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Abstract: In the field of portfolio management, practitioners are focusing increasingly on risk-based
portfolios rather than on mean-variance portfolios. Risk-based portfolios are constructed based
solely on covariance matrices, and include methods such as minimum variance (MV), risk parity
(RP), and maximum diversification (MD). It is well known that the performance of a mean-variance
portfolio depends on the accuracy of the estimations of the inputs. However, no studies have
examined the relationship between the performance of risk-based portfolios and the estimated
accuracy of covariance matrices. In this research, we compare the performance of risk-based portfolios
for several estimation methods of covariance matrices in the Japanese stock market. In addition,
we propose a highly accurate estimation method called cDCC-NLS, which incorporates nonlinear
shrinkage into the cDCC-GARCH model. The results confirm that (1) the cDCC-NLS method shows
the best estimation accuracy, (2) the RP and MD do not depend on the estimation accuracy of the
covariance matrix, and (3) the MV does depend on the estimation accuracy of the covariance matrix.

Keywords: (c)DCC-GARCH; nonlinear shrinkage; minimum variance; risk parity; maximum
diversification

JEL Classification: C13; C32; G11

1. Introduction

In the field of portfolio management, practitioners are focusing increasingly on risk-based
portfolios, which use methods such as the minimum variance (MV), risk parity (RP), and maximum
diversification (MD) to construct portfolios based solely on covariance matrices. Risk-based portfolios
outperform traditional mean-variance portfolios (Markowitz 1952) and market capitalization-weighted
portfolio, as shown in various empirical studies on stock selection (De Carvalho et al. 2012) and
asset allocation (Chaves et al. 2011). As a result, the number of investment trusts and pension funds
designed based on this concept are increasing.

It is well known that the performance of a mean-variance portfolio depends on the accuracy of
the estimations of the inputs (Michaud 1989). In contrast, risk-based portfolios do not need to estimate
expected returns, which are notoriously unstable and difficult to predict (Merton 1980). This is one of
the main motivations for using a risk-based portfolio rather than a mean-variance portfolio. Recently,
Ardia et al. (2017) estimated the accuracy of covariance matrices in terms of the weights of several
risk-based portfolios. However, to the best of our knowledge, no studies have examined the relation
between the performance of risk-based portfolios and the estimated accuracy of covariance matrices.
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In this research, we compare the performances of risk-based portfolios for several estimation
methods of covariance matrices. In addition, we propose a highly accurate estimation method that
combines nonlinear shrinkage and the cDCC-GARCH model, called the cDCC-NLS method.

To estimate the covariance matrix in financial time series, it is necessary consider two important
aspects: the cross section and the time series. With regard to the cross section, we have the
difficulty of correcting the biases of the sample covariance matrix eigenvalues in a large number
of time series. A popular method used to achieve this is the linear shrinkage method (LS) and its
successor, the nonlinear shrinkage method (NLS), proposed by Ledoit and Wolf (2012). With regard
to the time series aspect, we have to account for volatility clustering and time-varying correlations.
To introduce a time-varying volatility and correlation structure, Engle (2002) proposed using the
dynamic conditional correlation GARCH (DCC) model. Aielli (2013) modified the DCC model,
proposing the corrected DCC-GARCH (cDCC) model. We combine the cDCC model and the NLS
method to deliver an improved estimation of the covariance matrix. We compare various (c)DCC
models (DCC, cDCC, DCC-LS, ¢cDCC-LS, DCC-NLS, and cDCC-NLS) to estimate the accuracy of each
method. To test whether the estimation accuracy of the covariance matrices affects the performance of
the risk-based portfolio, we compare the accuracy of each method, including the proposed method.
Then, we check whether the improvement affects the performance of risk-based portfolios in the
Japanese stock market.

The proposed method (cDCC-NLS) offers the best estimation accuracy of the six methods.
Furthermore, we confirm that, unlike MV, RP and MD do not depend on the estimation accuracy of
the covariance matrix.

The remainder of the paper is organized as follows. Section 2 gives a brief description of risk-based
portfolios and the estimation method using covariance matrices. Section 3 describes the proposed
method, which consists of a cDCC-GARCH model and the nonlinear shrinkage method. Section 4
discusses a simulation of a large number of stocks in Japanese markets. Lastly, Section 5 concludes
the paper.

2. Related Works

2.1. Risk-Based Portfolios

In this section, we summarize the well-known risk-based portfolios examined in previous
research. Suppose there are N risky assets, with rates of returns given by the random variables
R=(Ry, - ,Ry)T. Letw = (w1, - - ,wn)T be a weighting vector for each asset, p = (pi1, -, un)"
be an expected return vector, and & = E[(R — u)(R — u)"] be a covariance matrix. Thus, a portfolio’s
variance and risk (standard deviation) can be expressed as (7123 = wlZw.

2.1.1. The Minimum Variance Portfolio

An MV portfolio has the lowest risk of portfolios based on the mean-variance method developed
by Markowitz (1952). Specifically, the optimization problem is to minimize the portfolio variance
subject to short-sales constraints and a budget constraint in which the sum of the weights is 1, denoting
a vector of ones of dimension N x 1:

rr}‘i;n (712; = w'Zw 1)
s.t, wll=1 (2)
w > 0. 3)
In the absence of the short-sales constraints (Equation (3)), the analytical solution is w* = 71%‘;31

The MV portfolio is an efficient portfolio in terms of the mean-variance if the expected returns of all
assets are the same.
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Haugen and Baker (1991) and Clarke et al. (2006) investigated the MV portfolio and showed that
the cumulative excess returns of MV portfolios in the U.S. stock market have been slightly higher than
those of the market over the previous 42 years. Scherer (2011) showed that an MV portfolio tends to
hold a low beta and low residual-risk stocks. These results are known as low volatility anomalies.

2.1.2. The Risk Parity Portfolio

The RP portfolio assigns the same risk budget to each asset (Qian 2005). This way, no asset
class can be dominant in driving the volatility of the portfolio. We present a rigorous mathematical
definition for the RP portfolio using the marginal risk contribution (MRC) and the risk contribution
(RC), following Maillard et al. (2010). The definition characterizes the RP portfolio in terms of an equal
RC for each asset, as follows:

d X Yw);
MRC = &2 — 2% MR, = (Zw); )
Jw 0p J0p
N
op =Y w; x MRC; = w' MRC (5)
i=1
RC; = wi x MRG; ®)
op

Maillard et al. (2010) propose the following optimization problem (7)-(9) to determine the
optimal RP portfolio weights when short selling and when leverage is not allowed. In addition,
Maillard et al. (2010) show that the optimization program in (7)—(9) is a convex program and that it
has a unique local minimum.

N N

min Y Y (RC; — RG))? )
YoiZij=

stwll=1 8)

w >0 )

2.1.3. The Maximum Diversification Portfolio

Choueifaty and Coignard (2008) proposed the MD portfolio to benefit most from the diversification
effect of the portfolio. They define the diversification ratio of any portfolio as DR(w). Here, DR(w) is
the ratio of the weighted average of the volatilities divided by the portfolio volatility. The MD portfolio
maximizes the diversification ratio. Intuitively, this portfolio incorporates more low-correlated assets.
From the viewpoint of the Sharpe ratio-maximized portfolio, it tries to minimize the volatility and the
correlation, rather than the expected return.

N
Yl wio;

o (10)

max DR(w) =
w
In order to maximize DR(w), it is necessary to reduce the denominator or to increase the numerator.
The numerator and the denominator are linked through the volatility term. Because the denominator
has a correlation term, a portfolio with a low correlation is constructed as a result.

2.2. Estimation Method of Covariance Matrices

The difficulty of estimating covariance matrices in financial time series arises from two aspects:
the cross section and time series.

In the cross section, the challenge is to correct the biases of the sample covariance matrix
eigenvalues. When the number of assets under consideration is large, especially relative to the
number of historical return observations, the sample covariance matrix is estimated with a large error.
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This is caused by the bias of the eigenvalues of the sample covariance matrix. In order to reduce the
estimation error, the linear shrinkage method of Ledoit and Wolf (2004) is often used. This method
uniformly corrects all biases of the eigenvalues of the sample covariance matrix.

In general, the eigenvalues of a small sample are estimated as too small, and those of a large
sample are estimated as too large. Therefore, the nonlinear shrinkage method of Ledoit and Wolf (2012)
individually corrects each bias of the sample eigenvalues using the random matrix theory. In time
series, the challenge is to account for volatility clusteringand time-varying correlations.

A model that has been shown to be successful in capturing volatility clustering is the
autoregressive conditional heteroscedasticity (ARCH) model, introduced by Engle (1982). Then,
Bollerslev (1986) generalized the ARCH model (the GARCH model) to make it more realistic.

To introduce a time-varying correlation structure to these conditional variance models, Engle (2002)
proposed the dynamic conditional correlation GARCH (DCC) model. However, Aielli (2013) reveals
a weak point of the DCC model, in that it possesses a significant asymptotic bias in the estimator of
the sample covariance matrix, which is a constituent of the correlation evolution process. Aielli (2013)
subsequently modified the DCC model, proposing the corrected DCC-GARCH (cDCC) model.

On the other hand, it is well known that estimating the DCC model with a large number of assets
is difficult. One of the reasons for this is that we need to invert the conditional correlation matrix
when we calculate the log-likelihood function of the DCC model in order to estimate the parameters.
Finding the inverse matrix has a computational load of O(N?). Fortunately, Engle et al. (2008) discovered
a way to overcome this hurdle, called the composite likelihood method. The composite likelihood is
computed by summing the log-likelihood functions of all contiguous pairs. This requires a computational
load of O(N). We summarize each method in the next section.

2.2.1. Nonlinear Shrinkage

The population covariance matrix X is a non-random f by N-dimensional positive definite matrix.
Let X; be a t by N matrix of real independent and identically distributed (i.i.d.) random variables, with
a zero mean and unit variance. We only observe Y; = X;21/2. Thus, neither X; nor X are observed on
their own.

Let £ = £(Y;) be an estimator of E. Then, the estimator is said to be rotation-equivariant if it
satisfies £(AY;) = AZAT for any orthogonal matrix A. The class of rotation-equivariant estimators
of the covariance matrix comprises all estimators that have the same eigenvectors as the sample
covariance matrix. Thus, every rotation-equivariant estimator £ is of the form V;D; V] where Dy is
a diagonal matrix with eigenvalues (dy,...,d;) as its elements, and where V; is a matrix with the ith
column as the sample eigenvector. Ledoit and Wolf (2012) found the best £ under the following loss
function in the rotation-equivariant estimator.

min [|VeD V" — || (11)
t

Here, ||x|| is the Frobenius norm, defined as ||M| = 4/ M for any r x m matrix M.
Its solution is Df = diag(dj, ..., df), where dy = UiTZvi and v; is the i th column of V;. Therefore,
the best rotation-equivariant estimator of the covariance matrix is S; = V;D} V.

Ledoit and Péché (2011) showed that d7 can be approximated under the following conditions.
Let Hr be the population spectral distribution and let Fr be the limiting spectral distribution.
We assume that Hr and Fr converge to the non-random limiting spectral distribution H and F,
respectively. Here, 7;7 denotes the population eigenvalues of L, and A;r denotes the sample
eigenvalues of £.
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1 N
Hr(x) = 5 Y frsgyy 'Y ER (12)
i=1
1Y v
FT(JC) = N Zl{xﬁ?\n}’ xeR (13)
i=1
Hr(x) — H (14)
Fr(x) — F. (15)

From the random matrix theory, mr is quantitatively related to H, where mp is the Stieltjes
transform of F, and c is p/n (Silverstein 1995).

me(z) = [ ~ ﬁdF(A),Vz ecCt (16)
o0 1

me(z) = /—oo T(1—c—czmp(z)) — de(T) 17)

ip(A) = lim e (2) (19

From the above, d7 can be approximated as follows:

)l‘
dr = ! . 19
b1 == cApiip(Ay) 2 1)

2.2.2. DCC-GARCH Model

Suppose there are N risky assets. Let r¢ = (r14,...,7x;) | be the return vector at time t(1 < t < T).
Then, E(r¢|F;_1) = 01is defined as the conditional mean vector and V (r¢|F;_1) = Hy is defined as the
conditional covariance matrix. We assume that the joint distribution of returns follows a multivariate
Gaussian distribution. Then, F;_; is the o-algebra that contains information of what happened up to
time t — 1.

Engle (2002) defines the DCC model using Equations (21)—-(25). Here, H; is decomposed into D%,
the conditional variance of each asset, and R;, the conditional correlation matrix.!

In the DCC model, both the variance and the correlations between the assets are designed to
be time-varying. The elements in the diagonal matrix D; are standard deviations from univariate
GARCH models. Note that the univariate GARCH models can have different orders. Often the
simplest model, GARCH(1,1) is adequate. Hereafter, we assume D; is driven by GARCH(1,1). Then,
R is decomposed into Q; to ensure that all elements are less than or equal to one, by definition of
the correlation. Several conditions are imposed on the parameters a and b in order to guarantee that
H; is positive definite. The scalar values a and b must satisfy:a > 0,b > 0 and a2 + b < 1. In addition,
the starting value of Q¢ has to be positive definite to guarantee that H; is positive definite. In addition,
S is the unconditional covariance matrix of the standardized errors, &;.

1 The operator o represents the Hadamard product, which is a binary operation that takes two matrices of the same dimensions.

For two matrices, A and B of the same dimension, the Hadamard product A o B, is a matrix of the same dimension as the
operands, with elements given by Ao B;; = (A);;(B); ;-
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7| Fi_1 ~ N(0, Hy) (20)
H; = D¢R¢D; (21)
D? = diag(w;) + diag(a;) o #f_y#r_1 + diag(B;) o D?_; (22)
et =D 'ry (23)
R = Q;2QiQ; 24)
Qt=S(1—a—b)+ael_jer—1+bQs—1 (25)

Divide the parameters of DCC into two groups: 6 = (61, ...,0x), where 6; = (w;, a;, B;) are the
parameters of the univariate GARCH model for the ith asset series, and the correlation structure in
Equation (24) is driven by Equation (25), which has the parameters ¢ = (a,b).

When r; follows a multivariate Gaussian distribution, the log-likelihood function for L(6, ¢) can
be written as the sum of the volatility part Ly (0) and the correlation part L (6, ¢).

L(6,¢) = Lv(0) + Lc(6, 9) (26)
T
Ly (60) = f% S (nIn27 +In Dy 2 + 1D %) @7)
t=1
T
Lc(6,¢) = —% Y (In|Re| +&f Ry 'er — ef er) (28)
t=1

However, estimating the correctly specified log-likelihood is difficult. Hence, the DCC model is
designed to allow for a two-step estimation.

Compared with the log-likelihood in the univariate case, we find that the log-likelihood in Ly (0)
is the sum of the log-likelihoods of the univariate GARCH equations of N assets. Thus, the parameters
of the different univariate models may be determined separately. In the first step, the parameters of
the univariate GARCH models are estimated for each asset series. From this step, the parameter set 0
is estimated. When estimating 8, we can also estimate the standardized errors &;, which can then be
used to estimate S. In the second step, the parameter ¢ is estimated using 08 and S. The method used
to estimated S with the standardized errors &; is called correlation targeting (Engle 2009). Here, S can
be estimated using the sample covariance matrix of &;

Step 1 Maximize the log-likelihood Ly (8) to determine Dy.

6= max Ly (). (29)
Step 2 After estimating 6, estimate the standardized errors &;. Here, S can be estimated using the
moment estimator § = %Zthl ététT, & = ﬁt_]rt.

Then, maximize the log-likelihood Lc(6, ¢) to determine ¢.

¢ = max Lc(8,¢). (30)

2.2.3. cDCC-GARCH Model

Aielli (2013) reveals a weak point in the DCC model. The correlation targeting estimation is based
on the assumption that Q = + YL 1 Q¢ is equal to §. However, this assumption cannot be justified
because the unconditional expectation of Qy is not equal to the unconditional expectation of &2} .

Thus, Aielli (2013) proposes a corrected DCC-GARCH (cDCC) model, which is tractable and easy
to implement. In this model, the conditional correlation driving the process Q; is defined as follows:
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Qir=Y(1—a—b)+ae;_1&;L, +bQs_1 (31)
& = diag(Q¢)2er (32)

NI

The form of the correlation driving the process of the DCC model is modified in such a way that
the unconditional expectation of Q¢ is equal to the unconditional expectation of e} &;”. Then, ¥ can be
estimated consistently using the sample covariance matrix of ;.

The estimation of the cDCC model is based on maximizing the same log-likelihood function as
that of the DCC model. In the first step, the parameter vector 0 of the univariate GARCH models is
estimated. Using 0, estimate the modified errors &€}, the sample covariance matrix of which can be
used to estimate ¥. In the second step, the parameter ¢ is estimated using .

Aielli (2013) performed a simulation study, showing that there is a considerable bias in the
estimator of S for the DCC, even when the cross-section size is small. However, he also shows there
is a downward bias in a and b, which is a recognized problem when using DCC with large systems
(Engle 2002).

2.2.4. Composite Likelihood

It is well known that estimating the (c)DCC model in the case of a large number of assets is
difficult. One of the reasons for this is that we need to invert the conditional correlation matrix when
we maximize the log-likelihood L¢ (6, ¢). Finding the inverse matrix has a computational load of
O(N?®). Engle et al. (2008) overcome this problem using what they call the composite likelihood
method, which can be traced back to Lindsay (1988). The composite likelihood of the (c)DCC model
is based on subsets of observations, for example, a subset of two assets’” returns, ¥j; = (rlj,t, rzj,t)T,
j =1,..N. The conditional variance of Yj; is H]-t.2 Subsets can be selected in various ways: all possible
combinations of pairs of assets (O(N?)), contiguous pairs (O(N)), or subsets of pairs selected randomly
(O(1)). The simulation study in Engle et al. (2008) shows that the results for different types of subsets
are approximately the same. We use the composite likelihood estimator based on all contiguous pairs
because it is the most scalable of those available.

Yjt|Fi—1 ~ N(0, Hy) (33)
Hj; = Dj;R;:Dj; (34)
D}, = diag(w;) + diag(a;) o Yjr_1 Yjt—1 + diag(B;) o D _, (35)
gt = D' Ve (36)
Qjt = Sj(1 —a—b) +agfy_sgje—1 +bQjr—1 (37)

NI—

~1 -
Rj = Q;,” QtQ;, (38)
Here, $ can be estimated using the moment estimator § = } Yl é]-té‘jTt. The parameter vector

¢ = (a,b) is estimated by maximizing the average of the log-likelihood function L¢y (8, ¢) among all
contiguous pairs, rather than maximizing maxy Lc (6, ¢) in Step 2.

2 Note that the parameter vector ¢ = (a,b) is the same among all H, it
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$ = max Ler(6, ) (39)
R T 1 N
Len(0,¢) = ) 7 2 1og £ii() (40)
t=1"" j=1
1 T
£],t(¢) = _E Z(ln |R]'t| + SﬁR];lSjt — sztejt) (41)
t=1

3. Combining Nonlinear Shrinkage and the cDCC-GARCH Model

As described above, the estimation of the covariance matrix is problematic in terms of the
cross section and the time series. To combine these two aspects, Hafner and Reznikova (2012)
proposed an estimation method combining linear shrinkage and the DCC-GARCH model (DCC-LS),
and Engle et al. (2017) proposed an estimation method combining nonlinear shrinkage and the
DCC-GARCH model (DCC-NLS). We propose a highly accurate estimation method that combines
nonlinear shrinkage and the cDCC-GARCH model, called the cDCC-NLS method. To summarize,
the cDCC-NLS estimation follows a two-step process:

Step 1 For each asset, fit a univariate GARCH(1,1) model.
Step 2 Estimate the unconditional covariance matrix of the standardized errors using the nonlinear
shrinkage method, and then maximize the composite likelihood of the cDCC model.

In the estimation of Step 2, Hafner and Reznikova (2012) used the sample covariance matrix with
the linear shrinkage estimator (DCC-LS). Engle et al. (2017) later replaced this with the nonlinear
shrinkage estimator (DCC-NLS). We combine nonlinear shrinkage and the cDCC-GARCH model and
confirm its advantages in the next section.

4. Simulation Study

In order to check whether the performance of risk-based portfolios depends on the estimation
accuracy of the covariance matrices, it is necessary to confirm (1) the estimation accuracy of each
method, and (2) the effect of the estimation accuracy on performance.

In this section, we first compare the estimation accuracy of the covariance matrix using various
(c)DCC models. We evaluate the covariance matrix estimation accuracy following Engle et al. (2017).
Next, we examine the effect of the difference in the estimation accuracy on the performance of the
risk-based portfolios.

4.1. Monte Carlo Study

In this section, we perform a Monte Carlo simulation to compare the estimation accuracy of the
parameters of various (c)DCC models: the DCC, cDCC, DCC-LS, ¢cDCC-LS, DCC-NLS, and cDCC-NLS
models. Engle et al. (2017) defines an error function between the true covariance matrix generated
by a (c)DCC model and the estimation. On the other hand, because of the sample estimator, the LS
and NLS methods do not handle true covariance matrices at each time point, which means the errors
cannot be calculated in the same way as in the (c)DCC model. Therefore, we limit our discussion to
the (¢)DCC model.

In order to compare our results with those of previous studies (Hafner and Reznikova 2012;
Engle et al. 2017), we run a simulation study using the same setup. Let the covariance matrix at each
time point of the DCC model, given a certain unconditional covariance and parameters, be a true
covariance matrix. We generate random numbers according to the true DCC model, which we then
use to estimate the covariance matrix. An error between the estimated covariance matrix and the true
covariance matrix is defined as the estimation accuracy.

As in the previous studies, we estimate the unconditional population covariance matrix from
the N € {100,500, 1000} most liquid stocks in the TOPIX index, using 60 months of daily data from
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January 2005 through December 2009. We then simulate a (c)DCC model using the unconditional
population covariance matrix and the parameters a = 0.05 and b = 0.93. The univariate volatility
dynamics are GARCH(1,1) models with identical parameters (w;, &;, B;) = (0.01,0.05,0.9) across all
stocks i =1, ..., N. For each simulation, we generate an N x T matrix of simulated returns, where the
sample size is T = 1250. We run the simulation study for the same setup, with the exception of the
unconditional population covariance matrix. Because we study the Japanese stock market in the next
section, we use data on Japanese stocks to define the true unconditional covariance matrix.

First, we check the estimation accuracy of the (c)DCC model parameters a = 0.05 and b = 0.93.
The estimation results for each model are shown in Tables 1 and 2. Tables 1 and 2 show the average
values and standard deviations of 10°/ N estimates of each parameter (a,b). There is no downward
bias in the parameters described by Engle et al. (2008) or Aielli (2013) in either the estimation method
or in the number of stocks. Therefore, it is considered that the difference in each method is the
estimation accuracy of the standardized residual sample covariance matrix, which we use for the
correlation targeting.

Table 1. The average and standard deviation of the (c)DCC parameter 2 = 0.05 using six correlation
methods targeting dimensions N € {100,500,1000}, with sample size T = 1250.

N DCC DCC-LS DCC-NLS ¢DCC DCC-LS ¢DCC-NLS

100 0.0506  0.0506 0.051 0.0498 0.0501 0.0503
(0.0032)  (0.0033)  (0.0034)  (0.0028)  (0.0029) (0.003)
500 0.0497  0.0497 0.0498 0.0502 0.0501 0.0504
(0.0011)  (0.0011)  (0.0015)  (0.0025)  (0.0027) (0.003)
1000 0.0496  0.0498 0.0501 0.0476 0.05 0.0501

(0.0016)  (0.0013)  (0.0015)  (0.0017)  (0.0018) (0.0018)

Table 2. The average and standard deviation of the (c)DCC parameter b = 0.93 using six correlation
methods targeting dimensions N € {100,500,1000}, with sample size T = 1250.

N DCC DCC-LS DCC-NLS ¢DCC ¢DCC-LS ¢DCC-NLS

100 09279  0.9285 0.9287 09287  0.9284 0.9289
(0.0048)  (0.0052)  (0.0054)  (0.0031)  (0.0034) (0.0038)
500 09282  0.9285 0.9292 0.927 0.9275 0.9283
(0.0024)  (0.0024)  (0.0022)  (0.004)  (0.0046) (0.005)
1000 09278  0.9278 0.9277 09269  0.9271 0.9275

(0.0021)  (0.0016) (0.0018) (0.0022)  (0.0025) (0.0024)

Next, we evaluate the accuracy of the covariance matrix estimation using the loss function of
Engle et al. (2017). Let It denote the N-dimensional “true” covariance matrix at time , and £ be
an estimator of X;. The loss function Lt(ft, %) and the average loss L are defined below.

L g = CTETEETY/N @)
o TE /N T (E/N)

. 1
L=z} L (43)

Table 3 shows the results for I, averaged across 10°/ N Monte Carlo simulations.
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Table 3. Average loss for (c)DCC estimators using six correlation methods targeting dimensions
N € {100,500, 1000}, with sample size T = 1250. The unit is 10-3.

N DcCC DCC-LS DCC-NLS cDCC c¢cDCC-LS c¢DCC-NLS

100  8.60257 8.27205 7.47024 7.95906 7.6558 6.8779
500 23.04541 18.36612 14.55736  22.16638  18.07399 13.37496
1000 70.44232  24.46691 18.8293 63.24801 24.4935 15.29444

We find that the average loss of the cDCC-NLS method is the lowest of the various methods for
any number of assets. Therefore, the cDCC-NLS method shows the best estimation accuracy.

4.2. Performance of the Risk-Based Portfolios

In the previous section, we compared the accuracy of the covariance matrix estimation of each
method using a Monte Carlo study. Thus, we were able to confirm that the cDCC-NLS method shows
the best estimation accuracy. Next, we examine the effect of the difference in the estimation accuracy on
the performance of risk-based portfolios. Here, we use the minimum variance (MV), minimum variance
without short constraint (MVS), risk parity (RP), and maximum diversification (MD). We estimate the
covariance matrices using the various (c)DCC models for the N € {100, 500, 1000} most liquid stocks
in the TOPIX index, as before. Each portfolio is re-balanced monthly, and the parameter estimation
period of each method is 60 months. The out-of-sample period is from January 2000 to December
2015. In other words, we estimate the weights on the previous 60 months of data from January 2000,
and then compute the value of the out-of-sample portfolio for the following month. Next, we roll the
window forward by one month and repeat the process until December 2015.

We use an annualized Sharpe ratio to evaluate the performance of each portfolio. We also consider
whether the cDCC-NLS (the most accurate method) delivers a higher out-of-sample Sharpe ratio than
that of the DCC and the cDCC at a level that is statistically significant. For a given sample size N,
a two-sided p-value for the null hypothesis of equal Sharpe ratios is obtained using the pre-whitened
HACPW method, as described in (Ledoit and Wolf 2008). Tables 4-7 show the annualized return,
annualized volatility, and annualized Sharpe ratio for each risk-based portfolio.

Table 4. Annualized return, volatility, and Sharpe ratio for an MV portfolio using six methods for
dimensions N € {100,500,1000}, with sample size T = 1250. The out-of-sample period is from January
2000 to December 2015. In the rows labeled Sharpe Ratio, the largest number appears in bold. In the
columns labeled DCC and cDCC-NLS, significant out-performance of one of the two portfolios over
the other (in terms of the Sharpe ratio) is denoted by asterisks: *** denotes significance at the 0.01 level;
** denotes significance at the 0.05 level; * denotes significance at the 0.1 level. In the columns labeled
¢DCC and ¢cDCC-NLS, significant out-performance of one of the two portfolios over the other (in terms
of the Sharpe ratio) is denoted by asterisks: +++ denotes significance at the 0.01 level; ++ denotes
significance at the 0.05 level; + denotes significance at the 0.1 level.

DCC DCC-LS DCC-NLS ¢DCC ¢DCC-LS c¢DCC-NLS

N =100
Return [%] 8.08 8.23 8.29 7.82 8.09 8.62
Volatility [%] 1640  16.41 16.36 16.20 16.16 16.18
Sharpe Ratio ~ 0.49 0.50 051 0.48 0.50 0.53 14
N =500
Return [%] 9.80 9.65 9.71 9.81 9.74 10.09
Volatility [%] 17.15  17.16 17.00 16.92 16.93 16.90
Sharpe Ratio 057 0.56 0.57 0.58 0.58 0.60
N =1000
Return [%] 9.25 9.50 9.97 9.66 9.64 10.05
Volatility [%] 1661  16.63 16.37 16.23 16.17 16.15

Sharpe Ratio  0.56 0.57 0.61 0.59 0.60 0.62 %"
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Table 5. Annualized return, volatility, and Sharpe ratio for an MV portfolio without short-sales
constraints (MVS) using six methods for dimensions N € {100,500,1000}, with sample size T = 1250.
The out-of-sample period is from January 2000 to December 2015. In the rows labeled Sharpe
Ratio, the largest number appears in bold. In the columns labeled DCC and ¢cDCC-NLS, significant
out-performance of one of the two portfolios over the other (in terms of the Sharpe ratio) is denoted by
asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level; * denotes
significance at the 0.1 level. In the columns labeled cDCC and ¢cDCC-NLS, significant out-performance
of one of the two portfolios over the other (in terms of the Sharpe ratio) is denoted by asterisks: +++
denotes significance at the 0.01 level; ++ denotes significance at the 0.05 level; + denotes significance at
the 0.1 level.

DCC DCC-LS DCC-NLS cDCC ¢DCC-LS ¢DCC-NLS

N =100
Return[%] 1054  10.63 9.43 1014 10.18 11.57
Volatility [%]  22.65 ~ 22.54 20.90 1519  15.12 15.08
Sharpe Ratio 047 047 0.45 0.67 0.67 0.77 44+
N =500
Return[%] 948 927 7.41 9.37 9.33 11.09
Volatility [%]  12.64 1247 13.90 1163 1140 11.12
Sharpe Ratio 075 0.74 0.53 0.81 0.82 1.00 %%,
N = 1000
Return[%] 601 652 6.98 6.26 7.78 9.30
Volatility [%] ~ 9.96 895 9.16 10.56 8.99 8.21
Sharpe Ratio  0.60  0.73 0.76 0.59 0.87 113 %4,

Table 6. Annualized return, volatility, and Sharpe ratio for an RP portfolio using six methods for
dimensions N € {100,500,1000}, with sample size T = 1250. The out-of-sample period is from January
2000 to December 2015. In the rows labeled Sharpe Ratio, the largest number appears in bold. In the
columns labeled DCC and ¢cDCC-NLS, significant out-performance of one of the two portfolios over
the other (in terms of the Sharpe ratio) is denoted by asterisks: *** denotes significance at the 0.01 level;
** denotes significance at the 0.05 level; * denotes significance at the 0.1 level. In the columns labeled
¢DCC and ¢cDCC-NLS, significant out-performance of one of the two portfolios over the other (in terms
of the Sharpe ratio) is denoted by asterisks: +++ denotes significance at the 0.01 level; ++ denotes
significance at the 0.05 level; + denotes significance at the 0.1 level.

DCC DCC-LS DCC-NLS ¢DCC ¢DCC-LS ¢DCC-NLS

N =100
Return [%] 6.95 6.97 7.16 7.01 7.01 7.06
Volatility [%]  19.39 19.39 19.45 19.60 19.60 19.56
Sharpe Ratio  0.36 0.36 0.37 0.36 0.36 0.36
N =500
Return [%] 9.46 9.35 9.76 9.82 9.81 9.68
Volatility [%]  18.26 18.30 18.41 18.59 18.57 18.48
Sharpe Ratio ~ 0.52 0.51 0.53 0.53 0.53 0.52
N =1000
Return [%] 10.41 10.54 10.55 10.54 10.52 10.52
Volatility [%]  16.88 16.93 17.07 17.23 17.19 17.07

Sharpe Ratio 0.62 0.62 0.62 0.61 0.61 0.62
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Table 7. Annualized return, volatility, and Sharpe ratio for an MD portfolio using six methods for
dimensions N € {100,500,1000}, with sample size T = 1250. The out-of-sample period is from January
2000 to December 2015. In the rows labeled Sharpe Ratio, the largest number appears in bold. In the
columns labeled DCC and ¢cDCC-NLS, significant out-performance of one of the two portfolios over
the other (in terms of the Sharpe ratio) is denoted by asterisks: *** denotes significance at the 0.01 level;
** denotes significance at the 0.05 level; * denotes significance at the 0.1 level. In the columns labeled
¢DCC and ¢cDCC-NLS, significant out-performance of one of the two portfolios over the other (in terms
of the Sharpe ratio) is denoted by asterisks: +++ denotes significance at the 0.01 level; ++ denotes
significance at the 0.05 level; + denotes significance at the 0.1 level.

DCC DCC-LS DCC-NLS ¢DCC ¢DCC-LS ¢DCC-NLS

N =100
Return [%] 7.06 7.07 7.06 7.00 7.04 7.02
Volatility [%]  20.48 20.49 20.49 20.49 20.49 20.49
Sharpe Ratio 0.35 0.35 0.34 0.34 0.34 0.34
N =500
Return [%] 10.13 10.13 10.12 10.12 10.12 10.12
Volatility [%]  19.64 19.64 19.64 19.64 19.64 19.64
Sharpe Ratio ~ 0.52 0.52 0.52 0.52 0.52 0.52
N =1000
Return [%] 10.63 10.63 10.63 10.66 10.66 10.63
Volatility [%]  18.66 18.66 18.66 18.66 18.66 18.66
Sharpe Ratio  0.57 0.57 0.57 0.57 0.57 0.57

All risk-based portfolios show improved performance as the number of stocks N increases. For the
RP in Table 6 and the MD in Table 7, we confirm that performance does not depend on the estimation
accuracy. There are no statistically significant differences between the DCC and cDCC-NLS or between
the cDCC and cDCC-NLS. We further confirm that the weights of the RP and MD are similar across
the models until December 2015. We consider that this explains why the performance of the RP and
MD are similar.

On the other hand, for the MV in Table 4, the Sharpe ratio of the cDCC-NLS is an improvement
over those of the DCC and the cDCC, especially for large numbers of stocks. In addition, the MVS
in Table 5, which allows short selling, shows a significant improvement. For the MV and MVS, the
c¢DCC-NLS records the highest Sharpe ratios for any numbers of stocks. According to Scherer (2011),
the good performance of the MV portfolio is based on a low-risk anomaly. By being short in high
volatility and long in low volatility, low-risk anomalies can be realized. Thus, we think the presence of
short sales makes the low-risk anomaly possible. From these results, we conclude the RP and MD do
not depend on the estimation accuracy of the covariance matrix, whereas the MV and MVS do depend
on the estimation accuracy of the covariance matrix.

5. Conclusions

The contribution of this study is twofold. First, we propose the cDCC-NLS method, a highly
accurate estimation method that combines nonlinear shrinkage and the cDCC-GARCH model.
This method overcomes the difficulties that arise from the cross-section and time series aspects
of estimating covariance matrices. We compared the performance of risk-based portfolios under
several estimation methods for covariance matrices: the DCC, cDCC, DCC-LS, DCC-NLS, cDCC-LS,
and cDCC-NLS. We performed an empirical analysis using a large number of stocks in Japanese
markets and confirm the following results:
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o  The cDCC-NLS method shows the best estimation accuracy:.
o The RP and MD do not depend on the estimation accuracy of the covariance matrix.
e The MV does depend on the estimation accuracy of the covariance matrix.

Our recommendations for investors are as follows. When constructing a minimum variance
portfolio, especially one that allows short selling, the covariance matrix should be estimated with
good estimation accuracy using the cDCC-NLS method. However, for risk parity and maximum
diversification portfolios, the estimation accuracy of the covariance matrix is not so important.

Although not considered in this research, many studies have examined the volatility asymmetry
in which volatility tends to show a greater increase after negative returns than it does after positive
returns. With regard to the conditional correlation, asymmetry is evident in the correlation between
stocks tending to increase after negative returns, as in the case of volatility. In future research, we will
investigate the impact on the performance of risk-based portfolios by introducing the asymmetry of
volatility and the correlation.

In this study, we limited our scope to the (c)DCC model in order to estimate the error of covariance
matrix. However, it is also important to examine the relationship between the performance of
a risk-based portfolio and other estimation methods.
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the paper.
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