Digital Credit and Its Determinants: A Global Perspective
Abstract
:1. Introduction
2. A Brief Overview of Relevant Literature
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Discussions
4.1. The Results of a Baseline Model
4.2. The Results of Robustness Checks
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | These countries include Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Bulgaria, Burkina Faso, Cambodia, Canada, Chile, China, Colombia, Costa Rica, Cote d’Ivoire, Czech Republic, Denmark, Ecuador, Egypt, El Salvador, Estonia, Finland, France, Georgia, Germany, Ghana, Guatemala, Hong Kong, India, Indonesia, Ireland, Israel, Italy, Japan, Jordan, Kenya, Korea, Latvia, Lebanon, Liberia, Lithuania, Luxembourg, Malawi, Malaysia, Mali, Mexico, Mongolia, Morocco, Netherlands, New Zealand, Nigeria, Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Russian Federation, Saudi Arabia, Senegal, Sierra Leone, Singapore, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Tanzania, Thailand, Turkey, Uganda, United Arab Emirates, United Kingdom, United States of America, Uruguay, Vietnam, Yemen, Zambia. |
References
- Akartuna, Eray Arda, Shane D. Johnson, and Amy E. Thornton. 2022a. Preventing the Money Laundering and Terrorist Financing Risks of Emerging Technologies: An International Policy Delphi Study. Technological Forecasting and Social Change 179: 121632. [Google Scholar] [CrossRef]
- Akartuna, Eray Arda, Shane D. Johnson, and Amy E. Thornton. 2022b. The Money Laundering and Terrorist Financing Risks of New and Disruptive Technologies: A Futures-Oriented Scoping Review. Security Journal. (Online first). [Google Scholar] [CrossRef]
- Allen, Franklin, Xian Gu, and Julapa Jagtiani. 2021. A Survey of Fintech Research and Policy Discussion. Review of Corporate Finance 1: 259–339. [Google Scholar] [CrossRef]
- Bazarbash, Majid, and Kimberly Beaton. 2020. Filling the Gap: Digital Credit and Financial Inclusion. IMF Working Papers No. WP/20/150. Washington, DC: International Monetary Fund. [Google Scholar]
- Berg, Tobias, Valentin Burg, Ana Gombović, and Manju Puri. 2019. On the Rise of Fintechs: Credit Scoring Using Digital Footprints. The Review of Financial Studies 33: 2845–97. [Google Scholar] [CrossRef]
- Boubaker, Sabri, Tu D. Q. Le, and Thanh Ngo. 2022. Managing Bank Performance under COVID-19: A Novel Inverse DEA Efficiency Approach. International Transactions in Operational Research 30: 2436–52. [Google Scholar] [CrossRef]
- Buchak, Greg, Gregor Matvos, Tomasz Piskorski, and Amit Seru. 2018. Fintech, Regulatory Arbitrage, and the Rise of Shadow Banks. Journal of Financial Economics 130: 453–83. [Google Scholar] [CrossRef]
- Cheng, Maoyong, and Yang Qu. 2020. Does Bank Fintech Reduce Credit Risk? Evidence from China. Pacific-Basin Finance Journal 63: 101398. [Google Scholar] [CrossRef]
- Claessens, Stijn, Jon Frost, Grant Turner, and Feng Zhu. 2018. Fintech Credit Markets around the World: Size, Drivers and Policy Issues. BIS Quarterly Review September 2018: 1–21. [Google Scholar]
- Cornelli, Giulio, Jon Frost, Leonardo Gambacorta, P. Raghavendra Rau, Robert Wardrop, and Tania Ziegler. 2020. Fintech and Big Tech Credit: A New Database. BIS Working Papers No. 887. Basel: Bank for International Settlements. [Google Scholar]
- Cornelli, Giulio, Jon Frost, Leonardo Gambacorta, P. Raghavendra Rau, Robert Wardrop, and Tania Ziegler. 2023. Fintech and Big Tech Credit: Drivers of the Growth of Digital Lending. Journal of Banking & Finance 148: 106742. [Google Scholar] [CrossRef]
- De Roure, Calebe, Loriana Pelizzon, and Anjan Thakor. 2021. P2p Lenders Versus Banks: Cream Skimming or Bottom Fishing? The Review of Corporate Finance Studies 11: 213–62. [Google Scholar] [CrossRef]
- De Roure, Calebe, Loriana Pelizzon, and Paolo Tasca. 2016. How Does P2P Lending Fit into the Consumer Credit Market? Discussion Paper No 30/2016. Frankfurt: Deutsche Bundesbank. [Google Scholar]
- Duhaime, Christine. 2019. The Role of Anti–Money Laundering Law and Compliance in Fintech. In The Regtech Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries in Regulation. Edited by Janos Barberis, Douglas W. Arner and Ross P. Buckley. Hoboken: Wiley. [Google Scholar]
- ElBannan, Mona A. 2015. Do Consolidation and Foreign Ownership Affect Bank Risk Taking in an Emerging Economy? An Empirical Investigation. Managerial Finance 41: 874–907. [Google Scholar] [CrossRef]
- FATF. 2021. Opportunities and Challenges of New Technologies for AML/CFT. Paris: The Financial Action Task Force. [Google Scholar]
- Feyen, Erik, Jon Frost, Leonardo Gambacorta, Harish Natarajan, and Matthew Saal. 2021. Fintech and the Digital Transformation of Financial Services: Implications for Market Structure and Public Policy. BIS Papers No. 117. Basel: Bank for International Settlements. [Google Scholar]
- Freedman, Seth, and Ginger Zhe Jin. 2017. The Information Value of Online Social Networks: Lessons from Peer-to-Peer Lending. International Journal of Industrial Organization 51: 185–222. [Google Scholar] [CrossRef]
- Hair, Joseph F., R. E. Anderson, R. L. Tatham, and W. C. Black. 2013. Multivariate Data Analysis. Upper Saddle River: Prentice-Hall. [Google Scholar]
- Hodula, Martin. 2021. Does Fintech Credit Substitute for Traditional Credit? Evidence from 78 Countries. Finance Research Letters 48: 102469. [Google Scholar] [CrossRef]
- Hodula, Martin. 2023. Fintech Credit, Big Tech Credit and Income Inequality. Finance Research Letters 51: 103387. [Google Scholar] [CrossRef]
- Horn, Matthias, Andreas Oehler, and Stefan Wendt. 2020. Fintech for Consumers and Retail Investors: Opportunities and Risks of Digital Payment and Investment Services. In Ecological, Societal, and Technological Risks and the Financial Sector. Edited by Thomas Walker, Dieter Gramlich, Mohammad Bitar and Pedram Fardnia. Cham: Springer International Publishing. [Google Scholar]
- Hu, Zhongqing, Shuai Ding, Shizheng Li, Luting Chen, and Shanlin Yang. 2019. Adoption Intention of Fintech Services for Bank Users: An Empirical Examination with an Extended Technology Acceptance Model. Symmetry 11: 340. [Google Scholar] [CrossRef]
- Hui, Eddie C. M., and Ka Kwan Kevin Chan. 2022. How Does COVID-19 Affect Global Equity Markets? Financial Innovation 8: 25. [Google Scholar] [CrossRef]
- Jagtiani, Julapa, and Catharine Lemieux. 2019. The Roles of Alternative Data and Machine Learning in Fintech Lending: Evidence from the Lendingclub Consumer Platform. Financial Management 48: 1009–29. [Google Scholar] [CrossRef]
- Le, Tu D. Q. 2022a. The Roles of Financial Inclusion and Financial Markets Development in Fintech Credit: Evidence from Developing Countries. International Journal of Blockchains and Cryptocurrencies 2: 339–49. [Google Scholar] [CrossRef]
- Le, Tu D. Q. 2022b. A Shift Towards Household Lending During Fintech Era: The Role of Financial Literacy and Credit Information Sharing. Asia-Pacific Journal of Business Administration 15: 466–85. [Google Scholar] [CrossRef]
- Le, Tu D. Q., Tin H. Ho, Dat T. Nguyen, and Thanh Ngo. 2021. Fintech Credit and Bank Efficiency: International Evidence. International Journal of Financial Studies 9: 44. [Google Scholar] [CrossRef]
- Le, Tu, Son H. Tran, Dat T Nguyen, and Thanh Ngo. 2023. The Degrees of Central Bank Digital Currency Adoption across Countries: A Preliminary Analysis. Economics and Business Letters 12. [Google Scholar] [CrossRef]
- Mercieca, Steve, Klaus Schaeck, and Simon Wolfe. 2007. Small European Banks: Benefits from Diversification? Journal of Banking & Finance 31: 1975–98. [Google Scholar] [CrossRef]
- Narayan, Paresh Kumar, Dinh Hoang Bach Phan, and Guangqiang Liu. 2021. Covid-19 Lockdowns, Stimulus Packages, Travel Bans, and Stock Returns. Finance Research Letters 38: 101732. [Google Scholar] [CrossRef] [PubMed]
- Navaretti, Giorgio Barba, Giacomo Calzolari, and Alberto Franco Pozzolo. 2017. Fintech and Banking: Friends or Foes. Rome: Europeye SRL. [Google Scholar]
- Nguyen, Liem, Son Tran, and Tin Ho. 2021. Fintech Credit, Bank Regulations and Bank Performance: A Cross-Country Analysis. Asia-Pacific Journal of Business Administration 14: 445–66. [Google Scholar] [CrossRef]
- Nikkel, Bruce. 2020. Fintech Forensics: Criminal Investigation and Digital Evidence in Financial Technologies. Forensic Science International: Digital Investigation 33: 200908. [Google Scholar] [CrossRef]
- Nugraha, Deni Pandu, Budi Setiawan, Robert Jeyakumar Nathan, and Maria Fekete-Farkas. 2022. Fintech Adoption Drivers for Innovation for SMEs in Indonesia. Journal of Open Innovation: Technology, Market, and Complexity 8: 208. [Google Scholar] [CrossRef]
- O’brien, Robert M. 2007. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity 41: 673–90. [Google Scholar] [CrossRef]
- Oh, Eun Young, and Peter Rosenkranz. 2020. Determinants of Peer-to-Peer Lending Expansion: The Roles of Financial Development and Financial Literacy. Working Paper Series 613. Philippines: Asian Development Bank. [Google Scholar]
- Oxford Analytica. 2021. Digital Finance Erodes Anti-Money Laundering Regime. Expert Briefings. [Google Scholar] [CrossRef]
- Perry, Philip. 1992. Do Banks Gain or Lose from Inflation? Journal of Retail Banking 14: 25–31. [Google Scholar]
- Pervan, Maja, Iva Pelivan, and Josip Arnerić. 2015. Profit Persistence and Determinants of Bank Profitability in Croatia. Economic research-Ekonomska istraživanja 28: 284–98. [Google Scholar] [CrossRef]
- Rau, P. Raghavendra. 2020. Law, Trust, and the Development of Crowdfunding. Cambridge Centre for Alternative Finance Working Paper. Cambridge: University of Cambridge. [Google Scholar]
- Rehman, Shafiq Ur, Mustafa Al-Shaikh, Patrick Bernard Washington, Ernesto Lee, Ziheng Song, Ibrahim A. Abu-AlSondos, Maha Shehadeh, and Mahmoud Allahham. 2023. Fintech Adoption in Smes and Bank Credit Supplies: A Study on Manufacturing SMEs. Economies 11: 213. [Google Scholar] [CrossRef]
- Sarmento, Carlos, and Miguel Viegas. 2022. The New Centrality of 'Fintech' in the Fight against Money Laundering, Terrorist Financing and Proliferation Financing: The Case of Portugal. International Journal of Financial Innovation in Banking 3: 133–52. [Google Scholar] [CrossRef]
- Schwarz, Nadine, Ke Chen, Francisca Fernando, and Maksym Markevych. 2021. Virtual Assets and Anti-Money Laundering and Combating the Financing of Terrorism. FinTech Notes No 2021/002. Washington, DC: International Moneytary Fund:. [Google Scholar]
- Sheng, Tianxiang. 2021. The Effect of Fintech on Banks’ Credit Provision to SMEs: Evidence from China. Finance Research Letters 39: 101558. [Google Scholar] [CrossRef]
- Simser, Jeffrey. 2013. Money Laundering: Emerging Threats and Trends. Journal of Money Laundering Control 16: 41–54. [Google Scholar] [CrossRef]
- Singh, Charanjit, and Wangwei Lin. 2021. Can Artificial Intelligence, Regtech and Charitytech Provide Effective Solutions for Anti-Money Laundering and Counter-Terror Financing Initiatives in Charitable Fundraising. Journal of Money Laundering Control 24: 464–82. [Google Scholar] [CrossRef]
- Song, Na, and Isaac Appiah-Otoo. 2022. The Impact of Fintech on Economic Growth: Evidence from China. Sustainability 14: 6211. [Google Scholar] [CrossRef]
- Soudijn, Melvin R. J. 2019. Using Police Reports to Monitor Money Laundering Developments. Continuity and Change in 12 years of Dutch Money Laundering Crime Pattern Analyses. European Journal on Criminal Policy and Research 25: 83–97. [Google Scholar] [CrossRef]
- Svirydzenka, Katsiaryna. 2016. Introducing a New Broad-Based Index of Financial Development. Working Paper No. 16/5. Washington, DC: International Monetary Fund. [Google Scholar]
- Tang, Huan. 2019. Peer-to-Peer Lenders Versus Banks: Substitutes or Complements? The Review of Financial Studies 32: 1900–38. [Google Scholar] [CrossRef]
- Vittinghoff, Eric, David V. Glidden, Stephen C. Shiboski, and Charles E. McCulloch. 2005. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. New York: Springer. [Google Scholar]
- Wardrop, Robert, Bryan Zhang, Raghavendra Rau, and Mia Gray. 2015. Moving Mainstream: The European Alternative Finance Benchmarking Report. London: Cambridge Centre for Alternative Finance and EY. [Google Scholar]
- WB. 2020. World Development Indicators. Washington, DC: World Bank. Available online: http://data.worldbank.org/indicator/NY.GDP.PCAP.CD (accessed on 19 October 2023).
- Zhang, Zan, Wenjun Hu, and Tsangyao Chang. 2019. Nonlinear Effects of P2p Lending on Bank Loans in a Panel Smooth Transition Regression Model. International Review of Economics & Finance 59: 468–73. [Google Scholar] [CrossRef]
Variables | Mean | Std | Min | Max | No. Obs |
---|---|---|---|---|---|
FIN ($US) | 11.29 | 31.16 | 0.00 | 181.54 | 515 |
BIG ($US) | 20.88 | 51.96 | 0.01 | 260.10 | 115 |
TOTAL ($US) | 12.82 | 40.55 | 0.00 | 414.44 | 530 |
AFIN (%) | 4.92 | 10.87 | 0.00 | 71.27 | 389 |
ML | 5.49 | 1.21 | 2.51 | 8.39 | 548 |
GII | 39.48 | 12.66 | 14.55 | 68.40 | 607 |
FD | 0.41 | 0.26 | 0.03 | 0.98 | 622 |
FI | 0.48 | 0.24 | 0.06 | 1.00 | 622 |
FM | 0.34 | 0.29 | 0.00 | 0.95 | 622 |
INF (%) | 3.55 | 4.03 | 0.01 | 29.51 | 614 |
GDPGR (%) | 3.78 | 2.69 | 0.00 | 27.99 | 628 |
GDPPC ($,000) | 18.56 | 22.03 | 0.22 | 117.26 | 628 |
FREE | 56.14 | 18.10 | 10.00 | 90.00 | 619 |
ROA (%) | 1.59 | 1.19 | 0.01 | 7.29 | 465 |
INTERNET (%) | 55.97 | 30.12 | 1.80 | 99.15 | 623 |
FIN | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.35 *** | BIG | ||||||||
0.92 *** | 0.80 *** | TOTAL | |||||||
−0.56 *** | −0.07 | −0.43 *** | ML | ||||||
0.65 *** | 0.42 *** | 0.58 *** | −0.64 *** | GII | |||||
0.45 *** | 0.43 *** | 0.41 *** | −0.38 *** | 0.77 *** | FD | ||||
0.54 *** | −0.06 | 0.46 *** | −0.61 *** | 0.69 *** | 0.54 *** | FREE | |||
−0.03 | 0.18 * | 0.01 | 0.16 *** | −0.05 | −0.1 ** | −0.03 | GDPPC | ||
−0.44 *** | −0.28 *** | −0.36 *** | 0.33 *** | −0.43 *** | −0.32 *** | −0.34 *** | −0.05 | INF | |
−0.24 *** | −0.14 | −0.21 *** | 0.33 *** | −0.34 *** | −0.29 *** | −0.32 *** | 0.1 ** | 0.09 ** | GDPGR |
Variables | FIN | BIG | Total |
---|---|---|---|
ML | 2.06 | 2.81 | 2.08 |
GII | 5.18 | 5.56 | 5.14 |
FD | 2.83 | 4.19 | 2.85 |
FREE | 2.41 | 1.72 | 2.35 |
GDPPC | 1.08 | 1.11 | 1.08 |
INF | 1.35 | 1.56 | 1.32 |
GDPGR | 1.16 | 1.54 | 1.16 |
DIGCRE | FIN | BIG | TOTAL | TOTAL |
---|---|---|---|---|
ML | −0.007 *** (0.002) | 0.009 (0.007) | −0.006 ** (0.002) | −0.005 * (0.003) |
GII | 0.174 *** (0.019) | 0.121 *** (0.032) | 0.149 *** (0.027) | 0.162 *** (0.026) |
FD | −1.496 *** (0.349) | 0.918 (0.723) | −1.323 *** (0.449) | 1.873 (1.149) |
FREE | −0.014 (0.011) | −0.062 *** (0.02) | −0.034 *** (0.012) | −0.006 (0.016) |
FD*FREE | −0.053 *** (0.016) | |||
GDPPC | 0.0001 *** (0.00003) | 0.0004 *** (0.0001) | 0.0001 (0.0001) | 0.0001 (0.0001) |
SQGDPPC | −0.000 *** (0.000) | −0.000 *** (0.0000) | −0.000 * (0.0000) | −0.000 (0.0000) |
INF | −0.099 *** (0.028) | −0.002 (0.042) | −0.113 *** (0.029) | −0.104 *** (0.029) |
GDPGR | 0.018 (0.039) | −0.248 (0.179) | −0.032 (0.049) | −0.056 (0.053) |
CONST | −6.001 *** (1.042) | −3.243 (4.375) | −0.749 (1.471) | −2.887 * (1.617) |
Obs | 363 | 93 | 371 | 371 |
R-squared | 0.671 | 0.709 | 0.387 | 0.399 |
Geographic regions fixed effect | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | No | No |
DIGCRE | FIN | AFIN | |||
---|---|---|---|---|---|
ML | −0.009 *** (0.002) | −0.008 *** (0.002) | −0.013 *** (0.003) | −0.008 *** (0.002) | −0.0002 ** (0.0001) |
GII | 0.148 *** (0.021) | 0.172 *** (0.022) | 0.089 *** (0.029) | 0.005 *** (0.002) | |
FD | −0.365 (0.304) | −0.092 *** (0.027) | |||
FI | −1.116 *** (0.376) | ||||
FM | 0.000 (0.0000) | ||||
FID | −1.683 *** (0.364) | ||||
FIA | −0.261 * (0.136) | ||||
FIE | 0.316 (0.297) | ||||
ROAt-5 | 0.17 ** (0.064) | ||||
INTERNET | 0.041 *** (0.007) | ||||
CONST | −4.696 *** (1.273) | −6.318 *** (1.224) | 0.577 (2.006) | −2.021 * (1.07) | 0.134 * (0.043) |
Obs | 363 | 363 | 113 | 368 | 290 |
R-squared | 0.662 | 0.68 | 0.696 | 0.62 | 0.166 |
Control variables | Yes | Yes | Yes | Yes | Yes |
Geographic regions fixed effect | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | No |
Developed Countries | Developing Countries | ||||
---|---|---|---|---|---|
DIGCRE | FIN | FIN | TOTAL | FIN | FIN |
ML | −1.078 *** (0.178) | −0.923 ** (0.201) | −0.782 *** (0.177) | −0.005 ** (0.003) | −0.001 (0.004) |
GII | 0.104 *** (0.02) | 0.136 *** (0.023) | 0.239 *** (0.033) | ||
FD | −0.829 ** (0.32) | −1.187 *** (0.332) | −2.012 *** (0.563) | ||
CONST | 5.178 *** (0.922) | 0.134 * (0.043) | −0.623 *** (2.087) | −1.336 *** (0.452) | −8.385 *** (1.464) |
Obs | 191 | 185 | 185 | 203 | 178 |
R-squared | 0.469 | 0.539 | 0.525 | 0.347 | 0.556 |
Control variables | No | Yes | Yes | No | Yes |
Geographic regions fixed effect | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.D.Q.; Ngo, T.; Nguyen, D.T. Digital Credit and Its Determinants: A Global Perspective. Int. J. Financial Stud. 2023, 11, 124. https://doi.org/10.3390/ijfs11040124
Le TDQ, Ngo T, Nguyen DT. Digital Credit and Its Determinants: A Global Perspective. International Journal of Financial Studies. 2023; 11(4):124. https://doi.org/10.3390/ijfs11040124
Chicago/Turabian StyleLe, Tu D. Q., Thanh Ngo, and Dat T. Nguyen. 2023. "Digital Credit and Its Determinants: A Global Perspective" International Journal of Financial Studies 11, no. 4: 124. https://doi.org/10.3390/ijfs11040124
APA StyleLe, T. D. Q., Ngo, T., & Nguyen, D. T. (2023). Digital Credit and Its Determinants: A Global Perspective. International Journal of Financial Studies, 11(4), 124. https://doi.org/10.3390/ijfs11040124