Financial Discrimination: Consumer Perceptions and Reactions
Abstract
1. Introduction
2. Literature Review
3. Conceptual Framework and Hypotheses
4. Data and Methodology
4.1. Data
4.2. Dependent Variables
4.3. Independent Variables
4.4. Methodology
5. Results
5.1. Descriptive Results
5.2. Logistic Regression Results—Experiencing Bias or Racism When Working with a Financial Institution
5.3. Logistic Regression Results—Consumers’ Reactions After Experiencing Financial Discrimination
5.4. Model Comparison
6. Discussion
7. Conclusions
7.1. Academic and Practical Contributions
7.2. Conclusions
7.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguila, E., Angrisani, M., & Blanco, L. R. (2016). Ownership of a bank account and health of older Hispanics. Economics Letters, 144, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Alesina, A. F., Lotti, F., & Mistrulli, P. E. (2013). Do women pay more for credit? Evidence from Italy. Journal of the European Economic Association, 11(Suppl. 1), 45–66. [Google Scholar] [CrossRef]
- Alonso, S. L. N., Jorge-Vázquez, J., Rodríguez, P. A., & Hernández, B. M. S. (2023). Gender gap in the ownership and use of cryptocurrencies: Empirical evidence from Spain. Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100103. [Google Scholar] [CrossRef]
- American Psychological Association. (2018). Bias. APA Dictionary of Psychology. Available online: https://dictionary.apa.org/bias (accessed on 5 April 2025).
- American Psychological Association. (n.d.). Racism, bias, and discrimination. Available online: https://www.apa.org/topics/racism-bias-discrimination (accessed on 5 April 2025).
- Andreasen, A. R. (1975). The disadvantaged consumer. The Free Press. Available online: https://lccn.loc.gov/75002805 (accessed on 21 April 2025).
- Arce, J. (2021, October 28). Latinos lead homeownership, but systemic barriers remain. UnidosUS. Available online: https://unidosus.org/blog/2021/10/28/latinos-lead-homeownership-but-systemic-barriers-remain/ (accessed on 19 April 2025).
- Ards, S., & Myers, S., Jr. (2001). The color of money: Bad credit, wealth, and race. American Behavioral Scientist, 45(2), 223–239. [Google Scholar] [CrossRef]
- Aristei, D., & Gallo, M. (2016). Does gender matter for firms’ access to credit? Evidence from international data. Finance Research Letters, 18, 67–75. [Google Scholar] [CrossRef]
- Baker, S. M., Gentry, J. W., & Rittenburg, T. L. (2005). Building understanding of the domain of consumer vulnerability. Journal of Macromarketing, 25(2), 128–139. [Google Scholar] [CrossRef]
- Banaji, M. R., Fiske, S. T., & Massey, D. S. (2021). Systemic racism: Individuals and interactions, institutions and society. Cognitive Research: Principles and Implications, 6(1), 82. [Google Scholar] [CrossRef]
- Barcellos, S. H., & Zamarro, G. (2021). Unbanked status and use of alternative financial services among minority populations. Journal of Pension Economics & Finance, 20(4), 468–481. [Google Scholar] [CrossRef]
- Bates, T., & Robb, A. (2013). Greater access to capital is needed to unleash the local economic development potential of minority-owned businesses. Economic Development Quarterly, 27(3), 250–259. [Google Scholar] [CrossRef]
- Begley, T. A., & Purnanandam, A. (2021). Color and credit: Race, regulation, and the quality of financial services. Journal of Financial Economics, 141(1), 48–65. [Google Scholar] [CrossRef]
- Bhutta, N., Hizmo, A., & Ringo, D. (2025). How much does racial bias affect mortgage lending? Evidence from human and algorithmic credit decisions. Journal of Finance, 80(3), 1463–1496. [Google Scholar] [CrossRef]
- Botein, H. (2013). From redlining to subprime lending: How neighborhood narratives mask financial distress in Bedford-Stuyvesant, Brooklyn. Housing Policy Debate, 23(4), 714–737. [Google Scholar] [CrossRef]
- Brandt, L., Liu, S., Heim, C., & Heinz, A. (2022). The effects of social isolation stress and discrimination on mental health. Translational Psychiatry, 12(1), 398. [Google Scholar] [CrossRef]
- Broady, K., McComas, M., & Ouazad, A. (2021, November 2). An analysis of financial institutions in Black-majority communities: Black borrowers and depositors face considerable challenges in accessing banking services. Brookings. Available online: https://www.brookings.edu/articles/an-analysis-of-financial-institutions-in-black-majority-communities-black-borrowers-and-depositors-face-considerable-challenges-in-accessing-banking-services/ (accessed on 19 April 2025).
- Campbell, D., Asís Martínez-Jerez, F., & Tufano, P. (2012). Bouncing out of the banking system: An empirical analysis of involuntary bank account closures. Journal of Banking & Finance, 36(4), 1224–1235. [Google Scholar] [CrossRef]
- Caplan, M., Kindle, P. A., & Nielsen, R. B. (2017). Do we know what we think we know about payday loan borrowers: Evidence from the survey of consumer finances. Journal of Sociology and Social Welfare, 44(4), 19–43. [Google Scholar] [CrossRef]
- Chaney, K. E., Sanchez, D. T., & Remedios, J. D. (2021). Dual cues: Women of color anticipate both gender and racial bias in the face of a single identity cue. Group Processes & Intergroup Relations, 24(7), 1095–1113. [Google Scholar] [CrossRef]
- Chavez, K., Weisshaar, K., & Cabello-Hutt, T. (2022). Gender and racial discrimination in hiring before and during the COVID-19 pandemic: Evidence from a field experiment of accountants, 2018–2020. Work and Occupations, 49(3), 275–315. [Google Scholar] [CrossRef]
- Cheles-McLean, N. (2024). Sex, money and the law: Financial discrimination against sex workers. The Adelaide Law Review, 45(2), 273–309. [Google Scholar]
- Chundakkadan, R. (2023). Monetary policy and gender discrimination in the credit market. Journal of Government and Economics, 12, 100095. [Google Scholar] [CrossRef]
- Cole, E. R. (2020). Demarginalizing women of color in intersectionality scholarship in psychology: A Black feminist critique. Journal of Social Issues, 76(4), 1036–1044. [Google Scholar] [CrossRef]
- Commuri, S., & Ekici, A. (2008). An enlargement of the notion of consumer vulnerability. Journal of Macromarketing, 28(2), 183–186. [Google Scholar] [CrossRef]
- Creamer, J., & Warren, L. (2024). Unbanked and impoverished? Exploring banking and poverty interactions over time. Journal of Consumer Affairs, 58(2), 506–537. [Google Scholar] [CrossRef]
- Crockett, D., Grier, S. A., & Williams, J. A. (2003). Coping with marketplace discrimination: An exploration of the experiences of black men. Academy of Marketing Science Review, 4(7), 1–21. [Google Scholar] [CrossRef]
- Darling-Hammond, S., Michaels, E. K., Allen, A. M., Chae, D. H., Thomas, M. D., Nguyen, T. T., Mujahid, M. M., & Johnson, R. C. (2020). After “The China Virus” went viral: Racially charged coronavirus coverage and trends in bias against Asian Americans. Health Education & Behavior, 47(6), 870–879. [Google Scholar] [CrossRef]
- de Andrés, P., Gimeno, R., & Mateos de Cabo, R. (2021). The gender gap in bank credit access. Journal of Corporate Finance, 71, 101782. [Google Scholar] [CrossRef]
- Ehrmann, M., & Ampudia, M. (2017). Financial inclusion: What’s it worth? (Working paper No. 1990). European Central Bank. Available online: https://ideas.repec.org//p/ecb/ecbwps/20171990.html (accessed on 19 April 2025).
- Elias, A., & Paradies, Y. (2021). The costs of institutional racism and its ethical implications for healthcare. Journal of Bioethical Inquiry, 18(1), 45–58. [Google Scholar] [CrossRef]
- FDIC. (2024). 2023 FDIC national survey of unbanked and underbanked households. Available online: https://www.fdic.gov/household-survey/2023-fdic-national-survey-unbanked-and-underbanked-households-report (accessed on 19 April 2025).
- Federal Reserve Bank of Kansas City. (2010). A study of the unbanked & underbanked consumer in the tenth federal reserve district. Available online: https://www.fdic.gov/about/advisory-committees/economic-inclusion/2010/kcfed.pdf (accessed on 25 April 2025).
- Fernández-Olit, B., Ruza, C., de la Cuesta-González, M., & Matilla-Garcia, M. (2019). Banks and financial discrimination: What can be learnt from the Spanish experience? Journal of Consumer Policy, 42, 303–323. [Google Scholar] [CrossRef]
- Friedline, T., Morrow, S., Oh, S., Klemm, T., & Kugiya, J. (2023). Banks as racialized and gendered organizations: Interviews with frontline workers. Social Service Review, 96(3), 401–434. [Google Scholar] [CrossRef]
- Garcia, R. E., & Ortega, A. (2024). Racial protests and credit access (No. w32477). National Bureau of Economic Research. [Google Scholar]
- Garrett, D. E., & Toumanoff, P. G. (2010). Are consumers disadvantaged or vulnerable? An examination of consumer complaints to the Better Business Bureau. Journal of Consumer Affairs, 44(1), 3–23. [Google Scholar] [CrossRef]
- Gates, M. J. (1974). Credit discrimination against women: Causes and solutions. Vanderbilt Law Review, 27(3), 409–442. Available online: https://scholarship.law.vanderbilt.edu/vlr/vol27/iss3/1 (accessed on 19 April 2025).
- Grable, J., Archuleta, K., Watkins, K., & Kwak, E. J. (2025). To bank or not to bank: Describing the banking status of black households. International Journal of Bank Marketing, 43(1), 62–81. [Google Scholar] [CrossRef]
- Greenlee, M. B. (2023). Banking while black: It is past time for an equal deposit opportunity act-part I. Banking Law Journal, 140(1), 3–36. [Google Scholar]
- Greenlee, M. B. (2025). Color in line: Discrimination against people of color at the deposit window. North Carolina Banking Institute, 29(1), 102. [Google Scholar]
- Hanson, A., Hawley, Z., & Taylor, A. (2011). Subtle discrimination in the rental housing market: Evidence from e-mail correspondence with landlords. Journal of Housing Economics, 20(4), 276–284. [Google Scholar] [CrossRef]
- Hewa-Wellalage, N., Boubaker, S., Hunjra, A. I., & Verhoeven, P. (2022). The gender gap in access to finance: Evidence from the COVID-19 pandemic. Finance Research Letters, 46(A), 102329. [Google Scholar] [CrossRef]
- Hill, R. P., & Sharma, E. (2020). Consumer vulnerability. Journal of Consumer Psychology, 30(3), 551–570. [Google Scholar] [CrossRef]
- Hillier, A. E. (2005). Residential security maps and neighborhood appraisals. The homeowners’ loan corporation and the case of Philadelphia. Social Science History, 29(2), 207–233. Available online: https://muse.jhu.edu/pub/4/article/183273 (accessed on 19 April 2025).
- Hoang, D. P., Nguyen, T. H. H., Vuong, N. L., & Luong, D. V. (2023). Linking psychological needs, perceived financial well-being and loyalty: The role of commercial banks. Journal of Financial Services Marketing, 28, 466–487. [Google Scholar] [CrossRef]
- Javed, Z., Maqsood, M. H., Yahya, T., Amin, Z., Acquah, I., Valero-Elizondo, J., Andrieni, J., Dubey, P., Jackson, R. K., Daffin, M. A., Cainzos-Achirica, M., Hyder, A. A., & Nasir, K. (2022). Race, racism, and cardiovascular health: Applying a social determinants of health framework to racial/ethnic disparities in cardiovascular disease. Circulation: Cardiovascular Quality and Outcomes, 15(1), 72–86. [Google Scholar] [CrossRef]
- Koh, Y., Mao-Clark, X., & DeFranco, A. (2023). The Black Lives Matter movement and African American entrepreneurs’ crowdfunding success. International Journal of Hospitality Management, 111, 103472. [Google Scholar] [CrossRef]
- Koo, K. K., Yao, C. W., & Gong, H. J. (2023). “It is not my fault”: Exploring experiences and perceptions of racism among international students of color during COVID-19. Journal of Diversity in Higher Education, 16(3), 284–296. [Google Scholar] [CrossRef]
- LeBaron, A. B., & Kelley, H. H. (2021). Financial socialization: A decade in review. Journal of Family and Economic Issues, 42, 195–206. [Google Scholar] [CrossRef]
- Li, X., & Zhou, N. (2024). Shedding light on bias: Consumer complaint disclosure and racial equity in financial services. SSRN. Available online: https://ssrn.com/abstract=4908969 (accessed on 21 April 2025).
- Lim, H., & Letkiewicz, J. C. (2023). Consumer experience of mistreatment and fraud in financial services: Implications from an integrative consumer vulnerability framework. Journal of Consumer Policy, 46(2), 109–135. [Google Scholar] [CrossRef]
- Lusardi, A., & Mitchell, O. S. (2011). Financial literacy and planning: Implications for retirement wellbeing (Working paper No. 17078). National Bureau of Economic Research. Available online: https://www.nber.org/system/files/working_papers/w17078/w17078.pdf (accessed on 24 April 2025).
- Lynch, E. E., Malcoe, L. H., Laurent, S. E., Richardson, J., Mitchell, B. C., & Meier, H. C. S. (2021). The legacy of structural racism: Associations between historic redlining, current mortgage lending, and health. SSM—Population Health, 14, 100793. [Google Scholar] [CrossRef]
- Mailliard, P., & Anderson, K. (1987). Women’s banks and women’s access to credit: Competition between marketplace and regulatory solutions to gender discrimination. Loyola of Los Angeles Law Review, 20(3), 771–812. Available online: https://digitalcommons.lmu.edu/llr/vol20/iss3/5 (accessed on 19 April 2025).
- Marlowe, C. M., Schneider, S. L., & Nelson, C. E. (1996). Gender and attractiveness biases in hiring decisions: Are more experienced managers less biased? Journal of Applied Psychology, 81(1), 11–21. [Google Scholar] [CrossRef]
- Massey, D. S., Rugh, J. S., Steil, J. P., & Albright, L. (2016). Riding the stagecoach to hell: A qualitative analysis of racial discrimination in mortgage lending. City & Community, 15(2), 118–136. [Google Scholar] [CrossRef]
- McGarity-Palmer, R., Saw, A., Tsoh, J. Y., & Yellow Horse, A. (2024). Trends in racial discrimination experiences for Asian Americans during the COVID-19 pandemic. Journal of Racial and Ethnic Health Disparities, 11, 168–183. [Google Scholar] [CrossRef]
- Nandru, P., Chendragiri, M., & Velayutham, A. (2021). Examining the influence of financial inclusion on financial well-being of marginalized street vendors: An empirical evidence from India. International Journal of Social Economics, 48(8), 1139–1158. [Google Scholar] [CrossRef]
- New York City Department of Health and Mental Hygiene. (2021, January 6). A brief history of redlining. NYC environment & health data portal. Available online: https://a816-dohbesp.nyc.gov/IndicatorPublic/data-stories/redlining/ (accessed on 19 April 2025).
- Ode, G. E., Brooks, J. T., Middleton, K. K., Carson, E. W., & Porter, S. E. (2022). Perception of racial and intersectional discrimination in the workplace is high among black orthopaedic surgeons: Results of a survey of 274 black orthopaedic surgeons in practice. Journal of the American Academy of Orthopaedic Surgeons, 30(1), 7–18. [Google Scholar] [CrossRef]
- Ozturk, M. B., & Berber, A. (2020). Racialised professionals’ experiences of selective incivility in organisations: A multi-level analysis of subtle racism. Human Relations, 75(2), 213–239. [Google Scholar] [CrossRef]
- Pager, D., & Shepherd, H. (2008). The sociology of discrimination: Racial discrimination in employment, housing, credit, and consumer markets. Annual Review of Sociology, 34(1), 181–209. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-S. (2021). Race and property law. In D. Carbado, K. Bridges, & E. Houh (Eds.), The Oxford handbook of race and law in the United States. Oxford University Press. forthcoming. Available online: https://scholarship.law.georgetown.edu/facpub/2405 (accessed on 19 April 2025).
- Park, V. T., Tsoh, J. Y., Dougan, M., Nam, B., Tzuang, M., Park, L. G., Vuong, Q. N., Bang, J., & Meyer, O. L. (2022). Racial bias beliefs related to COVID-19 among Asian Americans, native Hawaiians, and pacific islanders: Findings from the COVID-19 effects on the mental and physical health of Asian Americans and pacific islanders survey study (COMPASS). Journal of Medical Internet Research, 24(8), e38443. [Google Scholar] [CrossRef]
- Pittman, C. (2020). “Shopping while black”: Black consumers’ management of racial stigma and racial profiling in retail settings. Journal of Consumer Culture, 20(1), 3–22. [Google Scholar] [CrossRef]
- Primbs, M. A., Holland, R. W., Maatman, F. O., Lansu, T. A. M., Faure, R., & Bijlstra, G. (2024). The effects of the 2020 BLM protests on racial bias in the United States. Personality & Social Psychology Bulletin, 1–14. [Google Scholar] [CrossRef]
- Remedios, J. D., & Snyder, S. H. (2015). How women of color detect and respond to multiple forms of prejudice. Sex Roles, 73, 371–383. [Google Scholar] [CrossRef]
- Reuters. (2024, November 12). “Underbanked” households more likely to own crypto, FDIC report says. Available online: https://www.reuters.com/markets/us/underbanked-households-more-likely-own-crypto-fdic-report-says-2024-11-12/ (accessed on 19 April 2025).
- Rice, L. (2022, December 1). Testimony before the U.S. senate committee on banking, housing, and urban affairs. U.S. Senate Committee on Banking, Housing, and Urban Affairs. Available online: https://www.banking.senate.gov/imo/media/doc/Rice%20Testimony%2012-1-222.pdf (accessed on 19 April 2025).
- Roberto, K. J., Johnson, A. F., & Rauhaus, B. M. (2020). Stigmatization and prejudice during the COVID-19 pandemic. Administrative Theory & Praxis, 42(3), 364–378. [Google Scholar] [CrossRef]
- Rose, I. (2023, January 11). A bank of her own. JSTOR Daily. Available online: https://daily.jstor.org/a-bank-of-her-own/ (accessed on 19 April 2025).
- Rugh, J. S., Albright, L., & Massey, D. S. (2015). Race, space, and cumulative disadvantage: A case study of the subprime lending collapse. Social Problems, 62(2), 186–218. [Google Scholar] [CrossRef]
- Sakong, J., & Zentefis, A. (2025). What drives disparities in bank branch use? A spatial analysis of access versus demand (Working paper No. 4349930). Social Science Research Network. [Google Scholar] [CrossRef]
- Sakyi-Nyarko, C., Ahmad, A. H., & Green, C. J. (2022). The role of financial inclusion in improving household well-being. Journal of International Development, 34(8), 1606–1632. [Google Scholar] [CrossRef]
- San Francisco Office of Financial Empowerment. (2020). Systemic barriers to banking the unbanked. City and county of San Francisco. Available online: https://www.sfgov.org/ofe/sites/default/files/2020-12/TTX%20Barriers%20to%20Banking%20Report_v4.pdf (accessed on 28 May 2025).
- Scocca, G., & Meunier, F. (2022). Towards an EU legislation on the right to be forgotten to access to financial services for cancer survivors. European Journal of Cancer, 162, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Scott, M. L., Bone, S. A., Christensen, G. L., Lederer, A., Mende, M., Christensen, B. G., & Cozac, M. (2024). Revealing and mitigating racial bias and discrimination in financial services. Journal of Marketing Research, 61(4), 598–618. [Google Scholar] [CrossRef]
- U.S. Department of Housing and Urban Development. (2009, January 20). Unequal burden: Income and racial disparities in subprime lending in America. Available online: https://archives.hud.gov/reports/subprime/subprime.cfm (accessed on 19 April 2025).
- U.S. Equal Employment Opportunity Commission. (n.d.). Civil rights act of 1991 (original text). Available online: https://www.eeoc.gov/civil-rights-act-1991-original-text (accessed on 28 April 2025).
- Wang, M. L., & Narcisse, M. R. (2025). Discrimination, depression, and anxiety among US adults. JAMA Network Open, 8(3), e252404. [Google Scholar] [CrossRef] [PubMed]
- Wherry, F. F., & Perry, V. G. (2021). Anti-Black currents in consumer affairs: An introduction to the special issue. Journal of Consumer Affairs, 55(2), 356–365. [Google Scholar] [CrossRef]
- White, K. J., Ouyang, C., Machiz, I., McCoy, M., & Qi, J. (2022). An application of financial resilience to retirement planning by racial/ethnic status. The Journal of Retirement, 9(4), 31–45. [Google Scholar] [CrossRef]
- Wiley, K. (2024). ‘This is how you will make it’: Mothers, othermothers, and Black women’s family financial socialization. Journal of Family and Economic Issues, 46, 397–410. [Google Scholar] [CrossRef]
- Wingfield, A. H., & Chavez, K. (2020). Getting in, getting hired, getting sideways looks: Organizational hierarchy and perceptions of racial discrimination. American Sociological Review, 85(1), 31–57. [Google Scholar] [CrossRef]
- Wisniewski, M. (2020, January 15). Survey: People stick with same checking account for 14 years. Bankrate. Available online: https://www.bankrate.com/banking/best-banks-consumer-survey-2020/ (accessed on 19 April 2025).
Full Sample (N = 3290) | Black (N = 729) | White (N = 1714) | Asian (N = 314) | Multiracial/Other (N = 355) | Native/Pacific Islander (N = 178) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Prop. | Std. Dev. | Prop. | Std. Dev. | Prop. | Std. Dev. | Prop. | Std. Dev. | Prop. | Std. Dev. | Prop. | Std. Dev. | |
Experienced bias | 0.21 | 0.41 | 0.32 | 0.47 | 0.15 | 0.36 | 0.22 | 0.41 | 0.27 | 0.44 | 0.25 | 0.44 |
Hispanic | 0.20 | 0.40 | 0.10 | 0.30 | 0.20 | 0.40 | 0.03 | 0.17 | 0.54 | 0.50 | 0.17 | 0.38 |
Women | 0.50 | 0.50 | 0.49 | 0.50 | 0.50 | 0.50 | 0.44 | 0.50 | 0.57 | 0.50 | 0.48 | 0.50 |
Age (in years) | ||||||||||||
18–24 | 0.17 | 0.37 | 0.25 | 0.43 | 0.11 | 0.31 | 0.24 | 0.43 | 0.23 | 0.42 | 0.13 | 0.34 |
25–34 | 0.31 | 0.46 | 0.38 | 0.49 | 0.27 | 0.44 | 0.31 | 0.46 | 0.39 | 0.49 | 0.28 | 0.45 |
35–44 | 0.24 | 0.43 | 0.23 | 0.42 | 0.25 | 0.43 | 0.25 | 0.43 | 0.22 | 0.41 | 0.29 | 0.45 |
45–54 | 0.13 | 0.33 | 0.08 | 0.28 | 0.15 | 0.36 | 0.11 | 0.32 | 0.09 | 0.28 | 0.19 | 0.39 |
55–64 | 0.08 | 0.26 | 0.05 | 0.21 | 0.10 | 0.30 | 0.03 | 0.18 | 0.05 | 0.21 | 0.10 | 0.29 |
65+ | 0.08 | 0.27 | 0.02 | 0.13 | 0.12 | 0.33 | 0.06 | 0.23 | 0.04 | 0.19 | 0.02 | 0.13 |
Education | ||||||||||||
High school or less | 0.33 | 0.47 | 0.39 | 0.49 | 0.33 | 0.47 | 0.23 | 0.42 | 0.34 | 0.47 | 0.35 | 0.48 |
Some college | 0.40 | 0.49 | 0.41 | 0.49 | 0.39 | 0.49 | 0.30 | 0.46 | 0.42 | 0.49 | 0.49 | 0.50 |
Bachelor’s degree | 0.19 | 0.39 | 0.15 | 0.36 | 0.19 | 0.39 | 0.34 | 0.47 | 0.17 | 0.38 | 0.12 | 0.32 |
Graduate degree | 0.08 | 0.27 | 0.05 | 0.21 | 0.09 | 0.28 | 0.14 | 0.34 | 0.08 | 0.27 | 0.04 | 0.19 |
Marital Status | ||||||||||||
Married | 0.43 | 0.50 | 0.28 | 0.45 | 0.51 | 0.50 | 0.43 | 0.50 | 0.40 | 0.49 | 0.38 | 0.49 |
Widowed/Divorced/Separated | 0.14 | 0.35 | 0.08 | 0.27 | 0.18 | 0.39 | 0.06 | 0.24 | 0.11 | 0.31 | 0.17 | 0.38 |
Single | 0.43 | 0.49 | 0.64 | 0.48 | 0.31 | 0.46 | 0.51 | 0.50 | 0.50 | 0.50 | 0.45 | 0.50 |
Employment Status | ||||||||||||
Employed | 0.61 | 0.49 | 0.68 | 0.47 | 0.58 | 0.49 | 0.57 | 0.50 | 0.64 | 0.48 | 0.57 | 0.50 |
Student | 0.07 | 0.25 | 0.08 | 0.28 | 0.04 | 0.20 | 0.14 | 0.35 | 0.08 | 0.28 | 0.07 | 0.26 |
Unemployed | 0.24 | 0.43 | 0.21 | 0.41 | 0.26 | 0.44 | 0.23 | 0.42 | 0.20 | 0.40 | 0.24 | 0.43 |
Other | 0.08 | 0.28 | 0.03 | 0.17 | 0.11 | 0.31 | 0.05 | 0.23 | 0.07 | 0.26 | 0.12 | 0.32 |
Annual Income | ||||||||||||
Less than USD 15,000 | 0.18 | 0.38 | 0.22 | 0.42 | 0.15 | 0.35 | 0.16 | 0.36 | 0.20 | 0.40 | 0.29 | 0.45 |
USD 15,000 to USD 24,999 | 0.15 | 0.36 | 0.16 | 0.37 | 0.15 | 0.36 | 0.12 | 0.33 | 0.17 | 0.38 | 0.17 | 0.38 |
USD 25,000 to USD 34,999 | 0.16 | 0.36 | 0.17 | 0.38 | 0.16 | 0.36 | 0.11 | 0.32 | 0.17 | 0.38 | 0.11 | 0.32 |
USD 35,000 to USD 49,999 | 0.20 | 0.40 | 0.18 | 0.38 | 0.17 | 0.38 | 0.31 | 0.46 | 0.23 | 0.42 | 0.30 | 0.46 |
USD 50,000 to USD 74,999 | 0.11 | 0.31 | 0.10 | 0.30 | 0.12 | 0.33 | 0.06 | 0.24 | 0.10 | 0.31 | 0.04 | 0.19 |
USD 75,000 to USD 99,999 | 0.10 | 0.30 | 0.09 | 0.29 | 0.12 | 0.32 | 0.12 | 0.33 | 0.06 | 0.24 | 0.05 | 0.22 |
USD 100,000 to USD 150,000 | 0.10 | 0.31 | 0.07 | 0.26 | 0.13 | 0.34 | 0.11 | 0.32 | 0.07 | 0.25 | 0.03 | 0.18 |
Homeowner | 0.40 | 0.49 | 0.31 | 0.46 | 0.48 | 0.50 | 0.34 | 0.48 | 0.31 | 0.46 | 0.31 | 0.47 |
Objective financial knowledge | 1.34 | 1.01 | 1.07 | 0.89 | 1.43 | 1.03 | 1.61 | 1.05 | 1.26 | 0.97 | 1.27 | 0.99 |
Subjective financial knowledge | ||||||||||||
No knowledge | 0.11 | 0.31 | 0.09 | 0.29 | 0.11 | 0.31 | 0.08 | 0.27 | 0.12 | 0.33 | 0.19 | 0.39 |
Basic knowledge | 0.49 | 0.50 | 0.43 | 0.50 | 0.49 | 0.50 | 0.54 | 0.50 | 0.51 | 0.50 | 0.49 | 0.50 |
Good knowledge | 0.31 | 0.46 | 0.35 | 0.48 | 0.30 | 0.46 | 0.31 | 0.46 | 0.28 | 0.45 | 0.24 | 0.43 |
Very good knowledge | 0.10 | 0.30 | 0.13 | 0.33 | 0.10 | 0.29 | 0.08 | 0.27 | 0.08 | 0.28 | 0.07 | 0.26 |
Women (N = 1640) | Men (N = 1650) | |||
---|---|---|---|---|
Prop. | Std. Dev. | Prop. | Std. Dev. | |
Experienced bias | 0.20 | 0.40 | 0.23 | 0.42 |
Hispanic | 0.25 | 0.43 | 0.15 | 0.36 |
Race | ||||
Black | 0.22 | 0.41 | 0.22 | 0.42 |
White | 0.52 | 0.50 | 0.52 | 0.50 |
Asian | 0.08 | 0.28 | 0.11 | 0.31 |
Multiracial/Other | 0.12 | 0.33 | 0.09 | 0.29 |
Native/Pacific Islander | 0.05 | 0.22 | 0.06 | 0.23 |
Age (in years) | ||||
18–24 | 0.19 | 0.39 | 0.14 | 0.35 |
25–34 | 0.32 | 0.47 | 0.30 | 0.46 |
35–44 | 0.24 | 0.42 | 0.25 | 0.44 |
45–54 | 0.14 | 0.35 | 0.12 | 0.32 |
55–64 | 0.07 | 0.26 | 0.08 | 0.27 |
65+ | 0.04 | 0.20 | 0.12 | 0.32 |
Education | ||||
High school or less | 0.34 | 0.47 | 0.33 | 0.47 |
Some college | 0.44 | 0.50 | 0.36 | 0.48 |
Bachelor’s degree | 0.16 | 0.37 | 0.22 | 0.41 |
Graduate degree | 0.06 | 0.24 | 0.10 | 0.30 |
Marital Status | ||||
Married | 0.44 | 0.50 | 0.42 | 0.49 |
Widowed/Divorced/Separated | 0.16 | 0.37 | 0.12 | 0.33 |
Single | 0.40 | 0.49 | 0.46 | 0.50 |
Employment Status | ||||
Employed | 0.56 | 0.50 | 0.65 | 0.48 |
Student | 0.08 | 0.27 | 0.06 | 0.23 |
Unemployed | 0.29 | 0.45 | 0.20 | 0.40 |
Other | 0.08 | 0.26 | 0.09 | 0.29 |
Annual Income | ||||
Less than USD 15,000 | 0.20 | 0.40 | 0.15 | 0.36 |
USD 15,000 to USD 24,999 | 0.17 | 0.38 | 0.13 | 0.34 |
USD 25,000 to USD 34,999 | 0.16 | 0.37 | 0.15 | 0.35 |
USD 35,000 to USD 49,999 | 0.18 | 0.39 | 0.22 | 0.42 |
USD 50,000 to USD 74,999 | 0.11 | 0.31 | 0.10 | 0.30 |
USD 75,000 to USD 99,999 | 0.09 | 0.29 | 0.11 | 0.32 |
USD 100,000 to USD 150,000 | 0.07 | 0.26 | 0.13 | 0.34 |
Homeowner | 0.37 | 0.48 | 0.44 | 0.50 |
Objective financial knowledge | 1.13 | 0.90 | 1.55 | 1.06 |
Subjective financial knowledge | ||||
No knowledge | 0.12 | 0.33 | 0.09 | 0.29 |
Basic knowledge | 0.52 | 0.50 | 0.45 | 0.50 |
Good knowledge | 0.28 | 0.45 | 0.34 | 0.47 |
Very good knowledge | 0.08 | 0.27 | 0.11 | 0.32 |
Full Sample (N = 701) | Black (N = 233) | White (N = 259) | Asian (N = 69) | Multiracial/Other (N = 95) | Native/Pacific Islander (N = 45) | Women (N = 324) | Men (N = 377) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | Std. Dev. | % | Std. Dev. | % | Std. Dev. | % | Std. Dev. | % | Std. Dev. | % | Std. Dev. | % | Std. Dev. | % | Std. Dev. | |
Lost trust in that financial services company (N = 127) | 0.18 | 0.39 | 0.22 | 0.41 | 0.17 | 0.38 | 0.12 | 0.32 | 0.14 | 0.35 | 0.22 | 0.42 | 0.16 | 0.37 | 0.20 | 0.40 |
Lost trust in financial services industry (N = 120) | 0.17 | 0.38 | 0.20 | 0.40 | 0.15 | 0.36 | 0.14 | 0.35 | 0.20 | 0.40 | 0.11 | 0.32 | 0.16 | 0.37 | 0.18 | 0.39 |
Used non-traditional services and alternative tools (N = 187) | 0.27 | 0.44 | 0.24 | 0.43 | 0.31 | 0.46 | 0.32 | 0.47 | 0.19 | 0.39 | 0.27 | 0.45 | 0.25 | 0.43 | 0.28 | 0.45 |
Switched financial services companies (N = 105) | 0.15 | 0.36 | 0.14 | 0.34 | 0.14 | 0.35 | 0.13 | 0.34 | 0.22 | 0.42 | 0.16 | 0.37 | 0.16 | 0.37 | 0.14 | 0.35 |
Told friends and family (N = 88) | 0.13 | 0.33 | 0.12 | 0.33 | 0.11 | 0.31 | 0.16 | 0.37 | 0.15 | 0.37 | 0.13 | 0.34 | 0.16 | 0.37 | 0.10 | 0.30 |
Est. Coef. | SE | OR | |
---|---|---|---|
Race (Ref. = Black) | |||
White | −0.8671 *** | 0.1140 | 0.4202 |
Asian | −0.4663 ** | 0.1669 | 0.6273 |
Multiracial/Other | −0.3586 * | 0.1587 | 0.6987 |
Native/Pacific Islander | −0.2729 | 0.1987 | 0.7612 |
Women (Ref. = Men) | −0.2764 ** | 0.0928 | 0.7585 |
Hispanic (Ref. = Non-Hispanic) | 0.2964 * | 0.1163 | 1.3451 |
Age (in years) (Ref. = 18–24) | |||
25–34 | 0.0161 | 0.1338 | 1.0162 |
35–44 | −0.0869 | 0.1474 | 0.9168 |
45–54 | −0.5459 ** | 0.1915 | 0.5793 |
55–64 | −0.4615 * | 0.2322 | 0.6304 |
65+ | −1.8268 *** | 0.3898 | 0.1609 |
Education (Ref. = High school or less) | |||
Some college | −0.0266 | 0.1085 | 0.9737 |
Bachelor’s degree | 0.1810 | 0.1399 | 1.1984 |
Graduate degree | 0.5429 ** | 0.1837 | 1.7209 |
Marital Status (Ref. = Married) | |||
Widowed/Divorced/Separated | −0.1078 | 0.1592 | 0.8978 |
Single | −0.2504 * | 0.1085 | 0.7785 |
Employment Status (Ref. = Employed) | |||
Student | −0.0637 | 0.1846 | 0.9382 |
Unemployed | −0.4484 *** | 0.1254 | 0.6387 |
Other | −0.4920 * | 0.2409 | 0.6114 |
Annual Income (Ref. = Less than USD 15,000) | |||
USD 15,000 to USD 24,999 | −0.0276 | 0.1562 | 0.9728 |
USD 25,000 to USD 34,999 | 0.0128 | 0.1561 | 1.0129 |
USD 35,000 to USD 49,999 | −0.1978 | 0.1525 | 0.8205 |
USD 50,000 to USD 74,999 | −0.3640 | 0.1887 | 0.6949 |
USD 75,000 to USD 99,999 | −0.3915 * | 0.1942 | 0.6761 |
USD 100,000 to USD 150,000 | −0.4855 * | 0.2050 | 0.6154 |
Homeowner | 0.2455 * | 0.1013 | 1.2783 |
Objective financial knowledge | −0.0771 | 0.0489 | 0.9258 |
Subjective financial knowledge (Ref. = No knowledge) | |||
Basic knowledge | −0.1257 | 0.1541 | 0.8819 |
Good knowledge | −0.0491 | 0.1635 | 0.9521 |
Very good knowledge | −0.0250 | 0.1980 | 0.9753 |
Intercept | −0.1118 | 0.2454 | 0.8942 |
Model fit | |||
Pseudo R-squared | 0.0695 | ||
Concordance rate | 68.07% | ||
Hosmer–Lemeshow goodness-of-fit | χ2 = 4.59 | p = 0.800 |
Lost Trust Financial Services Company | Lost Trust Financial Services Industry | Used Non-Traditional and Alternatives | |||||||
---|---|---|---|---|---|---|---|---|---|
Est. Coef. | SE | OR | Est. Coef. | SE | OR | Est. Coef. | SE | OR | |
Race (Ref. = Black) | |||||||||
White | −1.1597 *** | 0.2298 | 0.3136 | −0.9125 *** | 0.2394 | 0.4015 | −0.2662 | 0.1972 | 0.7663 |
Asian | −1.1570 ** | 0.4026 | 0.3144 | −0.8455 * | 0.3730 | 0.4293 | 0.1774 | 0.2787 | 1.1941 |
Multiracial/Other | −0.9483 ** | 0.3470 | 0.3874 | −0.3591 | 0.3138 | 0.6983 | −0.2800 | 0.3019 | 0.7558 |
Native/Pacific Islander | −0.3657 | 0.3753 | 0.6937 | −0.9009 | 0.4923 | 0.4062 | 0.1266 | 0.3446 | 1.1350 |
Women (Ref. = Men) | −0.3924 * | 0.1965 | 0.6754 | −0.3079 | 0.1990 | 0.7350 | −0.4061 * | 0.1623 | 0.6663 |
Hispanic (Ref. = non-Hispanic) | 0.4186 | 0.2409 | 1.5199 | 0.1685 | 0.2499 | 1.1835 | 0.0543 | 0.2037 | 1.0558 |
Age (in years) (Ref. = 18–24) | |||||||||
25–34 | 0.7607 * | 0.3296 | 2.1397 | 0.2178 | 0.2671 | 1.2433 | −0.1464 | 0.2219 | 0.8638 |
35–44 | 0.5322 | 0.3531 | 1.7026 | −0.2010 | 0.3209 | 0.8179 | −0.2925 | 0.2475 | 0.7464 |
45–54 | −0.0609 | 0.4434 | 0.9409 | −0.4955 | 0.4458 | 0.6093 | −0.4280 | 0.3187 | 0.6518 |
55–64 | −0.1822 | 0.5243 | 0.8334 | −0.0457 | 0.5148 | 0.9553 | −1.4991 | 0.5596 | 0.2233 |
65+ | −2.1021 | 1.0919 | 0.1222 | −0.9781 | 0.8401 | 0.3760 | - | - | - |
Education (Ref. = High school or less) | |||||||||
Some college | 0.0158 | 0.2309 | 1.0159 | −0.1821 | 0.2348 | 0.8335 | −0.2452 | 0.1891 | 0.7825 |
Bachelor’s degree | 0.1782 | 0.2898 | 1.1951 | 0.3439 | 0.2824 | 1.4104 | −0.2981 | 0.2513 | 0.7422 |
Graduate degree | 0.4524 | 0.3701 | 1.5720 | 0.6249 | 0.3764 | 1.8681 | 0.4573 | 0.2873 | 1.5798 |
Marital Status (Ref. = Married) | |||||||||
Widowed/Divorced/Separated | 0.4906 | 0.2968 | 1.6333 | −1.0469 * | 0.4903 | 0.3510 | 0.2326 | 0.2750 | 1.2619 |
Single | −0.1923 | 0.2258 | 0.8251 | −0.0510 | 0.2243 | 0.9503 | −0.1132 | 0.1907 | 0.8929 |
Employment Status (Ref. = Employed) | |||||||||
Student | −0.5501 | 0.5444 | 0.5769 | −0.0281 | 0.3748 | 0.9723 | −0.2087 | 0.3227 | 0.8116 |
Unemployed | 0.1363 | 0.2494 | 1.1460 | −0.9131 ** | 0.3109 | 0.4013 | −0.4170 | 0.2310 | 0.6590 |
Other | −0.6526 | 0.6239 | 0.5207 | −0.6339 | 0.5784 | 0.5305 | −0.4213 | 0.4869 | 0.6562 |
Annual Income (Ref. = Less than USD 15,000) | |||||||||
USD 15,000 to USD 24,999 | 0.5404 | 0.3166 | 1.7167 | 0.2530 | 0.3376 | 1.2879 | −0.4524 | 0.2878 | 0.6361 |
USD 25,000 to USD 34,999 | −0.0221 | 0.3487 | 0.9781 | 0.3691 | 0.3294 | 1.4464 | −0.3265 | 0.2775 | 0.7215 |
USD 35,000 to USD 49,999 | −0.1274 | 0.3387 | 0.8804 | 0.1999 | 0.3317 | 1.2213 | −0.3404 | 0.2603 | 0.7115 |
USD 50,000 to USD 74,999 | −0.1067 | 0.3957 | 0.8988 | −0.1070 | 0.4104 | 0.8985 | −0.1561 | 0.3094 | 0.8555 |
USD 75,000 to USD 99,999 | −0.2731 | 0.4214 | 0.7610 | −1.0683 * | 0.5448 | 0.3436 | −0.1339 | 0.3178 | 0.8746 |
USD 100,000 to USD 150,000 | −0.4616 | 0.4473 | 0.6303 | −0.3393 | 0.4627 | 0.7123 | −0.2842 | 0.3358 | 0.7526 |
Homeowner | 0.4623 * | 0.2063 | 1.5877 | 0.1445 | 0.2194 | 1.1555 | 0.3135 | 0.1743 | 1.3681 |
Objective financial knowledge | 0.2946 ** | 0.1019 | 1.3426 | −0.0082 | 0.1064 | 0.9919 | −0.3332 *** | 0.0877 | 0.7166 |
Subjective financial knowledge (Ref. = No knowledge) | |||||||||
Basic knowledge | −0.6081 * | 0.3049 | 0.5444 | −0.4271 | 0.2816 | 0.6524 | 0.6113 | 0.3346 | 1.8429 |
Good knowledge | −0.2488 | 0.3127 | 0.7797 | −1.0224 ** | 0.3262 | 0.3597 | 0.6242 | 0.3479 | 1.8668 |
Very good knowledge | −0.1674 | 0.3806 | 0.8459 | −1.2208 ** | 0.4489 | 0.2950 | 1.0986 ** | 0.3741 | 3.0000 |
Intercept | −3.0194 *** | 0.5290 | 0.0488 | −1.7894 *** | 0.4884 | 0.1671 | −2.0633 *** | 0.4614 | 0.1270 |
Model fit | |||||||||
Pseudo R-squared | 0.0850 | 0.0884 | 0.0557 | ||||||
Concordance rate | 73.55% | 73.79% | 68.72% | ||||||
Hosmer–Lemeshow goodness-of-fit | χ2 = 5.97 | p = 0.6508 | χ2 = 4.51 | p = 0.8082 | χ2 = 12.21 | p = 0.1421 | |||
Switched Financial Services Companies | Told Friends/Family | ||||||||
Est. Coef. | SE | OR | Est. Coef. | SE | OR | ||||
Race (Ref. = Black) | |||||||||
White | −0.7222 ** | 0.2657 | 0.4857 | −0.7727 ** | 0.2919 | 0.4618 | |||
Asian | −0.4979 | 0.3984 | 0.6078 | −0.1039 | 0.3812 | 0.9013 | |||
Multiracial/Other | 0.2860 | 0.3191 | 1.3311 | −0.0894 | 0.3604 | 0.9145 | |||
Native/Pacific Islander | −0.0379 | 0.4385 | 0.9628 | −0.1519 | 0.4733 | 0.8591 | |||
Women (Ref. = Men) | 0.0237 | 0.2095 | 1.0240 | 0.2858 | 0.2310 | 1.3308 | |||
Hispanic (Ref. = non-Hispanic) | 0.1206 | 0.2572 | 1.1282 | 0.4196 | 0.2772 | 1.5214 | |||
Age (in years) (Ref. = 18–24) | |||||||||
25–34 | −0.0742 | 0.3045 | 0.9285 | −0.2818 | 0.3224 | 0.7544 | |||
35–44 | −0.1654 | 0.3383 | 0.8476 | 0.1283 | 0.3388 | 1.1368 | |||
45–54 | −0.7350 | 0.4695 | 0.4795 | −0.3534 | 0.4853 | 0.7023 | |||
55–64 | −0.2793 | 0.5088 | 0.7563 | 0.2072 | 0.5327 | 1.2302 | |||
65+ | −1.3912 | 0.8387 | 0.2488 | −1.4750 | 1.1079 | 0.2288 | |||
Education (Ref. = High school or less) | |||||||||
Some college | 0.1665 | 0.2564 | 1.1812 | 0.2497 | 0.2738 | 1.2837 | |||
Bachelor’s degree | 0.3749 | 0.3054 | 1.4548 | 0.4311 | 0.3520 | 1.5389 | |||
Graduate degree | −0.1831 | 0.4839 | 0.8327 | 0.7455 | 0.4422 | 2.1075 | |||
Marital Status (Ref. = Married) | |||||||||
Widowed/Divorced/Separated | 0.2880 | 0.3325 | 1.3337 | −1.1850 * | 0.5481 | 0.3058 | |||
Single | −0.1860 | 0.2476 | 0.8303 | −0.2304 | 0.2629 | 0.7942 | |||
Employment Status (Ref. = Employed) | |||||||||
Student | 0.1129 | 0.4043 | 1.1195 | 0.3862 | 0.3738 | 1.4714 | |||
Unemployed | −0.6132 | 0.3325 | 0.5416 | −0.5105 | 0.3267 | 0.6002 | |||
Other | −0.4158 | 0.5683 | 0.6598 | 0.0658 | 0.5202 | 1.0680 | |||
Annual Income (Ref. = Less than USD 15,000) | |||||||||
USD 15,000 to USD 24,999 | 0.5430 | 0.4386 | 1.7212 | −0.5870 | 0.3709 | 0.5560 | |||
USD 25,000 to USD 34,999 | 0.6932 | 0.4262 | 2.0001 | −0.3686 | 0.3498 | 0.6917 | |||
USD 35,000 to USD 49,999 | 0.7291 | 0.4114 | 2.0733 | −0.7871 * | 0.3657 | 0.4552 | |||
USD 50,000 to USD 74,999 | 0.5464 | 0.4746 | 1.7271 | −1.2867 * | 0.5279 | 0.2762 | |||
USD 75,000 to USD 99,999 | 1.0680 * | 0.4516 | 2.9095 | −0.8961 | 0.4663 | 0.4081 | |||
USD 100,000 to USD 150,000 | 0.0725 | 0.5553 | 1.0752 | −0.7727 | 0.4742 | 0.4618 | |||
Homeowner | 0.2229 | 0.2246 | 1.2497 | −0.0771 | 0.2564 | 0.9258 | |||
Objective financial knowledge | 0.0523 | 0.1101 | 1.0537 | −0.0663 | 0.1224 | 0.9358 | |||
Subjective financial knowledge (Ref. = No knowledge) | |||||||||
Basic knowledge | −0.0028 | 0.3978 | 0.9972 | 0.2353 | 0.4253 | 1.2653 | |||
Good knowledge | 0.2606 | 0.4080 | 1.2978 | 0.6079 | 0.4377 | 1.8367 | |||
Very good knowledge | −0.0646 | 0.4993 | 0.9374 | 0.0924 | 0.5440 | 1.0968 | |||
Intercept | −3.7066 *** | 0.6247 | 0.0246 | −3.0009 *** | 0.6071 | 0.0497 | |||
Model fit | |||||||||
Pseudo R-squared | 0.0597 | 0.0646 | |||||||
Concordance rate | 70.61% | 71.63% | |||||||
Hosmer–Lemeshow goodness-of-fit | χ2 = 10.32 | p = 0.2436 | χ2 = 5.69 | p = 0.6815 |
Lost Trust Financial Services Company | Lost Trust Financial Services Industry | Used Non-Traditional and Alternatives | Switched Financial Services Companies | Told Friends/Family | |
---|---|---|---|---|---|
Logistic Regression | |||||
AIC | 1046.244 | 1001.130 | 1385.981 | 936.495 | 820.5894 |
BIC | 1235.302 | 1190.187 | 1566.490 | 1125.553 | 1009.647 |
Selection Model | |||||
AIC | 3893.878 | 3889.996 | 4048.04 | 3852.553 | 3792.682 |
BIC | 4284.191 | 4274.21 | 4432.26 | 4236.768 | 4176.896 |
Likelihood-Ratio Test of independent equations | χ2(1) = 0.06, p = 0.80 | χ2(1) = 1.10, p = 0.2952 | χ2(1) = 0.00, p = 0.9794 | χ2(1) = 0.06, p = 0.8037 | χ2(1) = 0.17, p = 0.6792 |
Estimated ρ (rho) from Selection Model | −0.093 | 0.996 | 0.0352 | 0.999 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiter, M.; Qing, D.; White, K.; Nations, M. Financial Discrimination: Consumer Perceptions and Reactions. Int. J. Financial Stud. 2025, 13, 136. https://doi.org/10.3390/ijfs13030136
Reiter M, Qing D, White K, Nations M. Financial Discrimination: Consumer Perceptions and Reactions. International Journal of Financial Studies. 2025; 13(3):136. https://doi.org/10.3390/ijfs13030136
Chicago/Turabian StyleReiter, Miranda, Di Qing, Kenneth White, and Morgen Nations. 2025. "Financial Discrimination: Consumer Perceptions and Reactions" International Journal of Financial Studies 13, no. 3: 136. https://doi.org/10.3390/ijfs13030136
APA StyleReiter, M., Qing, D., White, K., & Nations, M. (2025). Financial Discrimination: Consumer Perceptions and Reactions. International Journal of Financial Studies, 13(3), 136. https://doi.org/10.3390/ijfs13030136