The Impact of Autonomous Vehicle Accidents on Public Sentiment: A Decadal Analysis of Twitter Discourse Using roBERTa
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Data Preprocessing
2.3. Data Labeling
2.4. Artificial Neural Network Labeling
2.5. Data Analysis
3. Results
3.1. Tweet Count
3.2. Sentiment Analysis
3.3. Text Mining
3.4. Knowledge Graphs
3.5. Turning Point Events
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Korolov, R.; Wallace, W.A.; Wang, X.C. How are sentiments on autonomous vehicles influenced? An analysis using Twitter feeds. Transp. Res. Part C Emerg. Technol. 2021, 131, 103356. [Google Scholar] [CrossRef]
- Giachanou, A.; Crestani, F. Like It or Not: A Survey of Twitter Sentiment Analysis Methods. ACM Comput. Surv. 2016, 49, 1–41. [Google Scholar] [CrossRef]
- Modrek, S.; Chakalov, B. The #MeToo Movement in the United States: Text Analysis of Early Twitter Conversations. J. Med. Internet Res. 2019, 21, e13837. [Google Scholar] [CrossRef] [PubMed]
- Zarocostas, J. How to fight an infodemic. Lancet 2020, 395, 676. [Google Scholar] [CrossRef] [PubMed]
- Gable, J.S.M.; Sauvayre, R.; Chauvière, C. Fight Against the Mandatory COVID-19 Immunity Passport on Twitter: Natural Language Processing Study. J. Med. Internet Res. 2023, 25, e49435. [Google Scholar] [CrossRef] [PubMed]
- Bengesi, S.; Oladunni, T.; Olusegun, R.; Audu, H. A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets. IEEE Access 2023, 11, 11811–11826. [Google Scholar] [CrossRef]
- Gabarron, E.; Dechsling, A.; Skafle, I.; Nordahl-Hansen, A. Discussions of Asperger Syndrome on Social Media: Content and Sentiment Analysis on Twitter. JMIR Form. Res. 2022, 6, e32752. [Google Scholar] [CrossRef]
- Mohamad Sham, N.; Mohamed, A. Climate Change Sentiment Analysis Using Lexicon, Machine Learning and Hybrid Approaches. Sustainability 2022, 14, 4723. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Ma, L. Human acceptance of autonomous vehicles: Research status and prospects. Int. J. Ind. Ergon. 2023, 95, 103458. [Google Scholar] [CrossRef]
- Bala, H.; Anowar, S.; Chng, S.; Cheah, L. Review of studies on public acceptability and acceptance of shared autonomous mobility services: Past, present and future. Transp. Rev. 2023, 43, 970–996. [Google Scholar] [CrossRef]
- Golbabaei, F.; Yigitcanlar, T.; Paz, A.; Bunker, J. Individual Predictors of Autonomous Vehicle Public Acceptance and Intention to Use: A Systematic Review of the Literature. J. Open Innov. Technol. Mark. Complex. 2020, 6, 106. [Google Scholar] [CrossRef]
- Hegner, S.M.; Beldad, A.D.; Brunswick, G.J. In Automatic We Trust: Investigating the Impact of Trust, Control, Personality Characteristics, and Extrinsic and Intrinsic Motivations on the Acceptance of Autonomous Vehicles. Int. J. Hum. Comput. Interact. 2019, 35, 1769–1780. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K.; Min, H.; Wang, Z.; Zhao, X.; Liu, P. What drives people to accept automated vehicles? Findings from a field experiment. Transp. Res. Part. C Emerg. Technol. 2018, 95, 320–334. [Google Scholar] [CrossRef]
- Chaufrein, M.; Forte, C.; Colom, M.; Delage, L.; Ouafi, H.; Saran, R.; Sidane, Y.; Vieira, R.L.; Milanes, V.; Salomon, S. Tornado_Attentes et Acceptabilité Utilisateurs de VAC Expérimentaux. France. 2021. Available online: https://eexposit.perso.univ-pau.fr/tornado/downloads/L8%20Tornado%20Analyse%20d%27acceptabilite%20et%20rapport%20final%20lot%208%20et%20lot%207.pdf (accessed on 9 January 2022).
- Zou, X.; O’Hern, S.; Ens, B.; Coxon, S.; Mater, P.; Chow, R.; Neylan, M.; Vu, H.L. On-road virtual reality autonomous vehicle (VRAV) simulator: An empirical study on user experience. Transp. Res. Part C Emerg. Technol. 2021, 126, 103090. [Google Scholar] [CrossRef]
- Jing, P.; Wang, B.; Cai, Y.; Wang, B.; Huang, J.; Yang, C.; Jiang, C. What is the public really concerned about the AV crash? Insights from a combined analysis of social media and questionnaire survey. Technol. Forecast. Soc. Social Change 2023, 189, 122371. [Google Scholar] [CrossRef]
- Das, S.; Dutta, A.; Lindheimer, T.; Jalayer, M.; Elgart, Z. YouTube as a Source of Information in Understanding Autonomous Vehicle Consumers: Natural Language Processing Study. Transp. Res. Rec. 2019, 2673, 242–253. [Google Scholar] [CrossRef]
- Othman, K. Public attitude towards autonomous vehicles before and after crashes: A detailed analysis based on the demographic characteristics. Cogent Eng. 2023, 10, 2156063. [Google Scholar] [CrossRef]
- Jefferson, J.; McDonald, A.D. The autonomous vehicle social network: Analyzing tweets after a recent Tesla autopilot crash. Proc. Human Factors Ergon. Soc. Annu. Meet. 2019, 63, 2071–2075. [Google Scholar] [CrossRef]
- GDPR Twitter. Twitter Controller-to-Controller (Outbound) Data Protection Addendum. Available online: https://gdpr.twitter.com/en/controller-to-controller-transfers.html (accessed on 25 April 2022).
- Hugging Face. Twitter-roBERTa-Base for Sentiment Analysis. Available online: https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment (accessed on 25 September 2023).
- Barbieri, F.; Camacho-Collados, J.; Espinosa Anke, L.; Neves, L. TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification. In Findings of the Association for Computational Linguistics: EMNLP 2020; Cohn, T., He, Y., Liu, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 1644–1650. [Google Scholar] [CrossRef]
- Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 1974, 30, 507–512. [Google Scholar] [CrossRef]
- Fryzlewicz, P. Wild Binary Segmentation for Multiple Change-Point Detection. Ann. Stat. 2014, 42, 2243–2281. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal Detection of Changepoints with a Linear Computational Cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Trivyza, M.-F. Autonomous Vehicles: Multi-Class Twitter Sentiment Analysis. Ph.D. Dissertation, National Technical University of Athens, Athens, Greece, 2021. Available online: https://dspace.lib.ntua.gr/xmlui/handle/123456789/54013?locale-attribute=en (accessed on 8 December 2023).
- Levin, S.; Woolf, N.; The Guardian. Tesla Driver Killed While Using Autopilot was Watching Harry Potter, Witness Says. 2016. Available online: https://www.theguardian.com/technology/2016/jul/01/tesla-driver-killed-autopilot-self-driving-car-harry-potter (accessed on 20 April 2024).
- Levin, S.; The Guardian. “Uber Should Be Shut Down”: Friends of Self-Driving Car Crash Victim Seek Justice. 2018. Available online: https://www.theguardian.com/technology/2018/mar/20/uber-self-driving-car-crash-death-arizona-elaine-herzberg (accessed on 20 April 2024).
- Vlasic, B.; Boudette, N.E.; The New York Times. Self-Driving Tesla Was Involved in Fatal Crash, U.S. Says. 2016. Available online: https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html (accessed on 20 April 2024).
- Griggs, T.; Wakabayashi, D.; The New York Times. How a Self-Driving Uber Killed a Pedestrian in Arizona. 2018. Available online: https://www.nytimes.com/interactive/2018/03/20/us/self-driving-uber-pedestrian-killed.html (accessed on 20 April 2024).
- Wicki, M. How do familiarity and fatal accidents affect acceptance of self-driving vehicles? Transp. Res. Part F Traffic Psychol. Behav. 2021, 83, 401–423. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Juma, C. Innovation and Its Enemies: Why People Resist New Technologies; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Benítez-Andrades, J.A.; Alija-Pérez, J.-M.; Vidal, M.-E.; Pastor-Vargas, R.; García-Ordás, M.T. Traditional Machine Learning Models and Bidirectional Encoder Representations from Transformer (BERT)–Based Automatic Classification of Tweets About Eating Disorders: Algorithm Development and Validation Study. JMIR Med. Inform. 2022, 10, e34492. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
Sentiment | Number of Tweets | % |
---|---|---|
Negative | 207,508 | 40.86% |
Positive | 165,157 | 32.52% |
Neutral | 135,208 | 26.62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauvayre, R.; Gable, J.S.M.; Aalah, A.; Fernandes Novo, M.; Dehondt, M.; Chauvière, C. The Impact of Autonomous Vehicle Accidents on Public Sentiment: A Decadal Analysis of Twitter Discourse Using roBERTa. Technologies 2024, 12, 270. https://doi.org/10.3390/technologies12120270
Sauvayre R, Gable JSM, Aalah A, Fernandes Novo M, Dehondt M, Chauvière C. The Impact of Autonomous Vehicle Accidents on Public Sentiment: A Decadal Analysis of Twitter Discourse Using roBERTa. Technologies. 2024; 12(12):270. https://doi.org/10.3390/technologies12120270
Chicago/Turabian StyleSauvayre, Romy, Jessica S. M. Gable, Adam Aalah, Melvin Fernandes Novo, Maxime Dehondt, and Cédric Chauvière. 2024. "The Impact of Autonomous Vehicle Accidents on Public Sentiment: A Decadal Analysis of Twitter Discourse Using roBERTa" Technologies 12, no. 12: 270. https://doi.org/10.3390/technologies12120270
APA StyleSauvayre, R., Gable, J. S. M., Aalah, A., Fernandes Novo, M., Dehondt, M., & Chauvière, C. (2024). The Impact of Autonomous Vehicle Accidents on Public Sentiment: A Decadal Analysis of Twitter Discourse Using roBERTa. Technologies, 12(12), 270. https://doi.org/10.3390/technologies12120270