IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. IoT Framework for Agriculture
3.2. Data Mining and Network Implementation
3.3. Selected Classifiers (Supervised Learning Algorithms)
3.3.1. Multilayer Perceptron
3.3.2. Decision Table
3.3.3. JRip
4. Data Preparation Cum Generation
Tools Applied
5. Experimental Results and Discussion
6. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ray, P.P. Internet of Things for smart agriculture: Technologies practices and future direction. J. Ambient. Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Kamienski, C.; Soininen, J.-P.; Taumberger, M.; Dantas, R.; Toscano, A.; Salmon Cinotti, T.; Filev Maia, R.; Torre Neto, A. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Vijayan, T.; Sangeetha, M.; Kumaravel, A.; Karthik, B. Feature selection for Simple Color Histogram Filter based on Retinal Fundus Images for Diabetic Retinopathy recognition. IETE J. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; GaneshKumar, P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustain. Comput. Inform. Syst. 2020, 28, 100300. [Google Scholar]
- Sivakumar, M.; Renuka, P.; Chitra, P.; Karthikeyan, S. IoT incorporated deep learning model combined with SmartBin technology for real-time solid waste management. Comput. Intell. 2021. [Google Scholar] [CrossRef]
- Katarya, R.; Raturi, A.; Mehndiratta, A.; Thapper, A. Impact of Machine Learning Techniques in Precision Agriculture. In Proceedings of the 2020, 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, ICETCE, Jaipur, India, 7–8 February 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Anitha, P.; Chakravarthy, T. Agricultural Crop Yield Prediction using Artificial Neural Network with Feed Forward Algorithm. Int. J. Comput. Sci. Eng. 2018, 6, 178–181. [Google Scholar] [CrossRef]
- Anand, R.; Karthiga, R.D.; Jeevitha, T.; Mithra, J.L.; Yuvaraj, S. Blockchain-Based Agriculture Assistance. Lect. Notes Electr. Eng. 2021, 700, 477. [Google Scholar] [CrossRef]
- Prasath, J.S.; Jayakumar, S.; Karthikeyan, K. Real-time implementation for secure monitoring of wastewater treatment plants using internet of things. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 2997–3002. [Google Scholar] [CrossRef]
- Anuradha, T.; Ramya, K.; Selvam, R. Design and implementation of solar-powered automatic pesticide sprayer for agriculture. J. Phys. Conf. Ser. 2019, 1362, 12048. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols: Review. In Proceedings of the 8th International Conference on Information Technology (ICIT), Singapore, 27–29 December 2017; pp. 685–690. [Google Scholar] [CrossRef]
- Agrawal, K. Smart Agriculture Using IOT: A Futuristic Approach. Int. J. Inf. Dissem. Technol. 2019, 9, 186. [Google Scholar] [CrossRef]
- Vadapalli, A.; Peravali, S.; Dadi, V. Smart Agriculture System using IoT Technology. Int. J. Adv. Res. Sci. Eng. 2019, 9, 58–65. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision architectural elements and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Stoes, M.; Vank, J.; Masner, J.; Pavlik, J. Internet of Things (IoT) in agriculture-selected aspects. Agris On-Line Pap. Econ. Inform. 2016, 8, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, C.; Zhang, P.; Yan, M.; Yan, B.; Zhang, J.; Higgs, R. Application of temperature prediction based on neural network in intrusion detection of IoT. Secur. Commun. Netw. 2018, 2018, 1635081. [Google Scholar] [CrossRef]
- Pudumalar, S.; Ramanujam, E.; Rajashree, R.H.; Kavya, C.; Kiruthika, T.; Nisha, J. Crop recommendation system for precision agriculture. In Proceedings of the 2016 Eighth International Conference on Advanced Computing (ICoAC), Chennai, India, 19–21 January 2017; pp. 32–36. [Google Scholar] [CrossRef]
- Kamienski, C.; Jentsch, M.; Eisenhauer, M.; Kiljander, J.; Ferrera, E.; Rosengren, P.; Thestrup, J.; Souto, E.; Andrade, W.; Sadok, D. Application Development for the Internet of Things: A Context-Aware Mixed Criticality Systems Development Platform. Comput. Commun. 2017, 104, 1–16. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0. New contributions and a future research agenda, NJAS—Wageningen. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
- Kumar, S.A.; Ilango, P. The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wirel. Pers. Commun. 2018, 98, 685–698. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimization of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Kamilaris, A.; Gao, F.; Prenafeta-Boldu, F.X.; Ali, M.I. Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016. [Google Scholar] [CrossRef]
- Rekha, P.; Rangan, V.P.; Ramesh, M.V.; Nibi, K.V. High yield groundnut agronomy: An IoT based precision farming framework. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Rehman, A.; Liu, J.; Li, K.; Mateen, A.; Yasin, Q. Machine Learning Prediction Analysis using IoT for Smart Farming. Int. J. Emerg. Trends Eng. Res. 2020, 8, 1–30. [Google Scholar] [CrossRef]
- Priya, P.K.; Yuvaraj, N. An IoT Based Gradient Descent Approach for Precision Crop Suggestion using MLP. J. Phys. Conf. Ser. 2019, 1362, 012038. [Google Scholar] [CrossRef]
- Biradar, H.B.; Shabadi, L. Review on IOT based multidisciplinary models for smart farming. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1923–1926. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ.-Comput. Inf. Sci. 2021. [Google Scholar] [CrossRef]
- Gupta, A.; Nagda, D.; Nikhare, P.; Sandbhor, A. Smart Crop Prediction using IoT and Machine Learning. IJERT 2021, 9, 18–21. [Google Scholar]
- Vivekanandhan, V.R.; Sakthivel, S.; Manikandan, M. Adaptive neuro fuzzy inference system to enhance the classification performance in smart irrigation system. Comput. Intell. 2021. [Google Scholar] [CrossRef]
- Available online: https://www.kaggle.com/atharvaingle/crop-recommendation-dataset (accessed on 8 September 2021).
- Available online: https://www.cs.waikato.ac.nz/ml/WEKA/ (accessed on 6 October 2021).
Reference | Influence | Outcomes |
---|---|---|
M. S. Farooq et al., 2019 [12] | They present IoT based Crop monitoring and smart farming using Machine learning and wireless network for agriculture monitoring | Increased crop yield and data mining shows timely safe measure prediction |
S.Al-Sahrawi et al., 2017 [13] | They present the best wireless communication protocols used for IoT | Wireless Personal Area Networks (6LoWPAN), ZigBee, Bluetooth Low Energy (BLE), Z-Wave, and Near Field Communication (NFC). convenient for smart farming |
Agrawal et al., 2019 [14] | The futuristic approach in collecting data relevant to agriculture and proposal for smart agriculture | Sensor and cameras were installed to monitor the crop and eventually predict crop-related problems |
Vadapalli et al., 2019 [15] | Smart agriculture in precision farming and linking electronic gadgets like Arduino, IoT, Wifi | Uplifting the deteriorating agriculture sector, incorporating IoI and Wifi, Smart farming |
H. Agrawal et al., 2019 [14] | Energy-constrained devices and to maintain sensors and gateway modules. | IoT enabled precision agriculture and Duty cycle algorithm for residual energy parameters. |
Gubbi, J.; et al., 2019 [16] | IoT enabled smart sensing system | Microcontroller based Direct Digital Synthesis (DDS) method |
Lavanya et al., 2020 [5] | Novel NPK sensors and IOT based design | This resulted in high yield crops and proved helpful for farmers |
Lavanya et al., 2020 [5] | IoT based low-cost fertilizer intimation system | The concept of fuzzy logic is applied to detect the deficiency of nutrients from the sensed data … |
S. No | No of Parameters | Instances Count | Crop Recommended |
---|---|---|---|
1 | 7 | 100 | Rice |
2 | 7 | 100 | Maize |
3 | 7 | 100 | chickpea |
4 | 7 | 100 | Kidney beans |
5 | 7 | 100 | Pigeon peas |
6 | 7 | 100 | Moth beans |
7 | 7 | 100 | Mung bean |
8 | 7 | 100 | Black gram |
9 | 7 | 100 | lentil |
10 | 7 | 100 | pomegranate |
11 | 7 | 100 | Banana |
12 | 7 | 100 | Mango |
13 | 7 | 100 | Grapes |
14 | 7 | 100 | Watermelon |
15 | 7 | 100 | Muskmelon |
16 | 7 | 100 | apple |
17 | 7 | 100 | orange |
18 | 7 | 100 | Papaya |
19 | 7 | 100 | Coconut |
20 | 7 | 100 | Cotton |
21 | 7 | 100 | jute |
22 | 7 | 100 | coffee |
Total | 2200 |
S. No | Category | Selected WEKA Classifier | Correctly Classified Instances (%) | Weighted Avg. ROC | Time to Build the Model | Analysis |
---|---|---|---|---|---|---|
1 | Functions | MLP | 98.2273 | 0.997 | 10.56 | Kappa statistic 0.9814 |
2 | Lazy | Decision table | 88.5909 | 0.991 | 0.23 | Mean absolute error 0.004 |
3 | Lazy | JRip | 96.2273 | 0.993 | 0.58 | Root mean squared error 0.035 |
S. No | Category | Selected WEKA Classifier | Correctly Classified Instances (%) | Weighted Avg. ROC | Time to Build the Model |
---|---|---|---|---|---|
1 | Functions | MLP | 98.2273 | 1 | 8.78 |
2 | Lazy | Decision Table | 88.5909 | 0.993 | 0.24 |
3 | Lazy | JRip | 96.0 | 0.990 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakthavatchalam, K.; Karthik, B.; Thiruvengadam, V.; Muthal, S.; Jose, D.; Kotecha, K.; Varadarajan, V. IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms. Technologies 2022, 10, 13. https://doi.org/10.3390/technologies10010013
Bakthavatchalam K, Karthik B, Thiruvengadam V, Muthal S, Jose D, Kotecha K, Varadarajan V. IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms. Technologies. 2022; 10(1):13. https://doi.org/10.3390/technologies10010013
Chicago/Turabian StyleBakthavatchalam, Kalaiselvi, Balaguru Karthik, Vijayan Thiruvengadam, Sriram Muthal, Deepa Jose, Ketan Kotecha, and Vijayakumar Varadarajan. 2022. "IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms" Technologies 10, no. 1: 13. https://doi.org/10.3390/technologies10010013
APA StyleBakthavatchalam, K., Karthik, B., Thiruvengadam, V., Muthal, S., Jose, D., Kotecha, K., & Varadarajan, V. (2022). IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms. Technologies, 10(1), 13. https://doi.org/10.3390/technologies10010013