Dubai, United Arab Emirates, 17–18 February 2024; Academy & Industry Research Collaboration Center: Tamil Nadu, India, 2024; pp. 1–16. [Google Scholar] [CrossRef]
- El Faqir, Y.; Arroyo, J.; Hassan, S. An overview of decentralized autonomous organizations on the blockchain. In Proceedings of the 16th International Symposium on Open Collaboration, Virtual Conference Spain, 25 August 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Oarda, C. Optimal DAO: An Optimal Smart Contracts and Optimal DApps Based Ecosystem. 2024. Available online: https://optimalcontracts.ch/wp-content/uploads/2024/07/Optimal_DAO-Litepaper_v0_1-20240101-ORIGINAL-Published_On_LinkedIn.pdf (accessed on 1 October 2024).
- Popchev, I.; Radeva, I. Decentralized Application (dApp) Development and Implementation. Cybern. Inf. Technol. 2024, 24, 122–141. [Google Scholar] [CrossRef]
- Zichichi, M.; Serena, L.; Ferretti, S.; D’Angelo, G. Governing Decentralized Complex Queries Through a DAO. In Proceedings of the Conference on Information Technology for Social Good, Roma, Italy, 9–11 September 2021; pp. 121–126. [Google Scholar] [CrossRef]
- Lo, Y.C.; Medda, F. Assets on the Blockchain: An Empirical Study of Tokenomics. Inf. Econ. Policy 2020, 53, 100881. [Google Scholar] [CrossRef]
- Batty, M. Artificial intelligence and smart cities. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 3–6. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, W.; Chen, Y.; Qu, H.; Ni, L.M. Visual Analytics in Urban Computing: An Overview. IEEE Trans. Big Data 2016, 2, 276–296. [Google Scholar] [CrossRef]
- Crawford, K.; Calo, R. There is a blind spot in AI research. Nature 2016, 538, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang, J.; Chen, Z.; Tang, J.; Chen, X.; Lin, Y.; et al. A survey on large language model based autonomous agents. Front. Comput. Sci. 2024, 18, 186345. [Google Scholar] [CrossRef]
- Xi, Z.; Chen, W.; Guo, X.; He, W.; Ding, Y.; Hong, B.; Zhang, M.; Wang, J.; Jin, S.; Zhou, E.; et al. The Rise and Potential of Large Language Model Based Agents: A Survey. arXiv 2023, arXiv:2309.07864. [Google Scholar]
- Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang, L.; Zhang, X.; Zhang, S.; Liu, J. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversations. In Proceedings of the First Conference on Language Modeling, Philadelphia, PA, USA, 7 October 2024. [Google Scholar]
- Chen, W.; Su, Y.; Zuo, J.; Yang, C.; Yuan, C.; Qian, C.; Chan, C.M.; Qin, Y.; Lu, Y.; Xie, R. Agentverse: Facilitating multi-agent collaboration and exploring emergent behaviors in agents. arXiv 2023, arXiv:2308.10848. [Google Scholar]
- Qiao, B.; Li, L.; Zhang, X.; He, S.; Kang, Y.; Zhang, C.; Yang, F.; Dong, H.; Zhang, J.; Wang, L.; et al. TaskWeaver: A Code-First Agent Framework. arXiv 2024, arXiv:2311.17541. [Google Scholar]
- Qian, C.; Liu, W.; Liu, H.; Chen, N.; Dang, Y.; Li, J.; Yang, C.; Chen, W.; Su, Y.; Cong, X. Chatdev: Communicative agents for software development. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, 11–16 August 2024; pp. 15174–15186. [Google Scholar] [CrossRef]
- Li, G.; Hammoud, H.; Itani, H.; Khizbullin, D.; Ghanem, B. Camel: Communicative agents for “mind” exploration of large language model society. Adv. Neural Inf. Process. Syst. 2023, 36, 51991–52008. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Aswathy, S.U.; Abraham, A. Integrating blockchain technology and artificial intelligence: Synergies, perspectives, challenges and research directions. J. Inf. Assur. Secur. 2020, 15, 178–193. [Google Scholar]
- Karger, E. Combining Blockchain and Artificial Intelligence-Literature Review and State of the Art. In Proceedings of the ICIS, Ponorogo, Indonesia, 27–28 October 2020. [Google Scholar]
- Ahmed, I.; Zhang, Y.; Jeon, G.; Lin, W.; Khosravi, M.R.; Qi, L. A blockchain and artificial intelligenceenabled smart IoT framework for sustainable city. Int. J. Intell. Syst. 2022, 37, 6493–6507. [Google Scholar] [CrossRef]
- Al-Breiki, H.; Rehman, M.H.U.; Salah, K.; Svetinovic, D. Trustworthy blockchain oracles: Review, comparison, and open research challenges. IEEE Access 2020, 8, 85675–85685. [Google Scholar] [CrossRef]
- Ellis, S.; Juels, A.; Nazarov, S. Chainlink: A Decentralized Oracle Network; Whitepaper; Chainlink Labs: San Francisco, CA, USA, 2017. [Google Scholar]
- Breidenbach, L.; Cachin, C.; Chan, B.; Coventry, A.; Ellis, S.; Juels, A.; Koushanfar, F.; Miller, A.; Magauran, B.; Moroz, D. Chainlink 2.0: Next Steps in the Evolution of Decentralized Oracle Networks; Technical Report; Chainlink Labs: San Francisco, CA, USA, 2021. [Google Scholar]
- Süß, V.; Franczyk, B. A Systematic Literature Review on Blockchain Oracles: State of Research, Challenges, and Trends. In Proceedings of the Konferenzband zum Scientific Track der Blockchain Autumn School 2023; Hochschule: Mittweida, Germany, 2023; pp. 1–9. [Google Scholar]
- Zhang, F.; Cecchetti, E.; Croman, K.; Juels, A.; Shi, E. Town Crier: An Authenticated Data Feed for Smart Contracts. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna Austria, 24–28 October 2016; pp. 270–282. [Google Scholar] [CrossRef]
- Gudgeon, L.; Moreno-Sanchez, P.; Roos, S.; McCorry, P.; Gervais, A. SoK: Layer-Two Blockchain Protocols. In Proceedings of the Financial Cryptography and Data Security 2020, Kota Kinabalu, Malaysia, 14 February 2020. [Google Scholar] [CrossRef]
- Benet, J. IPFS—Content Addressed, Versioned, P2P File System. arXiv 2014, arXiv:1407.3561. [Google Scholar]
- Dunphy, P.; Petitcolas, F.A.P. A First Look at Identity Management Schemes on the Blockchain. arXiv 2018, arXiv:1801.03294. [Google Scholar] [CrossRef]
- Wang, Q.; Li, R.; Wang, Q. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar]
- Sedlmeir, J.; Smethurst, R.; Rieger, A.; Fridgen, G. Digital Identities and Verifiable Credentials. Bus. Inf. Syst. Eng. 2021, 63, 603–613. [Google Scholar] [CrossRef]
- Preukschat, A.; Reed, D. Self-Sovereign Identity; Manning Publications: Shelter Island, NY, USA, 2021. [Google Scholar] [CrossRef]
- Dodig-Crnkovic, G.; Burgin, M. A Systematic Approach to Autonomous Agents. Philosophies 2024, 9, 44. [Google Scholar] [CrossRef]
Metric | Traditional System | CIG System | Performance Ratio |
---|---|---|---|
Daily Processing Rate | 1200 proposals/day | 3846 petition proposals/day (13 KB); 417 legislative proposals/day (120 KB) | = 3.2x |
Processing Method | Linear workflow | Parallel batch processing | - |
Staff Requirements | 20 staff members | Automated | - |
Processing Rate per Staff | 60 proposals/hour/person | N/A | - |
Capacity Utilization | 83% | Variable based on batch size | - |
Average Processing Latency | 4 h | 15 min | = 16x |
Batch Parameters | No batching | : 50 MB; : 4 batches/hour | - |
Peak Performance | Limited by staff availability | Consistent throughput | - |
Metric | Traditional System | CIG System | Performance Ratio |
---|---|---|---|
Monthly Processing Limit | 300,000 proposals | 960,000 proposals | = 3.2x |
Infrastructure | 50 processing centers | Blockchain network | - |
Staff Distribution | 10 staff per center | N/A | - |
Operating Parameters | Hours: 10/day; Days: 20/month | Network capacity (): 0.8; Batch time (): 0.25 h | - |
User Base | 1 M citizens | 1M citizens | - |
Active Participation Rate | 5% ( = 0.05) | 5% ( = 0.05) | - |
Monthly Submissions | 50,000 proposals | 50,000 proposals | - |
Scaling Constraints | Physical infrastructure; staff coordination | Network capacity; batch limitations | - |
Growth Pattern | Linear with diminishing returns | Network-capacity-dependent | - |
Metric | Traditional System | CIG System | Performance Ratio |
---|---|---|---|
Per-Proposal Cost | USD 17.50 | USD 5.20 | = 3.37x |
Base Operational Cost | USD 50,000/month | 21,000 gas units () | - |
Staff Costs | 5000 USD/person/month | N/A | - |
Material Costs | 2 USD/proposal | 16 gas/byte () | - |
Optimal Staff Size | 25 people | N/A | - |
Batch Size | N/A | 100 proposals | - |
Monthly Processing Volume | 10,000 proposals | 10,000 proposals | - |
Total Monthly Cost | USD 175,000 | Variable (gas-price-dependent) | - |
Cost Scaling Pattern | Linear with size | Network usage dependent | - |
Cost Variability Factors | Staffing USD materials | Gas prices and network congestion | - |
Critical Variables | Staff utilization | Gas price (0.00005 USD/gas), batch optimization | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechesov, A.; Ruponen, J. Empowering Government Efficiency Through Civic Intelligence: Merging Artificial Intelligence and Blockchain for Smart Citizen Proposals. Technologies 2024, 12, 271. https://doi.org/10.3390/technologies12120271
Nechesov A, Ruponen J. Empowering Government Efficiency Through Civic Intelligence: Merging Artificial Intelligence and Blockchain for Smart Citizen Proposals. Technologies. 2024; 12(12):271. https://doi.org/10.3390/technologies12120271
Chicago/Turabian StyleNechesov, Andrey, and Janne Ruponen. 2024. "Empowering Government Efficiency Through Civic Intelligence: Merging Artificial Intelligence and Blockchain for Smart Citizen Proposals" Technologies 12, no. 12: 271. https://doi.org/10.3390/technologies12120271
APA StyleNechesov, A., & Ruponen, J. (2024). Empowering Government Efficiency Through Civic Intelligence: Merging Artificial Intelligence and Blockchain for Smart Citizen Proposals. Technologies, 12(12), 271. https://doi.org/10.3390/technologies12120271