Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Membranes and Module Fabrication
2.3. Pilot Systems for Membrane Module Testing
- TMP: transmembrane pressure (bar),
- Pf: feed pressure (bar),
- Pc: concentrate pressure (bar), and
- Pp: permeate pressure (bar).
- J = flux (L/m2·h)
- Qp = filtrate flow (L/h)
- Am = membrane surface area (m2)
- The recovery of a membrane was calculated using Equation (3):
- Qp = filtrate flow produced by the membrane unit (L/h)
- Qf = feed flow to the membrane unit (L/h)
- The salt rejection (R) was calculated as follows:
3. Results and Discussion
3.1. Prepared Nanoparticles and Membranes Characterization
3.2. RO Spiral-Wound Membrane Module Results
3.3. FO Spiral-Wound Membrane Module Results
3.4. Integrated Membrane RO/PAO System Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.L.; Zhou, W.; Shen, L.; Li, B.; Sun, H.; Zeng, Q.; Tang, C.Y.; Lin, H.; Chung, T.S. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. Water Res. 2024, 251, 121111. [Google Scholar] [CrossRef] [PubMed]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Opia, A.C.; Ugwu, C.I. Membrane technology as viable means for water recovery: Challenges and future directions. J. Resour. Recovery 2024, 2, 1020. [Google Scholar] [CrossRef]
- Popova, A.; Boivin, S.; Shintani, T.; Fujioka, T. Development of high-integrity reverse osmosis membranes for enhanced removal of microorganisms. Desalination 2024, 572, 117155. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Ahmad, N.A.; Lee, W.J. Flux enhancement in reverse osmosis membranes induced by synergistic effect of incorporated palygorskite/chitin hybrid nanomaterial. J. Environ. Chem. Eng. 2021, 9, 105432. [Google Scholar] [CrossRef]
- Cui, L.; Wang, P.; Che, H.; Gao, X.; Chen, J.; Liu, B.; Ao, Y. Co nanoparticles modified N-doped carbon nanosheets array as a novel bifunctional photothermal membrane for simultaneous solar-driven interfacial water evaporation and persulfate mediating water purification. Appl. Catal. B Environ. 2023, 330, 122556. [Google Scholar] [CrossRef]
- Issaoui, M.; Jellali, S.; Zorpas, A.A.; Dutournie, P. Membrane technology for sustainable water resources management: Challenges and future projections. Sustain. Chem. Pharm. 2022, 25, 100590. [Google Scholar] [CrossRef]
- Yu, L.; Deana, K.; Lin, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Reddya, A.V.R.; Patelb, H.R. Chemically treated polyethersulfone/polyacrylonitrile blend ultrafiltration membranes for better fouling resistance. Desalination 2008, 221, 318–323. [Google Scholar] [CrossRef]
- Ehsan, S.; Toraj, M. Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: Preparation, morphology and performance. Desalination 2009, 249, 850–854. [Google Scholar]
- Mansor, E.S.; Abdallah, H.; Shaban, A.M. Development of TiO2/polyvinyl alcohol-cellulose acetate nanocomposite reverse osmosis membrane for groundwater-surface water interfaces purification. Mater. Sci. Eng. B 2023, 289, 116222. [Google Scholar] [CrossRef]
- Jain, H.; Garg, M.C. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. Environ. Technol. Innov. 2021, 23, 101561. [Google Scholar] [CrossRef]
- Al-Najar, B.; Peters, C.D.; Albuflasa, H.; Hankins, N.P. Pressure and osmotically driven membrane processes: A review of the benefits and production of nano-enhanced membranes for desalination. Desalination 2020, 479, 114323. [Google Scholar] [CrossRef]
- Altaee, A.; Sharif, A.; Zaragoza, G.; Ismail, A.F. Evaluation of FO-RO and PRO-RO designs for power generation and seawater desalination using impaired water feeds. Desalination 2015, 368, 27–35. [Google Scholar] [CrossRef]
- Blandin, G.; Verliefde, A.R.; Le-Clech, P. Pressure enhanced fouling and adapted anti-fouling strategy in pressure assisted osmosis (PAO). J. Membr. Sci. 2015, 493, 557–567. [Google Scholar] [CrossRef]
- Blandin, G.; Verliefde, A.R.D.; Tang, C.Y.; Childress, A.E.; Le-Clech, P. Validation of assisted forward osmosis (AFO) process: Impact of hydraulic pressure. J. Membr. Sci. 2013, 447, 1–11. [Google Scholar] [CrossRef]
- Kim, B.; Gwak, G.; Hong, S. Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S). Desalination 2017, 422, 5–16. [Google Scholar] [CrossRef]
- Marghany, N.E.; Moustafa, M.M.; El-Sharkawy, A.M.; Ali, A.A. Zirconium oxide nanoparticles: Fabrication, study and application for removal of organic dye from aqueous media. Benha J. Appl. Sci. 2022, 7, 193–200. [Google Scholar] [CrossRef]
- Mansor, E.S.; Abdallah, H.; Shaban, A.M. Fabrication of high selectivity blend membranes based on polyvinyl alcohol for crystal violet dye removal. J. Environ. Chem. Eng. 2020, 8, 103706. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.B.; Zhang, X.S.; Zheng, G.D. Polyamide thin-film composite membranes prepared from 3,4,5-biphenyl triacyl chloride, 3,3,5,5-biphenyl tetraacyl chloride and m-phenylenediamine. J. Membr. Sci. 2007, 289, 258–267. [Google Scholar] [CrossRef]
- Liu, M.H.; Wu, D.H.; Yua, S.C.; Gao, C.J. Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes. J. Membr. Sci. 2009, 326, 205–214. [Google Scholar] [CrossRef]
- Kim, I.C.; Ka, Y.H.; Park, J.Y.; Lee, K.H. Preparation of fouling resistant nanofiltration and reverse osmosis membranes and their use for dyeing wastewater effluent. J. Ing. Eng. Chem. 2004, 10, 115–121. [Google Scholar]
- Huang, X.; Tian, F.; Chen, G.; Wang, F.; Weng, R.; Xi, B. Preparation and Characterization of Regenerated Cellulose Membrane Blended with ZrO2 Nanoparticles. Membranes 2022, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Kilduff, J.E.; Belfort, G. Modes of Natural Organic Matter Fouling during Ultrafiltration. Environ. Sci. Technol. 2003, 37, 1676–1683. [Google Scholar] [CrossRef]
- Teixeira, M.; Rosa, M.; Nyström, M. The role of membrane charge on nanofiltration performance. J. Membr. Sci. 2005, 265, 160–166. [Google Scholar] [CrossRef]
- Kim, Y.C.; Park, S. Experimental Study of a 4040 Spiral-Wound Forward-Osmosis Membrane Module. Environ. Sci. Technol. 2011, 45, 7737–7745. [Google Scholar] [CrossRef] [PubMed]
- Abounahia, N.; Ibrar, I.; Kazwini, T.; Altaee, A.; Samal, A.K.; Zaidi, S.J.; Hawari, A.H. Desalination by the forward osmosis: Advancement and challenges. Sci. Total Environ. 2023, 886, 163901. [Google Scholar] [CrossRef]
- Coday, B.D.; Heil, D.M.; Xu, P.; Cath, T.Y. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes. Environ. Sci. Technol. 2013, 47, 2386–2393. [Google Scholar] [CrossRef]
- AlZainati, N.; Saleem, H.; Altaee, A.; Zaidi, S.J.; Mohsen, M.; Hawari, A.; Millar, G.J. Pressure retarded osmosis: Advancement, challenges and potential. J. Water Process Eng. 2021, 40, 101950. [Google Scholar] [CrossRef]
- Blandin, G.; Myat, D.T.; Verliefde, A.R.D.; Le-Clech, P. Pressure assisted osmosis using nanofiltration membranes (PAO-NF): Towards higher efficiency osmotic processes. J. Membr. Sci. 2017, 533, 250–260. [Google Scholar] [CrossRef]
- Ibraheem, B.M.; Al Aani, S.; Alsarayreh, A.A.; Alsalhy, Q.F.; Salih, I.K. Forward Osmosis Membrane: Review of Fabrication, Modification, Challenges and Potential. Membranes 2023, 13, 379. [Google Scholar] [CrossRef]
- Lee, S. Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module. Membranes 2020, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Y.; Wang, X.; Cheng, C.; Zhang, K.; Yang, J.; Han, G.; Wang, Z.; Wang, X.; Wang, L. Desalination Characteristics of Cellulose Acetate FO Membrane Incorporated with ZIF-8 Nanoparticles. Membranes 2022, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.M.; Soliman, M.M.; Kandil, S.H.; Khalil, M.M.A. Emerging mixed matrix membranes based on zeolite nanoparticles and cellulose acetate for water desalination. Cellulose 2021, 28, 6417–6426. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Lu, J.; Shan, B.; Gao, C. Enhanced performance of cellulose triacetate membranes using binary mixed additives for forward osmosis desalination. Desalination 2016, 405, 68–75. [Google Scholar] [CrossRef]
- Ali, A.S.M.; Soliman, M.M.; Kandil, S.H.; Ebrahim, S.; Khalil, M. Tailoring nanocomposite membranes of cellulose of acetate Silica Nanoparticles for Desalination. J. Mater. 2022, 8, 1122–1130. [Google Scholar] [CrossRef]
- Mansor, E.S.; Abdallah, H.; Shalaby, M.S.; Shaban, A.M. Enhancement of reverse osmosis membranes for groundwater purification using cellulose acetate incorporated with ultrathin graphitic carbon nitride nanosheets. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100760. [Google Scholar] [CrossRef]
- Kim, T.; Choi, M.; Ahn, H.S.; Rho, J.; Jeong, H.M.; Kim, K. Fabrication and characterization of zeolitic imidazolate framework embedded cellulose acetate membranes for osmotically driven membrane process. Sci. Rep. 2019, 9, 5779. [Google Scholar] [CrossRef]
- El-Noss, M.; Isawi, H.; Shawky, H.A.; Gomaa, M.A.; Abdel-Mottaleb, M.S.A. Improvement of cellulose acetate forward osmosis membrane performance using zinc oxide nanoparticles. Desalin. Water Treat. 2020, 193, 19–33. [Google Scholar] [CrossRef]
Parameter | Unit | Results |
---|---|---|
pH | - | 7.5 |
TDS | mg/L | 38,528 |
Conductivity | Ms/cm | 57.5 |
Total Hardness | mg/L | 6500 |
Calcium hardness | mg/L | 1800 |
Magnesium hardness | mg/L | 5600 |
Sodium | mg/L | 18,000 |
Alkalinity | mg/L | 13,000 |
Chloride | mg/L | 34,200 |
Sulfate | mg/L | 1170 |
Potassium | mg/L | 275 |
Parameter | Unit | Results |
---|---|---|
pH | 8.14 | |
Turbidity | NTU | 7.4 |
TDS | mg/L | 282 |
TSS | mg/L | 101 |
COD | mg/L | 6.3 |
BOD | mg/L | 3.8 |
Alkalinity | mg/L | 127 |
CO3 | mg/L | 8.9 |
HCO3 | mg/L | 137 |
Hardness | mg/L | 113 |
NO3 | mg/L | 0.24 |
Concentration [ppm] | Rir | Rr | Rm |
---|---|---|---|
10,000 | 0.34 | 0.498 | 1.67 |
38,528 | 0.139 | 0.414 | 1.233 |
Polymeric Material | Nano Particles | Process | Separation% | Permeate Flux LMH | Reference |
---|---|---|---|---|---|
Cellulose acetate | ZIF-8 | FO | 2.84 (Js; gLMH) | 50.14 | [32] |
cellulose acetate | Zeolite | RO | 95.5 | 1.3 | [33] |
Cellulose triacetate | ZnCl2-LA | FO | 98.3 | 11.5 | [34] |
cellulose acetate | Silica | RO | 91 | 1.6 | [35] |
Cellulose acetate/polyvinyl alcohol | Graphite carbon nitride nanosheets | RO | 95 | 10.5 | [36] |
Cellulose acetate | ZIF-302/CA | FO | - | 16.8 | [37] |
Cellulose acetate | ZnO | FO | 99.5% of Na+, 100% of Cl | 26.57 | [38] |
Cellulose acetate/polyvinyl alcohol | ZrO2 | RO | 99 | 9.9 | This work |
Cellulose triacetate | ZrO2 | FO | 93.2 Dilution% | 68.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaswad, S.O.; Abdallah, H.; Mansor, E.S. Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology. Technologies 2024, 12, 253. https://doi.org/10.3390/technologies12120253
Alaswad SO, Abdallah H, Mansor ES. Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology. Technologies. 2024; 12(12):253. https://doi.org/10.3390/technologies12120253
Chicago/Turabian StyleAlaswad, Saleh O., Heba Abdallah, and Eman S. Mansor. 2024. "Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology" Technologies 12, no. 12: 253. https://doi.org/10.3390/technologies12120253
APA StyleAlaswad, S. O., Abdallah, H., & Mansor, E. S. (2024). Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology. Technologies, 12(12), 253. https://doi.org/10.3390/technologies12120253