Risk-Based Portfolios with Large Dynamic Covariance Matrices
Abstract
:1. Introduction
2. Related Works
2.1. Risk-Based Portfolios
2.1.1. The Minimum Variance Portfolio
2.1.2. The Risk Parity Portfolio
2.1.3. The Maximum Diversification Portfolio
2.2. Estimation Method of Covariance Matrices
2.2.1. Nonlinear Shrinkage
2.2.2. DCC-GARCH Model
- Step 1
- Maximize the log-likelihood to determine .
- Step 2
- After estimating , estimate the standardized errors . Here, can be estimated using the moment estimator .Then, maximize the log-likelihood to determine .
2.2.3. cDCC-GARCH Model
2.2.4. Composite Likelihood
3. Combining Nonlinear Shrinkage and the cDCC-GARCH Model
- Step 1
- For each asset, fit a univariate GARCH(1,1) model.
- Step 2
- Estimate the unconditional covariance matrix of the standardized errors using the nonlinear shrinkage method, and then maximize the composite likelihood of the cDCC model.
4. Simulation Study
4.1. Monte Carlo Study
4.2. Performance of the Risk-Based Portfolios
5. Conclusions
- The cDCC-NLS method shows the best estimation accuracy.
- The RP and MD do not depend on the estimation accuracy of the covariance matrix.
- The MV does depend on the estimation accuracy of the covariance matrix.
Author Contributions
Conflicts of Interest
References
- Aielli, Gian Piero. 2013. Dynamic conditional correlation: on properties and estimation. Journal of Business & Economic Statistics 31: 282–99. [Google Scholar]
- Ardia, David, Guido Bolliger, Kris Boudt, and Jean-Philippe Gagnon-Fleury. 2017. The impact of covariance misspecification in risk-based portfolios. Annals of Operations Research 254: 1–16. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef]
- Chaves, Denis, Jason Hsu, Feifei Li, and Omid Shakernia. 2011. Risk parity portfolio vs. other asset allocation heuristic portfolios. The Journal of Investing 20: 108–18. [Google Scholar] [CrossRef]
- Choueifaty, Yves, and Yves Coignard. 2008. Toward maximum diversification. The Journal of Portfolio Management 35: 40–51. [Google Scholar] [CrossRef]
- Clarke, Roger G., Harindra De Silva, and Steven Thorley. 2006. Minimum-variance portfolios in the us equity market. The Journal of Portfolio Management 33: 10–24. [Google Scholar] [CrossRef]
- De Carvalho, Raul Leote, Xiao Lu, and Pierre Moulin. 2012. Demystifying equity risk-based strategies: A simple alpha plus beta description. The Journal of Portfolio Management 38: 56–70. [Google Scholar] [CrossRef]
- Engle, Robert. 2009. Anticipating Correlations: A New Paradigm for Risk Management. Princeton: Princeton University Press. [Google Scholar]
- Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the Econometric Society 50: 987–1007. [Google Scholar] [CrossRef]
- Engle, Robert F. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics 20: 339–50. [Google Scholar]
- Engle, Robert F, Olivier Ledoit, and Michael Wolf. 2017. Large dynamic covariance matrices. Journal of Business & Economic Statistics, 1–13. [Google Scholar] [CrossRef]
- Engle, Robert F., Neil Shephard, and Kevin Sheppard. 2008. Fitting Vast Dimensional Time-Varying Covariance Models. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1293629 (accessed on 11 May 2018).
- Hafner, Christian M., and Olga Reznikova. 2012. On the estimation of dynamic conditional correlation models. Computational Statistics & Data Analysis 56: 3533–45. [Google Scholar]
- Haugen, Robert A., and Nardin L. Baker. 1991. The efficient market inefficiency of capitalization—Weighted stock portfolios. The Journal of Portfolio Management 17: 35–40. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Sandrine Péché. 2011. Eigenvectors of some large sample covariance matrix ensembles. Probability Theory and Related Fields 151: 233–64. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Michael Wolf. 2004. A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis 88: 365–411. [Google Scholar] [CrossRef]
- Ledoit, Oliver, and Michael Wolf. 2008. Robust performance hypothesis testing with the sharpe ratio. Journal of Empirical Finance 15: 850–59. [Google Scholar] [CrossRef] [Green Version]
- Ledoit, Olivier, and Michael Wolf. 2012. Nonlinear shrinkage estimation of large-dimensional covariance matrices. The Annals of Statistics 40: 1024–60. [Google Scholar] [CrossRef]
- Lindsay, Bruce G. 1988. Composite likelihood methods. Contemporary Mathematics 80: 221–39. [Google Scholar]
- Maillard, Sébastien, Thierry Roncalli, and Jérôme Teïletche. 2010. The properties of equally weighted risk contribution portfolios. The Journal of Portfolio Management 36: 60–70. [Google Scholar] [CrossRef]
- Markowitz, Harry. 1952. Portfolio selection. The Journal of Finance 7: 77–91. [Google Scholar]
- Merton, Robert C. 1980. On estimating the expected return on the market: An exploratory investigation. Journal of Financial Economics 8: 323–61. [Google Scholar] [CrossRef]
- Michaud, Richard O. 1989. The markowitz optimization enigma: Is ‘optimized’ optimal? Financial Analysts Journal 45: 31–42. [Google Scholar] [CrossRef]
- Qian, Edward. 2005. Risk Parity Portfolios: Efficient Portfolios through True Diversification. Boston: Panagora Asset Management. [Google Scholar]
- Scherer, Bernd. 2011. A note on the returns from minimum variance investing. Journal of Empirical Finance 18: 652–60. [Google Scholar] [CrossRef]
- Silverstein, Jack W. 1995. Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices. Journal of Multivariate Analysis 55: 331–39. [Google Scholar] [CrossRef]
1. | The operator ∘ represents the Hadamard product, which is a binary operation that takes two matrices of the same dimensions. For two matrices, and of the same dimension, the Hadamard product , is a matrix of the same dimension as the operands, with elements given by . |
2. | Note that the parameter vector is the same among all . |
N | DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS |
---|---|---|---|---|---|---|
100 | 0.0506 | 0.0506 | 0.051 | 0.0498 | 0.0501 | 0.0503 |
(0.0032) | (0.0033) | (0.0034) | (0.0028) | (0.0029) | (0.003) | |
500 | 0.0497 | 0.0497 | 0.0498 | 0.0502 | 0.0501 | 0.0504 |
(0.0011) | (0.0011) | (0.0015) | (0.0025) | (0.0027) | (0.003) | |
1000 | 0.0496 | 0.0498 | 0.0501 | 0.0476 | 0.05 | 0.0501 |
(0.0016) | (0.0013) | (0.0015) | (0.0017) | (0.0018) | (0.0018) |
N | DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS |
---|---|---|---|---|---|---|
100 | 0.9279 | 0.9285 | 0.9287 | 0.9287 | 0.9284 | 0.9289 |
(0.0048) | (0.0052) | (0.0054) | (0.0031) | (0.0034) | (0.0038) | |
500 | 0.9282 | 0.9285 | 0.9292 | 0.927 | 0.9275 | 0.9283 |
(0.0024) | (0.0024) | (0.0022) | (0.004) | (0.0046) | (0.005) | |
1000 | 0.9278 | 0.9278 | 0.9277 | 0.9269 | 0.9271 | 0.9275 |
(0.0021) | (0.0016) | (0.0018) | (0.0022) | (0.0025) | (0.0024) |
N | DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS |
---|---|---|---|---|---|---|
100 | 8.60257 | 8.27205 | 7.47024 | 7.95906 | 7.6558 | 6.8779 |
500 | 23.04541 | 18.36612 | 14.55736 | 22.16638 | 18.07399 | 13.37496 |
1000 | 70.44232 | 24.46691 | 18.8293 | 63.24801 | 24.4935 | 15.29444 |
DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS | |
---|---|---|---|---|---|---|
N = 100 | ||||||
Return [%] | 8.08 | 8.23 | 8.29 | 7.82 | 8.09 | 8.62 |
Volatility [%] | 16.40 | 16.41 | 16.36 | 16.20 | 16.16 | 16.18 |
Sharpe Ratio | 0.49 | 0.50 | 0.51 | 0.48 | 0.50 | |
N = 500 | ||||||
Return [%] | 9.80 | 9.65 | 9.71 | 9.81 | 9.74 | 10.09 |
Volatility [%] | 17.15 | 17.16 | 17.00 | 16.92 | 16.93 | 16.90 |
Sharpe Ratio | 0.57 | 0.56 | 0.57 | 0.58 | 0.58 | |
N = 1000 | ||||||
Return [%] | 9.25 | 9.50 | 9.97 | 9.66 | 9.64 | 10.05 |
Volatility [%] | 16.61 | 16.63 | 16.37 | 16.23 | 16.17 | 16.15 |
Sharpe Ratio | 0.56 | 0.57 | 0.61 | 0.59 | 0.60 |
DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS | |
---|---|---|---|---|---|---|
N = 100 | ||||||
Return [%] | 10.54 | 10.63 | 9.43 | 10.14 | 10.18 | 11.57 |
Volatility [%] | 22.65 | 22.54 | 20.90 | 15.19 | 15.12 | 15.08 |
Sharpe Ratio | 0.47 | 0.47 | 0.45 | 0.67 | 0.67 | |
N = 500 | ||||||
Return [%] | 9.48 | 9.27 | 7.41 | 9.37 | 9.33 | 11.09 |
Volatility [%] | 12.64 | 12.47 | 13.90 | 11.63 | 11.40 | 11.12 |
Sharpe Ratio | 0.75 | 0.74 | 0.53 | 0.81 | 0.82 | |
N = 1000 | ||||||
Return [%] | 6.01 | 6.52 | 6.98 | 6.26 | 7.78 | 9.30 |
Volatility [%] | 9.96 | 8.95 | 9.16 | 10.56 | 8.99 | 8.21 |
Sharpe Ratio | 0.60 | 0.73 | 0.76 | 0.59 | 0.87 |
DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS | |
---|---|---|---|---|---|---|
N = 100 | ||||||
Return [%] | 6.95 | 6.97 | 7.16 | 7.01 | 7.01 | 7.06 |
Volatility [%] | 19.39 | 19.39 | 19.45 | 19.60 | 19.60 | 19.56 |
Sharpe Ratio | 0.36 | 0.36 | 0.37 | 0.36 | 0.36 | 0.36 |
N = 500 | ||||||
Return [%] | 9.46 | 9.35 | 9.76 | 9.82 | 9.81 | 9.68 |
Volatility [%] | 18.26 | 18.30 | 18.41 | 18.59 | 18.57 | 18.48 |
Sharpe Ratio | 0.52 | 0.51 | 0.53 | 0.53 | 0.53 | 0.52 |
N = 1000 | ||||||
Return [%] | 10.41 | 10.54 | 10.55 | 10.54 | 10.52 | 10.52 |
Volatility [%] | 16.88 | 16.93 | 17.07 | 17.23 | 17.19 | 17.07 |
Sharpe Ratio | 0.62 | 0.62 | 0.62 | 0.61 | 0.61 | 0.62 |
DCC | DCC-LS | DCC-NLS | cDCC | cDCC-LS | cDCC-NLS | |
---|---|---|---|---|---|---|
N = 100 | ||||||
Return [%] | 7.06 | 7.07 | 7.06 | 7.00 | 7.04 | 7.02 |
Volatility [%] | 20.48 | 20.49 | 20.49 | 20.49 | 20.49 | 20.49 |
Sharpe Ratio | 0.35 | 0.35 | 0.34 | 0.34 | 0.34 | 0.34 |
N = 500 | ||||||
Return [%] | 10.13 | 10.13 | 10.12 | 10.12 | 10.12 | 10.12 |
Volatility [%] | 19.64 | 19.64 | 19.64 | 19.64 | 19.64 | 19.64 |
Sharpe Ratio | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 |
N = 1000 | ||||||
Return [%] | 10.63 | 10.63 | 10.63 | 10.66 | 10.66 | 10.63 |
Volatility [%] | 18.66 | 18.66 | 18.66 | 18.66 | 18.66 | 18.66 |
Sharpe Ratio | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagawa, K.; Imamura, M.; Yoshida, K. Risk-Based Portfolios with Large Dynamic Covariance Matrices. Int. J. Financial Stud. 2018, 6, 52. https://doi.org/10.3390/ijfs6020052
Nakagawa K, Imamura M, Yoshida K. Risk-Based Portfolios with Large Dynamic Covariance Matrices. International Journal of Financial Studies. 2018; 6(2):52. https://doi.org/10.3390/ijfs6020052
Chicago/Turabian StyleNakagawa, Kei, Mitsuyoshi Imamura, and Kenichi Yoshida. 2018. "Risk-Based Portfolios with Large Dynamic Covariance Matrices" International Journal of Financial Studies 6, no. 2: 52. https://doi.org/10.3390/ijfs6020052
APA StyleNakagawa, K., Imamura, M., & Yoshida, K. (2018). Risk-Based Portfolios with Large Dynamic Covariance Matrices. International Journal of Financial Studies, 6(2), 52. https://doi.org/10.3390/ijfs6020052