Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AST | accelerated stress test |
C | carbon |
CL | catalyst layer |
FC | fuel cell |
GDL | gas diffusion layer |
PCC | Pearson correlation coefficient |
Pt | platinum |
PtO | platinum oxide |
Pt | platinum ion |
PEM | polymer electrolyte membrane |
References
- Eikerling, M.; Kulikovsky, A. Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Hacker, V.; Mitsushima, S. (Eds.) Fuel Cells and Hydrogen: From Fundamentals to Applied Research; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kulikovsky, A.; Berg, T. Positioning of a reference electrode in a PEM fuel cell. J. Electrochem. Soc. 2011, 162, F843–F848. [Google Scholar] [CrossRef]
- Karpenko-Jereb, L.; Araki, T. Modeling of polymer electrolyte fuel cells. In Fuel Cells and Hydrogen: From Fundamentals to Applied Research; Hacker, V., Mitsushima, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 41–62. [Google Scholar]
- Karpenko-Jereb, L.; Sternig, C.; Fink, C.; Tatschl, R. Membrane degradation model for 3D CFD analysis of fuel cell performance as a function of time. Int. J. Hydrogen Energy 2016, 41, 13644–13656. [Google Scholar] [CrossRef]
- Pandy, A.; Yang, Z.; Gummalla, M.; Atrazhev, V.V.; Kuzminyh, N.Y.; Sultanov, V.I.; Burlatsky, S. A carbon corrosion model to evaluate the effect of steady state and transient operation of a polymer electrolyte membrane fuel cell. J. Electrochem. Soc. 2013, 160, F972–F979. [Google Scholar] [CrossRef]
- Fellner, K.; Kovtunenko, V.A. A singularly perturbed nonlinear Poisson–Boltzmann equation: Uniform and super-asymptotic expansions. Math. Meth. Appl. Sci. 2015, 38, 3575–3586. [Google Scholar] [CrossRef]
- Fellner, K.; Kovtunenko, V.A. A discontinuous Poisson–Boltzmann equation with interfacial transfer: Homogenisation and residual error estimate. Appl. Anal. 2016, 95, 2661–2682. [Google Scholar] [CrossRef]
- González Granada, J.R.; Kovtunenko, V.A. Entropy method for generalized Poisson–Nernst–Planck equations. Anal. Math. Phys. 2018, 8, 603–619. [Google Scholar] [CrossRef]
- Dreyer, W.; Guhlke, C.; Müller, R. A new perspective on the electron transfer: Recovering the Butler–Volmer equation in non-equilibrium thermodynamics. Phys. Chem. Chem. Phys. 2016, 18, 24966–24983. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Reichelt, S.; Zubkova, A.V. Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains. Math. Meth. Appl. Sci. 2020, 43, 1838–1856. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Zubkova, A.V. On generalized Poisson–Nernst–Planck equations with inhomogeneous boundary conditions: A-priori estimates and stability. Math. Meth. Appl. Sci. 2017, 40, 2284–2299. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Zubkova, A.V. Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium. Kinet. Relat. Mod. 2018, 11, 119–135. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Zubkova, A.V. Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: Correctors and estimates. Appl. Anal. 2021, 100, 253–274. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Zubkova, A.V. Existence and two-scale convergence of the generalised Poisson–Nernst–Planck problem with non-linear interface conditions. Eur. J. Appl. Math. 2021, 32, 683–710. [Google Scholar] [CrossRef]
- Khludnev, A.M.; Kovtunenko, V.A. Analysis of Cracks in Solids; WIT-Press: Boston, MA, USA, 2000. [Google Scholar]
- Holby, E.F.; Morgan, D. Application of Pt nanoparticle dissolution and oxidation modeling to understanding degradation in PEM fuel cells. J. Electrochem. Soc. 2012, 159, B578–B591. [Google Scholar] [CrossRef]
- Li, Y.; Moriyama, K.; Gu, W.; Arisetty, S.; Wang, C.Y. A one-dimensional Pt degradation model for polymer electrolyte fuel cells. J. Electrochem. Soc. 2015, 162, F834–F842. [Google Scholar] [CrossRef]
- Kannan, R.; Kim, A.R.; Kim, J.S.; Yoo, D.J. 3D graphene-mixed metal oxide-supported carbonsingle bondpalladium quantum dot nanoarchitectures—A facile bifunctional electrocatalyst for direct ethylene glycol fuel cells and oxygen evolution reactions. Int. J. Hydrogen Energy 2016, 41, 18033–18043. [Google Scholar] [CrossRef]
- Kumar, T.R.; Yoo, D.J.; Kim, A.R.; Kumar, G.G. Green synthesis of Pt–Pd bimetallic nanoparticle decorated reduced graphene oxide and its robust catalytic activity for efficient ethylene glycol electrooxidation. New J. Chem. 2018, 42, 14386–14393. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Karpenko-Jereb, L. Study of voltage cycling conditions on Pt oxidation and dissolution in polymer electrolyte fuel cells. J. Power Source 2021, 493, 229693. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Karpenko-Jereb, L. Lifetime of catalyst under voltage cycling in polymer electrolyte fuel cell due to platinum oxidation and dissolution. Technologies 2021, 9, 80. [Google Scholar] [CrossRef]
- Pivac, I.; Barbir, F. Impact of shutdown procedures on recovery phenomena of proton exchange membrane fuel cells. Fuel Cells 2020, 160, 185–195. [Google Scholar] [CrossRef]
- Jayakumar, A.; Madheswaran, D.K.; Kumar, N.M. A critical assessment on functional attributes and degradation mechanism of membrane electrode assembly components in direct methanol fuel cells. Sustainability 2021, 13, 13938. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, M.M.; Shi, D.D.; Zhang, S.C.; Wu, Y.M.; Gong, W.J.; Fan, H.Q. Long-term polarization accelerated degradation of nano-thin C/Ti coated SS316L bipolar plates used in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 8974–8992. [Google Scholar] [CrossRef]
- Testa, E.; Maggiore, P.; Pace, L.; Dalla Vedova, M.D.L. Sensitivity analysis for a PEM fuel cell model aimed to optimization. WSEAS Trans. Power Syst. 2015, 10, 171–179. [Google Scholar]
Symbol | Value | Units | Description |
---|---|---|---|
L | cm | CL thickness | |
cm | Pt particle diameter | ||
cm | Pt particle volume | ||
21.45 | g/cm | Pt particles density on carbon support | |
g/cm | Pt particles loading on carbon support | ||
0.02 | Pt volume fraction across CL | ||
1/cm | Pt number concentration in CL | ||
0.2 | volume fraction of ionomer increment in cathode | ||
T | 353.15 | K | temperature |
Symbol | Value | Units | Description |
---|---|---|---|
Hz | dissolution attempt frequency | ||
Hz | backward dissolution rate factor | ||
0.5 | Butler–Volmer transfer coefficient for Pt dissolution | ||
n | 2 | electrons transferred during Pt dissolution | |
9.09 | cm/mol | molar volume of Pt | |
J/cm | Pt [1 1 1] surface tension | ||
cm/s | diffusion coefficient of Pt ion in the membrane | ||
0 | potential of hydrogen ions (protons) | ||
Hz | forward Pt oxide formation rate constant | ||
Hz | backward Pt oxide formation rate constant | ||
mol/cm | Pt surface site density | ||
0.5 | Butler–Volmer transfer coefficient for PtO formation | ||
2 | electrons transferred during Pt oxide formation | ||
J/mol | Pt oxide dependent kinetic barrier constant | ||
J/mol | Pt oxide-oxide interaction energy |
Symbol | Value | Units | Description |
---|---|---|---|
1.118 | V | Pt dissolution bulk equilibrium voltage | |
1 | mol/cm | reference Pt ion concentration | |
J/mol | Pt dissolution activation enthalpy | ||
0.8 | V | Pt oxide formation bulk equilibrium voltage | |
J/mol | partial molar oxide formation activation enthalpy |
Symbol | Pt loss Rate (1/cycle) | Cycles Prognosis (#) | Work Prognosis (h) |
---|---|---|---|
, (V), , | 237.89 | 4203 | 47 |
(V) | 11.85 | 84,354 | 937 |
(V) | 77.82 | 12,850 | 143 |
(V) | 142.42 | 7021 | 78 |
(V) | 264.84 | 3776 | 42 |
(V) | 293.61 | 3405 | 38 |
(V) | 324.27 | 3084 | 34 |
(J/mol) | 0.07 | 13,736,300 | 152,625 |
(J/mol) | 16.48 | 60,677 | 674 |
(J/mol) | 331.58 | 3015 | 34 |
(mol/cm) | 192.29 | 5200 | 58 |
(mol/cm) | 240.89 | 4151 | 46 |
(mol/cm) | 241.98 | 4132 | 46 |
Parameter | |||
---|---|---|---|
5.31 | 6.96 | −0.96 | |
9.94 | 2.02 | −0.83 | |
1.11 | 4.33 | 0.78 | |
3.12 | 1.04 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovtunenko, V.A. Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells. Technologies 2022, 10, 111. https://doi.org/10.3390/technologies10060111
Kovtunenko VA. Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells. Technologies. 2022; 10(6):111. https://doi.org/10.3390/technologies10060111
Chicago/Turabian StyleKovtunenko, Victor A. 2022. "Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells" Technologies 10, no. 6: 111. https://doi.org/10.3390/technologies10060111
APA StyleKovtunenko, V. A. (2022). Variance-Based Sensitivity Analysis of Fitting Parameters to Impact on Cycling Durability of Polymer Electrolyte Fuel Cells. Technologies, 10(6), 111. https://doi.org/10.3390/technologies10060111