Two Fe-Zr-B-Cu Nanocrystalline Magnetic Alloys Produced by Mechanical Alloying Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphology and Structure
3.2. Thermal Analysis
3.3. Thermomagnetic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gouasmia, T.; Loudjani, N.; Boulkra, M.; Benchiheub, M.; Belakroum, K.; Bououdina, M. Morphology, structural and microstructural characterizations of mechanically alloyed Fe50Co40Ni10 powder mixture. Appl. Phys. A Sci. Process. 2022, 128, 935. [Google Scholar] [CrossRef]
- Panigrahi, M.; Avar, B. Influence of mechanical alloying on structural, thermal and magnetic properties of Fe50Ni10Co10Ti10B20 high entropy soft magnetic alloy. J. Mater. Sci. Mater. Electron. 2021, 32, 21124–21134. [Google Scholar] [CrossRef]
- Chaubey, A.K.; Konda Gokuldoss, P.; Wang, Z.; Scudino, S.; Mukhopadhyay, N.K.; Eckert, J. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles. Technologies 2016, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Karthiselva, N.S.; Bakshi, S.R. Reactive Spark Plasma Sintering and Mechanical Properties of Zirconium Diboride–Titanium Diboride Ultrahigh Temperature Ceramic Solid Solutions. Technologies 2016, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Chebli, A.; Cesnek, M.; Djekoun, A.; Suñol, J.J.; Niznansky, D. Synthesis, characterization and amorphization of mechanically alloyed Fe75Si12Ti6B7 and Fe73Si15Ti5B7 powders. J. Mater. Sci. 2022, 57, 12600–12615. [Google Scholar] [CrossRef]
- Carrillo, A.; Daza, J.; Saurina, J.; Escoda, L.; Suñol, J.J. Structural, Thermal and Magnetic Analysis of Fe75Co10Nb6B9 and Fe65Co20Nb6B9 Nanostructured Alloys. Materials 2021, 14, 4542. [Google Scholar] [CrossRef]
- Yao, K.F.; Shi, L.X.; Chen, S.Q.; Shao, Y.; Chen, N.; Jia, J.L. Research progress of Fe based soft magnetic amorphous/nanocrystalline alloys. Acta Phys. Sin. 2018, 58, 17–27. [Google Scholar] [CrossRef]
- Zhu, S.; Duan, F.; Ni, J.L.; Feng, S.J.; Liu, X.S.; Lv, Q.R.; Kan, X.C. Soft magnetic composites FeSiAl/MoS2 with high magnetic permeability and low magnetic loss. J. Alloy. Compd. 2022, 926, 166893. [Google Scholar] [CrossRef]
- Yamazaki, T.; Tomita, T.; Uji, K.; Kuwata, H.; Sano, K.; Oka, C.; Sakurai, J.; Hata, S. Combinatorial synthesis of nanocrystalline FeSiBPCuC-Ni-(Nb.;Mo) soft magnetic alloys with high corrosion resistance. J. Non-Cryst. Solids 2021, 563, 120808. [Google Scholar] [CrossRef]
- Miglierini, M.B.; Dekan, J.; Cesnek, M.; Janotova, I.; Svev, P.; Budjos, M.; Kohout, J. Hyperfine interactions in Fe/Co-B-Sn amorphous alloys by Mossbauer spectrometry. J. Magn. Magn. Mater. 2020, 500, 6417. [Google Scholar] [CrossRef]
- Yakin, A.; Simsek, T.; Avar, B.; Simsek, T.; Chattopadhyay, A.K. A review of soft magnetic properties of mechanically alloyed amorphous and nanocrystalline powders. Emergent Mater. 2023, 6, 453–481. [Google Scholar] [CrossRef]
- Yakin, A.; Simsek, T.; Avar, B.; Chattopadhyay, A.K.; Ozcan, S.; Simsek, T. The effect of Cr and Nb addition on the structural, morphological, and magnetic properties of the mechanically alloyed high entropy FeCoNi alloys. Appl. Phys. A 2022, 128, 686. [Google Scholar] [CrossRef]
- Wang, P.; Wei, M.; Dong, Y.; Zhu, Z.; Liu, J.; Pang, J.; Li, X.; Zhang, J. Crystallization evolution behavior of amorphous Fe85.7Si7.9B3.6Cr2C0.8powder produced by a novel atomization process. J. Non-Cryst. Solids 2022, 594, 1218254. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, Y.; Shao, W.; Shao, Y. Microstructure and magnetic properties of soft magnetic cores of amorphous and nanocrystalline alloys. J. Magn. Magn. Mater. 2013, 330, 119–133. [Google Scholar] [CrossRef]
- Dai, T.; Wang, N. Study of magnetic properties and degradability of gas atomization Fe-based (Fe-Si-B-P) amorphous powder. J. Supercond. Nov. Magn. 2019, 32, 3699–3702. [Google Scholar] [CrossRef]
- Masumoto, H.; Kajiura, Y.; Hosono, M.; Hasegawa, A.; Kumaoka, H.; Yoshimodo, K.; Muri, S. Development of novel Fe based nanocrystalline FeBNbPSi alloy powder with high Bso f 1.41 T by forming stable single amorphous phase. AIP Adv. 2022, 12, 035312. [Google Scholar] [CrossRef]
- Li, G.; Shi, G.; Miao, H.; Liu, D.; Li, Z.; Wang, M.; Wang, L. Effects of the gas-atomization pressure and annealing temperature on the microstructure and performance of FeSiBCuNb nanocrystalline soft magnetic composites. Materials 2021, 16, 1284. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.R.M.; Kaufman, M.J.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S. Gas atomization of nanocrystalline Fe63Nb10Al4Si3B20 alloy. J. Metastable Nanocryst. Mater. 2004, 20–21, 175–182. [Google Scholar] [CrossRef]
- Zhao, M.; Pang, J.; Zhang, Y.R.; Zhang, W.; Xiang, Q.C.; Ren, Y.L.; Li, X.Y.; Qiu, K.Q. Optimization of crystallization, microstructure and soft magnetic properties of (Fe0.83B0.11Si0.02P0.03C0.01)(99.5)Cu0.5 alloy by rapid annealing. J. Non-Cryst. Solids 2022, 579, 121380. [Google Scholar] [CrossRef]
- Hasiak, M.; Laszcz, A.; Zak, A.; Kaleta, J. Microstructure and Magnetic Properties of NANOPERM-Type Soft Magnetic Material. Acta Phys. Pol. A 2019, 135, 284–287. [Google Scholar] [CrossRef]
- Ozturk, S.; Icin, K.; Gencturk, M.; Gobuluk, M.; Svec, P. Effect of heat treatment process on the structural and soft magnetic properties of Fe38Co38Mo8B15Cu ribbons. J. Non-Cryst. Solids 2020, 527, 119745. [Google Scholar] [CrossRef]
- Nishiyama, N.; Tanimoto, K.; Makino, A. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft Magnetic Nanomet cores. AIP Adv. 2016, 6, 055925. [Google Scholar] [CrossRef] [Green Version]
- Avar, B.; Chattopadhyay, A.K.; Simsek, T.; Simsek, T.; Ozcan, S.; Kalkan, B. Synthesis and characterization of amorphous-nanocrystalline Fe70Cr10Nb10B10 powders by mechanical alloying. Appl. Phys. A 2022, 128, 537. [Google Scholar] [CrossRef]
- Suñol, J.J.; González, A.; Saurina, J.; Escoda, L.; Bruna, P. Thermal and structural characterization of Fe-Nb-B alloys prepared by mechanical alloying. Mater. Sci. Eng. A 2004, 375–377, 874–880. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Bednarcik, J.; Eckert, J. Influence of annealing on microstructure and magnetic properties of cobalt-based amorphous/nanocrystalline powders synthesized by mechanical alloying. J. Alloy. Compd. 2015, 632, 296–302. [Google Scholar] [CrossRef]
- Daza, J.; Ben Mbarek, W.; Escoda, L.; Suñol, J.J. Characterization and analysis of nanocrystalline soft Magnetic alloys: Fe based. Metals 2021, 11, 1896. [Google Scholar] [CrossRef]
- Vyazovkin, S. Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules 2020, 25, 2813. [Google Scholar] [CrossRef]
- Chen, F.G.; Wang, Y.G.; Mian, X.F.; Hong, H.; Bi, K. Nanocrystalline Fe83P16Cu1 soft magnetic alloy produced by crystallization of its amorphous precursor. J. Alloy. Compd. 2013, 549, 26–29. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, M.; Du, Y.; Yao, L.; Jian, Z. Crystallization Kinetics of the Fe68Nb6B23Mo3 Glassy Ribbons Studied by Differential Scanning Calorimetry. Crystals 2022, 12, 852. [Google Scholar] [CrossRef]
- Zhang, L.I.; Yu, P.F.; Cheng, H.; Zhang, M.D.; Liu, D.J.; Zhou, Z.; Jin, Q.; Liaw, P.K.; Li, G.; Liu, R.P. Crystallization in Fe- and Co-based amorphous alloys studied by in-situ X-ray diffraction. Metall. Mater. Trans. A 2016, 47, 5859–5862. [Google Scholar] [CrossRef]
- Zhu, J.S.; Wang, Y.G.; Xia, G.T.; Dai, J.; Chen, J.K. Fe83P14.5Cu1Al1.5 partial nanocrystalline alloy obtained by one-step melt spinning method. J. Alloy. Compd. 2016, 666, 243–247. [Google Scholar] [CrossRef]
- Li, G.; Li, D.; Ni, X.; Li, Z.; Lu, Z. Effect of copper and niobium addition on crystallization kinetics in Fe-Cu-Nb-Si-B alloys. Rare Met. Mater. Eng. 2013, 42, 1352–1355. [Google Scholar] [CrossRef]
- Malow, T.R.; Koch, C.C. Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 1997, 45, 2177–2186. [Google Scholar] [CrossRef]
- Wu, X.; Li, X.; Li, S. Crystallization kinetics and soft magnetic properties of Fe71Si16B9Cu1Nb3 amorphous alloys. Mater. Res. Express 2020, 7, 016118. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chang, I.T.H.; Lees, M.R. Thermodynamic and magnetic properties of multicomponent (Fe,Ni)70Zr10B20 amorphous alloy powders made by mechanical alloying. Mater. Sci. Eng. A 2001, 304–306, 992–996. [Google Scholar] [CrossRef]
- Warski, T.; Radon, A.; Zackiewicz, P.; Wlodarczyk, P.; Polak, M.; Wojcik, A.; Maziarz, W.; Kolano-Burrian, A.; Hawelek, L. Influence of Cu content on structure, thermal stability and magnetic properties in Fe72-xNi8Nb4CuxSi2B14 alloys. Materials 2021, 14, 726. [Google Scholar] [CrossRef]
- Li, D.Y.; Li, X.S.; Zhou, J.; Guo, T.Y.; Tong, X.; Zhang, B.; Wang, C.Y. Development of Fe-based diluted nanocrystalline alloy by substituting C for P in FeSiBCCu system. J. Alloy. Comp. 2023, 952, 170012. [Google Scholar] [CrossRef]
- Manjura Hoque, S.; Hakim, M.A.; Khan, F.A.; Chau, N. Ultra-soft Magnetic properties of devitrified Fe73.5Cu0.6Nb2.4Si13B8.5 alloy. Mater. Chem. Phys. 2007, 101, 112–117. [Google Scholar] [CrossRef]
- Chen, Y.B.; Zheng, Z.G.; Wei, J.; Xu, C.; Wang, L.H.; Qiu, Z.G.; Zeng, D.C. effect of Mo addition on thermal stability and magnetic properties in FeSiBPCu nanocrystalline alloys. J. Non-Cryst. Solids 2023, 609, 122279. [Google Scholar] [CrossRef]
- Manchanda, B.; Vimal, K.K.; Kapur, G.S.; Kant, S.; Choudhary, V. Effect of sepiolite on nonisothermal crystallization kinetics of polypropylene. J. Mater. Sci. 2016, 51, 9535–9550. [Google Scholar] [CrossRef]
- Gao, Q.; Jian, Z. Kinetic study on non-isothermal crystallization of Cu50Zr50 metallic glass. Trans. Indian Inst. Mat. 2017, 70, 1879–1885. [Google Scholar] [CrossRef]
- Hasani, S.; Rezaei-Shahreza, P.; Seifoddini, A. The effect of Cu minor addition on the non-isothermal kinetic of nano-crystallites formation in Fe41Co7Cr15Mo14Y2C15B6 BMG. J. Therm. Anal. Calorim. 2021, 143, 3365–3375. [Google Scholar] [CrossRef]
- Jaafari, Z.; Seifoddini, A.; Hasani, S.; Rezaei-Shahreza, P. Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)(77)Mo5P9C7.5B1.5](100-x)Cux (x = 0.1at.%) BMG: Non-isothermal condition. J. Therm. Anal. Calorim. 2018, 134, 1565–1574. [Google Scholar] [CrossRef]
- Janovsky, D.; Sveda, M.; Sycheva, A.; Kristaly, F.; Zamborsky, F.; Koziel, T.; Bala, P.; Czel, G.; Kaptay, G. Amorphous alloys and differential scanning calorimetry (DSC). J. Therm. Anal. Calorim. 2022, 147, 7141–7157. [Google Scholar] [CrossRef]
- Kaloshkin, S.; Churyukanova, M.; Tcherdyntsev, V. Characterization of Magnetic Transformation at Curie Temperature in Finemet-type Microwires by DSC. MRS Online Proc. Libr. 2012, 1408, 107–112. [Google Scholar] [CrossRef]
- Alleg, S.; Brahimi, A.; Azzaza, S.; Souilah, S.; Zergoug, M.; Suñol, J.J.; Greneche, J.M. X-ray diffraction, Mössbauer spectroscopy and thermal studies of the mechanically alloyed (Fe1-xMnx)2P powders. Adv. Powder Technol. 2018, 29, 257–265. [Google Scholar] [CrossRef]
- González, A.; Bonastre, A.; Escoda, L.; Suñol, J.J. Thermal analysis of Fe(Co,Ni) based alloys prepared by mechanical alloying. 2007. J. Therm. Anal. Calorim. 2007, 87, 255–258. [Google Scholar] [CrossRef]
- Neamtu, B.V.; Chicinas, H.F.; Gabor, M.; Marinca, T.F.; Lupu, N.; Chicinas, I. A comparative of the Fe-based amorphous alloy prepared by mechanical alloying and rapid quenching. J. Alloy. Comp. 2017, 703, 19–25. [Google Scholar] [CrossRef]
Composition at.% | Activation Energy kJ mol−1 | Initial Structure | Reference |
---|---|---|---|
Fe83P16Cu1 | 238 | Amorphous | [28] |
Fe68Nb6B23Mo3 | 310 | Amorphous | [29] |
Fe80Si20 | 245 | Amorphous | [30] |
Fe83P16Cu1 | 219 | Nanocrystalline | [31] |
Fe83P14.5Cu1Al1.5 | 238 | Nanocrystalline | [31] |
Fe78Si11B9 | 370 | Amorphous | [32] |
Fe73.5Cu1B7Si15.5Nb3 | 295 | Nanocrystalline | [32] |
Fe (99.9% purity) | 224 | Nanocrystalline | [33] |
Fe71Si16B9Cu1Nb3 | 341 | Amorphous | [34] |
Fe85Zr6B8Cu1 | 282 | Nanocrystalline | This Work |
Fe80Zr5B13Cu1 | 299 | Nanocrystalline | This Work |
Alloy | Hc 10−4 T | Ms A·m2·kg−1 | Mr A·m2·kg−1 | Mr/Ms 10−3 |
---|---|---|---|---|
Fe85Zr6B8Cu1 | 12.4 | 146 | 0.60 | 4 |
Fe80Zr6B13Cu1 | 10.6 | 139 | 0.71 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daza, J.; Ben Mbarek, W.; Escoda, L.; Saurina, J.; Suñol, J.-J. Two Fe-Zr-B-Cu Nanocrystalline Magnetic Alloys Produced by Mechanical Alloying Technique. Technologies 2023, 11, 78. https://doi.org/10.3390/technologies11030078
Daza J, Ben Mbarek W, Escoda L, Saurina J, Suñol J-J. Two Fe-Zr-B-Cu Nanocrystalline Magnetic Alloys Produced by Mechanical Alloying Technique. Technologies. 2023; 11(3):78. https://doi.org/10.3390/technologies11030078
Chicago/Turabian StyleDaza, Jason, Wael Ben Mbarek, Lluisa Escoda, Joan Saurina, and Joan-Josep Suñol. 2023. "Two Fe-Zr-B-Cu Nanocrystalline Magnetic Alloys Produced by Mechanical Alloying Technique" Technologies 11, no. 3: 78. https://doi.org/10.3390/technologies11030078