Cryptocurrencies and Long-Range Trends
Abstract
:1. Introduction
2. Methodology and Data Set
3. Empirical Results
3.1. Closing Prices
3.2. Returns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
1908 | BTC | 1.2982 | 1.4262 | 1.3660 | persistent |
1908 | ETH | 1.2772 | 1.4051 | 1.3450 | persistent |
1337 | BNB | 1.1178 | 1.2659 | 1.1961 | persistent |
1269 | ADA | 1.1871 | 1.3385 | 1.2670 | persistent |
1908 | XRP | 1.1524 | 1.2804 | 1.2202 | persistent |
1908 | LTC | 1.2095 | 1.3374 | 1.2772 | persistent |
1161 | THETA | 1.0530 | 1.2102 | 1.1360 | persistent |
1280 | LINK | 1.3613 | 1.5122 | 1.4410 | persistent |
1339 | BCH | 1.2501 | 1.3982 | 1.3284 | persistent |
1908 | XLM | 1.2535 | 1.3814 | 1.3212 | persistent |
1908 | DOGE | 1.0049 | 1.1328 | 1.0726 | persistent |
1287 | TRX | 1.0201 | 1.1706 | 1.0996 | persistent |
1908 | XMR | 1.3052 | 1.4331 | 1.3730 | persistent |
1379 | MIOTA | 1.2287 | 1.3749 | 1.3060 | persistent |
1361 | EOS | 1.2220 | 1.3690 | 1.2997 | persistent |
1268 | XTZ | 1.1757 | 1.3272 | 1.2558 | persistent |
1908 | XEM | 1.1869 | 1.3148 | 1.2547 | persistent |
1656 | NEO | 1.2732 | 1.4087 | 1.3449 | persistent |
1868 | DCR | 1.2652 | 1.3942 | 1.3335 | persistent |
1908 | DASH | 1.2953 | 1.4233 | 1.3631 | persistent |
1153 | ZIL | 1.2548 | 1.4126 | 1.3381 | persistent |
1109 | RVN | 1.0676 | 1.2281 | 1.1523 | persistent |
1391 | BAT | 1.0069 | 1.1525 | 1.0838 | persistent |
1606 | ZEC | 1.1649 | 1.3022 | 1.2375 | persistent |
1703 | ETC | 1.2725 | 1.4064 | 1.3434 | persistent |
1374 | BNT | 1.1228 | 1.2692 | 1.2001 | persistent |
1243 | ICX | 1.2318 | 1.3845 | 1.3124 | persistent |
1755 | WAVES | 1.2311 | 1.3634 | 1.3012 | persistent |
1908 | XWC | 1.0104 | 1.1383 | 1.0781 | persistent |
158 | VGX | 1.4725 | 1.9038 | 1.6967 | persistent |
1908 | DGB | 1.1370 | 1.2649 | 1.2048 | persistent |
1360 | STORJ | 1.2103 | 1.3573 | 1.2880 | persistent |
1348 | OMG | 1.2963 | 1.4439 | 1.3743 | persistent |
1399 | QTUM | 1.2292 | 1.3745 | 1.3061 | persistent |
1162 | IOST | 1.1560 | 1.3132 | 1.2390 | persistent |
158 | CELO | 1.3010 | 1.7324 | 1.5252 | persistent |
1812 | LSK | 1.2650 | 1.3956 | 1.3342 | persistent |
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
728 | BTC | 1.4480 | 1.6416 | 1.5499 | persistent |
728 | ETH | 1.4210 | 1.6146 | 1.5229 | persistent |
728 | BNB | 1.1531 | 1.3467 | 1.2550 | persistent |
728 | ADA | 1.3055 | 1.4991 | 1.4074 | persistent |
728 | XRP | 1.0957 | 1.2893 | 1.1976 | persistent |
728 | LTC | 1.3212 | 1.5148 | 1.4231 | persistent |
728 | THETA | 1.0672 | 1.2608 | 1.1691 | persistent |
728 | LINK | 1.4024 | 1.5960 | 1.5043 | persistent |
728 | BCH | 1.1234 | 1.3170 | 1.2253 | persistent |
728 | XLM | 1.3104 | 1.5040 | 1.4123 | persistent |
728 | DOGE | 1.1323 | 1.3259 | 1.2342 | persistent |
728 | TRX | 1.2804 | 1.4740 | 1.3823 | persistent |
728 | XMR | 1.3680 | 1.5616 | 1.4699 | persistent |
728 | MIOTA | 1.2925 | 1.4861 | 1.3944 | persistent |
728 | EOS | 1.2281 | 1.4217 | 1.3300 | persistent |
728 | XTZ | 1.2153 | 1.4089 | 1.3172 | persistent |
728 | XEM | 1.1860 | 1.3796 | 1.2879 | persistent |
728 | NEO | 1.3049 | 1.4985 | 1.4068 | persistent |
728 | DCR | 1.3271 | 1.5208 | 1.4290 | persistent |
728 | DASH | 1.1786 | 1.3722 | 1.2805 | persistent |
728 | ZIL | 1.3274 | 1.5210 | 1.4293 | persistent |
728 | RVN | 1.0901 | 1.2838 | 1.1920 | persistent |
728 | BAT | 1.0946 | 1.2882 | 1.1965 | persistent |
728 | ZEC | 1.2141 | 1.4077 | 1.3160 | persistent |
728 | ETC | 1.0407 | 1.2343 | 1.1426 | persistent |
728 | BNT | 1.2489 | 1.4425 | 1.3508 | persistent |
728 | ICX | 1.3106 | 1.5042 | 1.4125 | persistent |
728 | WAVES | 1.4296 | 1.6232 | 1.5315 | persistent |
728 | XWC | 1.2669 | 1.4605 | 1.3688 | persistent |
158 | VGX | 1.4725 | 1.9038 | 1.6967 | persistent |
728 | DGB | 1.2880 | 1.4816 | 1.3899 | persistent |
728 | STORJ | 1.1667 | 1.3603 | 1.2686 | persistent |
728 | OMG | 1.2732 | 1.4669 | 1.3751 | persistent |
728 | QTUM | 1.1947 | 1.3884 | 1.2966 | persistent |
728 | IOST | 1.1716 | 1.3653 | 1.2735 | persistent |
158 | CELO | 1.3010 | 1.7324 | 1.5252 | persistent |
728 | LSK | 1.1935 | 1.3871 | 1.2954 | persistent |
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
731 | BTC | 1.2990 | 1.4923 | 1.4007 | persistent |
731 | ETH | 1.3582 | 1.5514 | 1.4599 | persistent |
609 | BNB | 1.2458 | 1.4562 | 1.3564 | persistent |
541 | ADA | 1.2238 | 1.4465 | 1.3408 | persistent |
731 | XRP | 1.1323 | 1.3255 | 1.2340 | persistent |
731 | LTC | 1.2572 | 1.4505 | 1.3589 | persistent |
433 | THETA | 1.1143 | 1.3628 | 1.2446 | persistent |
552 | LINK | 1.0681 | 1.2887 | 1.1840 | persistent |
611 | BCH | 1.2238 | 1.4340 | 1.3343 | persistent |
731 | XLM | 1.2615 | 1.4548 | 1.3632 | persistent |
731 | DOGE | 1.1162 | 1.3094 | 1.2179 | persistent |
559 | TRX | 1.0929 | 1.3121 | 1.2080 | persistent |
731 | XMR | 1.3446 | 1.5378 | 1.4463 | persistent |
651 | MIOTA | 1.2280 | 1.4320 | 1.3353 | persistent |
633 | EOS | 1.2506 | 1.4572 | 1.3592 | persistent |
540 | XTZ | 1.1915 | 1.4144 | 1.3086 | persistent |
731 | XEM | 1.2359 | 1.4292 | 1.3376 | persistent |
731 | NEO | 1.3521 | 1.5453 | 1.4538 | persistent |
731 | DCR | 1.3455 | 1.5388 | 1.4472 | persistent |
731 | DASH | 1.3603 | 1.5536 | 1.4620 | persistent |
425 | ZIL | 1.2571 | 1.5079 | 1.3886 | persistent |
381 | RVN | 1.0553 | 1.3204 | 1.1941 | persistent |
663 | BAT | 1.1468 | 1.3490 | 1.2531 | persistent |
731 | ZEC | 1.2590 | 1.4522 | 1.3607 | persistent |
731 | ETC | 1.2475 | 1.4407 | 1.3492 | persistent |
646 | BNT | 1.0608 | 1.2655 | 1.1684 | persistent |
515 | ICX | 1.2829 | 1.5110 | 1.4026 | persistent |
731 | WAVES | 1.2362 | 1.4294 | 1.3379 | persistent |
731 | XWC | 1.3268 | 1.5201 | 1.4285 | persistent |
731 | DGB | 1.1072 | 1.3004 | 1.2089 | persistent |
632 | STORJ | 1.2201 | 1.4269 | 1.3288 | persistent |
620 | OMG | 1.2937 | 1.5024 | 1.4034 | persistent |
671 | QTUM | 1.1999 | 1.4010 | 1.3056 | persistent |
434 | IOST | 1.0798 | 1.3279 | 1.2099 | persistent |
731 | LSK | 1.3327 | 1.5260 | 1.4344 | persistent |
0 | VGX | - | - | Sample is too small | - |
0 | CELO | - | - | Sample is too small | - |
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
449 | BTC | 1.4105 | 1.6545 | 1.5385 | persistent |
449 | ETH | 0.8999 | 1.1439 | 1.0278 | persistent |
449 | XRP | 0.9940 | 1.2380 | 1.1219 | persistent |
449 | LTC | 1.0766 | 1.3207 | 1.2046 | persistent |
449 | XLM | 0.9762 | 1.2203 | 1.1042 | persistent |
449 | DOGE | 0.8119 | 1.0559 | 0.9398 | persistent |
449 | XMR | 1.2502 | 1.4943 | 1.3782 | persistent |
449 | XEM | 1.1759 | 1.4199 | 1.3038 | persistent |
197 | NEO | 0.8971 | 1.2761 | 1.0945 | persistent |
409 | DCR | 1.0622 | 1.3179 | 1.1962 | persistent |
449 | DASH | 1.0176 | 1.2616 | 1.1455 | persistent |
147 | ZEC | 0.5961 | 1.0467 | 0.8301 | persistent |
244 | ETC | 1.0036 | 1.3395 | 1.1788 | persistent |
296 | WAVES | 0.8022 | 1.1046 | 0.9602 | persistent |
449 | XWC | 0.9036 | 1.1476 | 1.0316 | persistent |
449 | DGB | 1.0437 | 1.2877 | 1.1716 | persistent |
353 | LSK | 0.8970 | 1.1727 | 1.0413 | persistent |
0 | BNB | - | - | Sample is too small | - |
0 | ADA | - | - | Sample is too small | - |
0 | THETA | - | - | Sample is too small | - |
0 | LINK | - | - | Sample is too small | - |
0 | BCH | - | - | Sample is too small | - |
0 | TRX | Sample is too small | - | ||
0 | MIOTA | - | - | Sample is too small | - |
0 | EOS | - | - | Sample is too small | - |
0 | XTZ | - | - | Sample is too small | - |
0 | ZIL | - | - | Sample is too small | - |
0 | RVN | - | - | Sample is too small | - |
0 | BAT | - | - | Sample is too small | - |
0 | BNT | - | - | Sample is too small | - |
0 | ICX | - | - | Sample is too small | - |
0 | VGX | - | - | Sample is too small | - |
0 | STORJ | - | - | Sample is too small | - |
0 | OMG | - | - | Sample is too small | - |
0 | QTUM | - | - | Sample is too small | - |
0 | IOST | - | - | Sample is too small | - |
0 | CELO | - | - | Sample is too small | - |
Currency | Lower | Upper | Hurst | Behaviour | |
---|---|---|---|---|---|
1908 | BTC | 0.5014 | 0.6293 | 0.5691 | persistent |
1908 | ETH | 0.5301 | 0.6580 | 0.5978 | persistent |
1336 | BNB | 0.4656 | 0.6138 | 0.5439 | random walk |
1268 | ADA | 0.5179 | 0.6694 | 0.5980 | persistent |
1908 | XRP | 0.4826 | 0.6105 | 0.5503 | random walk |
1908 | LTC | 0.5097 | 0.6376 | 0.5775 | persistent |
1160 | THETA | 0.4436 | 0.6009 | 0.5266 | random walk |
1279 | LINK | 0.3819 | 0.5328 | 0.4617 | random walk |
1338 | BCH | 0.4151 | 0.5631 | 0.4933 | random walk |
1908 | XLM | 0.4906 | 0.6185 | 0.5584 | random walk |
1908 | DOGE | 0.4476 | 0.5756 | 0.5154 | random walk |
1286 | TRX | 0.4556 | 0.6062 | 0.5352 | random walk |
1908 | XMR | 0.4972 | 0.6251 | 0.5649 | random walk |
1378 | MIOTA | 0.4520 | 0.5983 | 0.5293 | random walk |
1360 | EOS | 0.4679 | 0.6149 | 0.5456 | random walk |
1267 | XTZ | 0.4220 | 0.5736 | 0.5021 | random walk |
1908 | XEM | 0.5394 | 0.6673 | 0.6071 | persistent |
1655 | NEO | 0.5774 | 0.7129 | 0.6491 | persistent |
1867 | DCR | 0.5500 | 0.6790 | 0.6183 | persistent |
1908 | DASH | 0.5318 | 0.6597 | 0.5995 | persistent |
1152 | ZIL | 0.4950 | 0.6528 | 0.5783 | random walk |
1108 | RVN | 0.4636 | 0.6241 | 0.5483 | random walk |
1390 | BAT | 0.3601 | 0.5058 | 0.4371 | random walk |
1605 | ZEC | 0.4498 | 0.5870 | 0.5224 | random walk |
1702 | ETC | 0.4996 | 0.6336 | 0.5706 | random walk |
1373 | BNT | 0.4864 | 0.6329 | 0.5638 | random walk |
1242 | ICX | 0.4767 | 0.6295 | 0.5574 | random walk |
1754 | WAVES | 0.5094 | 0.6417 | 0.5794 | persistent |
1908 | XWC | 0.3855 | 0.5193 | 0.4563 | random walk |
157 | VGX | 0.3580 | 0.7910 | 0.5830 | random walk |
1908 | DGB | 0.4756 | 0.6035 | 0.5434 | random walk |
1359 | STORJ | 0.3930 | 0.5401 | 0.4707 | random walk |
1347 | OMG | 0.4729 | 0.6205 | 0.5509 | random walk |
1398 | QTUM | 0.4135 | 0.5588 | 0.4903 | random walk |
1161 | IOST | 0.4187 | 0.5759 | 0.5017 | random walk |
157 | CELO | 0.2818 | 0.7148 | 0.5068 | random walk |
1811 | LSK | 0.4885 | 0.6191 | 0.5577 | random walk |
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
728 | BTC | 0.4795 | 0.6731 | 0.5814 | random walk |
728 | ETH | 0.4585 | 0.6522 | 0.5604 | random walk |
728 | BNB | 0.5153 | 0.7089 | 0.6172 | persistent |
728 | ADA | 0.5187 | 0.7124 | 0.6206 | persistent |
728 | XRP | 0.3404 | 0.5340 | 0.4423 | random walk |
728 | LTC | 0.4482 | 0.6418 | 0.5501 | random walk |
728 | THETA | 0.4536 | 0.6472 | 0.5555 | random walk |
728 | LINK | 0.3785 | 0.5721 | 0.4804 | random walk |
728 | BCH | 0.3415 | 0.5351 | 0.4433 | random walk |
728 | XLM | 0.4213 | 0.6149 | 0.5231 | random walk |
728 | DOGE | 0.4823 | 0.6759 | 0.5842 | random walk |
728 | TRX | 0.3781 | 0.5717 | 0.4800 | random walk |
728 | XMR | 0.3852 | 0.5788 | 0.4871 | random walk |
728 | MIOTA | 0.4567 | 0.6503 | 0.5586 | random walk |
728 | EOS | 0.3344 | 0.5280 | 0.4362 | random walk |
728 | XTZ | 0.3301 | 0.5237 | 0.4320 | random walk |
728 | XEM | 0.4403 | 0.6339 | 0.5422 | random walk |
728 | NEO | 0.3727 | 0.5664 | 0.4746 | random walk |
728 | DCR | 0.5200 | 0.7137 | 0.6219 | persistent |
728 | DASH | 0.3983 | 0.5920 | 0.5002 | random walk |
728 | ZIL | 0.5120 | 0.7056 | 0.6139 | persistent |
728 | RVN | 0.5202 | 0.7138 | 0.6221 | persistent |
728 | BAT | 0.4048 | 0.5984 | 0.5067 | random walk |
728 | ZEC | 0.4074 | 0.6010 | 0.5093 | random walk |
728 | ETC | 0.3794 | 0.5730 | 0.4813 | random walk |
728 | BNT | 0.5142 | 0.7078 | 0.6161 | persistent |
728 | ICX | 0.4439 | 0.6375 | 0.5458 | random walk |
728 | WAVES | 0.4769 | 0.6705 | 0.5788 | random walk |
728 | XWC | 0.2935 | 0.4871 | 0.3954 | anti-persistent |
157 | VGX | 0.3580 | 0.7910 | 0.5830 | random walk |
728 | DGB | 0.4214 | 0.6150 | 0.5233 | random walk |
728 | STORJ | 0.3801 | 0.5737 | 0.4820 | random walk |
728 | OMG | 0.4051 | 0.5987 | 0.5070 | random walk |
728 | QTUM | 0.3762 | 0.5698 | 0.4781 | random walk |
728 | IOST | 0.4338 | 0.6274 | 0.5357 | random walk |
157 | CELO | 0.2818 | 0.7148 | 0.5068 | random walk |
728 | LSK | 0.4399 | 0.6335 | 0.5418 | random walk |
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
731 | BTC | 0.5132 | 0.7065 | 0.6149 | persistent |
731 | ETH | 0.5248 | 0.7180 | 0.6265 | persistent |
608 | BNB | 0.4731 | 0.6837 | 0.5838 | random walk |
540 | ADA | 0.5333 | 0.7562 | 0.6504 | persistent |
731 | XRP | 0.4555 | 0.6487 | 0.5572 | random walk |
731 | LTC | 0.4764 | 0.6696 | 0.5781 | random walk |
432 | THETA | 0.2769 | 0.5257 | 0.4073 | random walk |
551 | LINK | 0.3601 | 0.5808 | 0.4760 | random walk |
610 | BCH | 0.4262 | 0.6365 | 0.5367 | random walk |
731 | XLM | 0.4961 | 0.6894 | 0.5979 | random walk |
731 | DOGE | 0.4636 | 0.6568 | 0.5653 | random walk |
558 | TRX | 0.5008 | 0.7202 | 0.6160 | persistent |
731 | XMR | 0.4728 | 0.6661 | 0.5745 | random walk |
650 | MIOTA | 0.4572 | 0.6613 | 0.5645 | random walk |
632 | EOS | 0.5176 | 0.7244 | 0.6263 | persistent |
539 | XTZ | 0.3740 | 0.5972 | 0.4912 | random walk |
731 | XEM | 0.5341 | 0.7273 | 0.6358 | persistent |
731 | NEO | 0.5362 | 0.7295 | 0.6379 | persistent |
731 | DCR | 0.4395 | 0.6327 | 0.5412 | random walk |
731 | DASH | 0.4939 | 0.6872 | 0.5956 | random walk |
424 | ZIL | 0.4118 | 0.6629 | 0.5434 | random walk |
380 | RVN | 0.3763 | 0.6418 | 0.5154 | random walk |
662 | BAT | 0.3743 | 0.5766 | 0.4807 | random walk |
731 | ZEC | 0.4439 | 0.6371 | 0.5456 | random walk |
731 | ETC | 0.4705 | 0.6638 | 0.5722 | random walk |
645 | BNT | 0.3995 | 0.6044 | 0.5072 | random walk |
514 | ICX | 0.4404 | 0.6687 | 0.5602 | random walk |
731 | WAVES | 0.4904 | 0.6836 | 0.5921 | random walk |
731 | XWC | 0.5181 | 0.7113 | 0.6198 | persistent |
731 | DGB | 0.4883 | 0.6816 | 0.5900 | random walk |
631 | STORJ | 0.3483 | 0.5552 | 0.4571 | random walk |
619 | OMG | 0.4839 | 0.6927 | 0.5936 | random walk |
670 | QTUM | 0.4160 | 0.6172 | 0.5219 | random walk |
433 | IOST | 0.2886 | 0.5371 | 0.4188 | random walk |
731 | LSK | 0.5035 | 0.6967 | 0.6052 | persistent |
0 | VGX | - | - | Sample is too small | - |
0 | CELO | - | - | Sample is too small | - |
N | Currency | Lower | Upper | Hurst | Behaviour |
---|---|---|---|---|---|
449 | BTC | 0.2644 | 0.5084 | 0.3924 | random walk |
449 | ETH | 0.5028 | 0.7468 | 0.6307 | persistent |
449 | XRP | 0.2634 | 0.5074 | 0.3914 | random walk |
449 | LTC | 0.2460 | 0.4900 | 0.3740 | anti-persistent |
449 | XLM | 0.1647 | 0.4087 | 0.2926 | anti-persistent |
449 | DOGE | 0.2078 | 0.4518 | 0.3357 | anti-persistent |
449 | XMR | 0.3782 | 0.6222 | 0.5061 | random walk |
449 | XEM | 0.4262 | 0.6702 | 0.5542 | random walk |
196 | NEO | 0.1555 | 0.5355 | 0.3534 | random walk |
408 | DCR | 0.4916 | 0.7476 | 0.6257 | random walk |
449 | DASH | 0.5165 | 0.7606 | 0.6445 | persistent |
146 | ZEC | 0.4544 | 0.9069 | 0.6894 | random walk |
243 | ETC | 0.2308 | 0.5674 | 0.4064 | random walk |
295 | WAVES | 0.3808 | 0.6838 | 0.5391 | random walk |
449 | XWC | 0.1370 | 0.3810 | 0.2650 | anti-persistent |
449 | DGB | 0.2753 | 0.5193 | 0.4032 | random walk |
352 | LSK | 0.1073 | 0.3834 | 0.2518 | anti-persistent |
0 | BNB | - | - | Sample is too small | - |
0 | ADA | - | - | Sample is too small | - |
0 | THETA | - | - | Sample is too small | - |
0 | LINK | - | - | Sample is too small | - |
0 | BCH | - | - | Sample is too small | - |
0 | TRX | - | - | Sample is too small | - |
0 | MIOTA | - | - | Sample is too small | - |
0 | EOS | - | - | Sample is too small | - |
0 | XTZ | - | - | Sample is too small | - |
0 | ZIL | - | - | Sample is too small | - |
0 | RVN | - | - | Sample is too small | - |
0 | BAT | - | - | Sample is too small | - |
0 | BNT | - | - | Sample is too small | - |
0 | ICX | - | - | Sample is too small | - |
0 | VGX | - | - | Sample is too small | - |
0 | STORJ | - | - | Sample is too small | - |
0 | OMG | - | - | Sample is too small | - |
0 | QTUM | - | - | Sample is too small | - |
0 | IOST | - | - | Sample is too small | - |
0 | CELO | - | - | Sample is too small | - |
Currency | From | 1 January 2016 | 1 January 2016 | 25 March 2017 | 26 March 2019 |
---|---|---|---|---|---|
To | 26 March 2021 | 24 March 2017 | 25 March 2019 | 26 March 2021 | |
BTC | persistent | persistent | persistent | persistent | |
ETH | persistent | persistent | persistent | persistent | |
BNB | persistent | - | persistent | persistent | |
ADA | persistent | - | persistent | persistent | |
XRP | persistent | persistent | persistent | persistent | |
LTC | persistent | persistent | persistent | persistent | |
THETA | persistent | - | persistent | persistent | |
LINK | persistent | - | persistent | persistent | |
BCH | persistent | - | persistent | persistent | |
XLM | persistent | persistent | persistent | persistent | |
DOGE | persistent | persistent | persistent | persistent | |
TRX | persistent | - | persistent | persistent | |
XMR | persistent | persistent | persistent | persistent | |
MIOTA | persistent | - | persistent | persistent | |
EOS | persistent | - | persistent | persistent | |
XTZ | persistent | - | persistent | persistent | |
XEM | persistent | persistent | persistent | persistent | |
NEO | persistent | persistent | persistent | persistent | |
DCR | persistent | persistent | persistent | persistent | |
DASH | persistent | persistent | persistent | persistent | |
ZIL | persistent | - | persistent | persistent | |
RVN | persistent | - | persistent | persistent | |
BAT | persistent | - | persistent | persistent | |
ZEC | persistent | persistent | persistent | persistent | |
ETC | persistent | persistent | persistent | persistent | |
BNT | persistent | - | persistent | persistent | |
ICX | persistent | - | persistent | persistent | |
WAVES | persistent | persistent | persistent | persistent | |
XWC | persistent | persistent | persistent | persistent | |
VGX | persistent | - | - | persistent | |
DGB | persistent | persistent | persistent | persistent | |
STORJ | persistent | - | persistent | persistent | |
OMG | persistent | - | persistent | persistent | |
QTUM | persistent | - | persistent | persistent | |
IOST | persistent | - | persistent | persistent | |
CELO | persistent | - | - | persistent | |
LSK | persistent | persistent | persistent | persistent |
1 | Detailed results can be found in Appendix A. |
References
- Aggarwal, Divya. 2019. Do bitcoins follow a random walk model? Research in Economics 73: 15–22. [Google Scholar] [CrossRef]
- Aharon, David Yechiam, and Mahmoud Qadan. 2019. Bitcoin and the day-of-the-week effect. Finance Research Letters 31: 415–24. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, Jose, Jesus Alvarez, Eduardo Rodriguez, and Guillermo Fernandez-Anaya. 2008. Time-Varying Hurst Exponent for US Stock Markets. Physica A 387: 6159–69. [Google Scholar] [CrossRef]
- Amirat, Amina. 2021. Exploring the random walk in cryptocurrency market. Indian Journal of Economics and Business 20: 735–42. [Google Scholar]
- Arouxet, M. Bélen, Aurelio F. Bariviera, Verónica E. Pastor, and Victoria Vampa. 2022. COVID-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent. Physica A: Statistical Mechanics and Its Applications 596: 127170. [Google Scholar] [CrossRef]
- Balcı, Mehmet Ali, Larissa M. Batrancea, Ömer Akgüller, Lucian Gaban, Mircea-Iosif Rus, and Horia Tulai. 2022. Fractality of Borsa Istanbul during the COVID-19 Pandemic. Mathematics 10: 2503. [Google Scholar] [CrossRef]
- Bariviera, Aurelio F. 2021. One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles. Finance Research Letters 39: 101649. [Google Scholar] [CrossRef]
- Bryce, Robert M., and Kevin B. Sprague. 2012. Revisiting detrended fluctuation analysis. Scientific Reports 2: 315. [Google Scholar] [CrossRef] [Green Version]
- Carbone, Anna, Giuliano Castelli, and Eugene H. Stanley. 2004. Time-Dependent Hurst Exponent in Financial Time Series. Physica A 344: 267–71. [Google Scholar] [CrossRef]
- Cohen, Gil, and Mahmoud Qadan. 2022. The Complexity of Cryptocurrencies Algorithmic Trading. Mathematics 10: 2037. [Google Scholar] [CrossRef]
- Czarnecki, Łukasz, Dariusz Grech, and Grzegorz Pamula. 2008. Comparison Study of Global and Local Approaches Describing Critical Phenomena on the Polish Stock Exchange Market. Physica A 387: 6801–11. [Google Scholar] [CrossRef]
- Di Matteo, Tiziana. 2007. Multi-Scaling in Finance. Quantitative Finance 7: 21–36. [Google Scholar] [CrossRef]
- Di Matteo, Tiziana, Tomaso Aste, and Michel M. Dacorogna. 2005. Long-Term Memories of Developed and Emerging Markets: Using the Scaling Analysis to Characterize Their Stage of Development. Journal of Banking and Finance 29: 827–51. [Google Scholar] [CrossRef] [Green Version]
- Engle, Robert F., and Clive W. J. Granger. 1987. Cointegration and error correction: Representation, estimation and testing. Econometrica 55: 251–76. [Google Scholar] [CrossRef]
- Grech, Dariusz K., and Zygmunt Mazur. 2004. Can One Make any Crash Prediction in Finance Using the Local Hurst Exponent Idea? Physica A 336: 133–45. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, A. David. 1991. Chaos and Nonlinear Dynamics: Application to Financial Markets. Journal of Finance 46: 1839–77. [Google Scholar] [CrossRef]
- Hurst, Harold Edwin. 1951. Long-Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers 116: 770–79. [Google Scholar] [CrossRef]
- Jach, Agnieszka, Tucker McElroy, and Dimitris N. Politis. 2011. Subsampling inference for the mean of heavy-tailed long-memory time series. Journal of Time Series Analysis 33: 96–111. [Google Scholar] [CrossRef] [Green Version]
- Keshari Jena, Sangram, Aviral Kumar Tiwari, Buhari Doğan, and Shawkat Hammoudeh. 2022. Are the top six cryptocurrencies efficient? Evidence from time-varying long memory. International Journal of Finance & Economics 27: 3730–40. [Google Scholar]
- Krištoufek, Ladislav. 2010. Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals. Czech Economic Review 4: 315–29. [Google Scholar]
- Kyriazis, Nikolaos A. 2019. A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets. Journal of Risk and Financial Management 12: 67. [Google Scholar] [CrossRef] [Green Version]
- Magner, Nicolás, and Nicolás Hardy. 2022. Cryptocurrency forecasting: More evidence of the Meese-Rogoff puzzle. Mathematics 10: 2338. [Google Scholar] [CrossRef]
- Matos, Jose A. O., Sílvio M. A. Gama, Heather J. Ruskin, Adel Al Sharkasi, and Martin Crane. 2008. Time and scale Hurst exponent analysis for financial markets. Physica A: Statistical Mechanics and Its Applications 387: 3910–15. [Google Scholar] [CrossRef]
- Palamalai, Srinivasan, Krishna K. Kumar, and Bipasha Maity. 2021. Testing the random walk hypothesis for leading cryptocurrencies. Borsa Istanbul Review 21: 256–68. [Google Scholar] [CrossRef]
- Papadimitriou, Theofilos, Periklis Gogas, and Fotios Gkatzoglou. 2020. The evolution of the cryptocurrencies market: A complex networks approach. Journal of Computational and Applied Mathematics 376: 112831. [Google Scholar] [CrossRef]
- Peters, Edgar E. 1991. A Chaotic Attractor for the S&P 500. Financial Analysts Journal 47: 55–62. [Google Scholar]
- Peters, Edgar E. 1994. Fractal Market Analysis—Applying Chaos Theory to Investment and Analysis. New York: John Wiley & Sons, Inc. [Google Scholar]
- Qadan, Mahmoud, David Y. Aharon, and Ron Eichel. 2022. Seasonal and calendar effects and the price efficiency of cryptocurrencies. Finance Research Letters 46: 102354. [Google Scholar] [CrossRef]
- Qureshi, Saba, Muhammad Aftab, Elie Bouri, and Tareq Saeed. 2020. Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency. Physica A: Statistical Mechanics and Its Applications 559: 125077. [Google Scholar] [CrossRef]
- Schwert, G. William. 1989. Tests for UNIT ROOTS: A Monte Carlo Investigation. Journal of Business & Economic Statistics 7: 147–59. [Google Scholar]
- Siriopoulos, Costas. 1996. Investigating the behaviour of mature and emerging capital markets. Indian Journal of Quantitative Economics 11: 76–98. [Google Scholar]
- Siriopoulos, Costas, and Maria Skaperda. 2020. Investing in mutual funds: Are you paying for performance or for the ties of the manager? Bulletin of Applied Economics 7: 153–64. [Google Scholar] [CrossRef]
- Sirlantzis, Konstantinos, and Costas Siriopoulos. 1993. Deterministic chaos in stock markets: Empirical results from monthly returns. Neural Network World 3: 855–64. [Google Scholar]
- Valencia, Franco, Alfonso Gómez-Espinosa, and Benjamin Valdés-Aguirre. 2019. Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning. Entropy 21: 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewalle, Nicolas, Marcel Ausloos, and Pierre Boveroux. 1997. Detrended Fluctuation Analysis of the Foreign Exchange Market. Budapest: Econophysic Workshop. [Google Scholar]
- Verma, Ruchita, Dhanraj Sharma, and Shiney Sam. 2022. Testing of random walk hypothesis in the cryptocurrency market. FIIB Business Review, 231971452211012. [Google Scholar] [CrossRef]
- Wendler, Martin, and Annika Betken. 2018. Subsampling for general statistics under Long Range Dependence. Statistica Sinica 28: 1199–224. [Google Scholar] [CrossRef]
- Weron, Rafal. 2002. Estimating long-range dependence: Finite sample properties and confidence intervals. Physica A: Statistical Mechanics and Its Applications 312: 285–99. [Google Scholar] [CrossRef] [Green Version]
- Yang, Boyu, Yuying Sun, and Shouyang Wang. 2020. A novel two-stage approach for cryptocurrency analysis. International Review of Financial Analysis 72: 101567. [Google Scholar] [CrossRef]
- Zhang, Wei, Pengfei Wang, Xiao Li, and Dehua Shen. 2018. Some stylized facts of the cryptocurrency market. Applied Economics 50: 5950–65. [Google Scholar] [CrossRef]
- Zhang, Yuanyaun, Stephen Chan, Jeffrey Chu, and Saralees Nadarajah. 2019. Stylized facts for high frequency cryptocurrency data. Physica A: Statistical Mechanics and Its Applications 513: 598–612. [Google Scholar] [CrossRef]
- Zhengyang, Wang, Li Xingzhou, Ruan Jinjin, and Kou Jiaqing. 2019. Prediction of cryptocurrency price dynamics with multiple machine learning techniques. Paper presented at the 2019 4th International Conference on Machine Learning Technologies, Nanchang, China, June 21–23; pp. 15–19. [Google Scholar]
Cryptocurrency | Abbreviation | |
---|---|---|
1 | Bitcoin | BTC |
2 | Bitcoin Cash | BCH |
3 | Cardano | ADA |
4 | Celo | CELO |
5 | Chainlink | LINK |
6 | Dash | DASH |
7 | Decred | DCR |
8 | DigiByte | DGB |
9 | Dogecoin | DOGE |
10 | EOS | EOS |
11 | Etherium | ETH |
12 | Etherium Classic | ETC |
13 | ICON | ICX |
14 | IOST | IOST |
15 | IOTA | MIOTA |
16 | Lisk | LSK |
17 | Litecoin | LTC |
18 | Monero | XMR |
19 | NEM | XEM |
20 | NEO | NEO |
21 | OMG Network | OMG |
22 | Qtum | QTUM |
23 | Ravencoin | RVN |
24 | Stellar | XLM |
25 | Storj | STORJ |
26 | Tezos | XTZ |
27 | Theta Token | THETA |
28 | Tron | TRX |
29 | Voyager Token | VGX |
30 | WAVES | WAVES |
31 | White Coin | XWC |
32 | XRP | XRP |
33 | Zcash | ZEC |
34 | Ziliqa | ZIL |
35 | Bancor | BNT |
36 | Basic Attention Token | BAT |
37 | Binance Coin | BNB |
Window | From | To |
---|---|---|
1 | 1 January 2016 | 24 March 2017 |
2 | 25 March 2017 | 25 March 2019 |
3 | 26 March 2019 | 26 March 2021 |
Variable | Lags | ADF No-Trend | ADF with Trend | KPSS No Trend | KPSS with Trend | Decision | ||||
---|---|---|---|---|---|---|---|---|---|---|
Level | 1st Diff. | Level | 1st Diff. | Level | 1st Diff. | Level | 1st Diff. | |||
Null Hypothesis I(1) | Null Hypothesis I(0) | |||||||||
BTC | 25 | 0.999 | 0.001 *** | 0.999 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.068 * | I(1) |
ETH | 25 | 0.973 | 0.001 *** | 0.985 | 0.001 *** | 0.010 *** | 0.098 * | 0.010 *** | 0.021 ** | I(1) |
BNB | 23 | 0.967 | 0.001 *** | 0.976 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.031 ** | I(1) |
ADA | 23 | 0.640 | 0.001 *** | 0.914 | 0.001 *** | 0.032 ** | 0.100 | 0.010 *** | 0.048 ** | I(1) |
XRP | 25 | 0.004 *** | 0.001 *** | 0.012 *** | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
LTC | 25 | 0.179 | 0.001 *** | 0.259 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
THETA | 22 | 0.999 | 0.001 *** | 0.999 | 0.001 *** | 0.010 *** | 0.010 *** | 0.010 *** | 0.100 | I(1) |
LINK | 23 | 0.999 | 0.001 *** | 0.992 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
BCH | 23 | 0.083 * | 0.001 *** | 0.060 * | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
XLM | 25 | 0.096 * | 0.001 *** | 0.166 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
DOGE | 25 | 0.996 | 0.001 *** | 0.999 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
TRX | 23 | 0.004 *** | 0.001 *** | 0.019 ** | 0.001 *** | 0.042 ** | 0.100 | 0.010 *** | 0.100 | I(1) |
XMR | 25 | 0.196 | 0.001 *** | 0.373 | 0.001 *** | 0.010 *** | 0.081 * | 0.010 *** | 0.096 * | I(1) |
MIOTA | 23 | 0.063 * | 0.001 *** | 0.115 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
EOS | 23 | 0.102 | 0.001 *** | 0.168 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
XTZ | 23 | 0.214 | 0.001 *** | 0.515 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
XEM | 25 | 0.001 *** | 0.001 *** | 0.007 *** | 0.001 *** | 0.039 ** | 0.072 * | 0.010 *** | 0.024 ** | I(1) |
NEO | 24 | 0.239 | 0.001 *** | 0.524 | 0.001 *** | 0.022 ** | 0.100 | 0.010 *** | 0.042 ** | I(1) |
DCR | 25 | 0.410 | 0.001 *** | 0.595 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.032 ** | I(1) |
DASH | 25 | 0.019 ** | 0.001 *** | 0.080 * | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.066 * | I(1) |
ZIL | 22 | 0.945 | 0.001 *** | 0.999 | 0.001 *** | 0.010 *** | 0.017 ** | 0.010 *** | 0.100 | I(1) |
RVN | 22 | 0.958 | 0.001 *** | 0.996 | 0.001 *** | 0.100 | 0.100 | 0.019 ** | 0.100 | I(1) |
BAT | 23 | 0.545 | 0.001 *** | 0.828 | 0.001 *** | 0.100 | 0.100 | 0.010 *** | 0.100 | I(1) |
ZEC | 24 | 0.194 | 0.001 *** | 0.243 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
ETC | 24 | 0.224 | 0.001 *** | 0.480 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
BNT | 23 | 0.242 | 0.001 *** | 0.621 | 0.001 *** | 0.010 *** | 0.035 ** | 0.010 *** | 0.100 | I(1) |
ICX | 23 | 0.010 ** | 0.001 *** | 0.007 *** | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.047 ** | I(1) |
WAVES | 25 | 0.482 | 0.001 *** | 0.710 | 0.001 *** | 0.021 ** | 0.100 | 0.010 *** | 0.100 | I(1) |
XWC | 25 | 0.999 | 0.001 *** | 0.999 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
VGX | 13 | 0.902 | 0.047 ** | 0.601 | 0.161 | 0.010 *** | 0.100 | 0.010 *** | 0.080 * | I(1) |
DGB | 25 | 0.062 * | 0.001 *** | 0.073 * | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
STORJ | 23 | 0.200 | 0.001 *** | 0.564 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
OMG | 23 | 0.215 | 0.001 *** | 0.169 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.014 ** | I(1) |
QTUM | 23 | 0.016 ** | 0.001 *** | 0.013 ** | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
IOST | 22 | 0.503 | 0.001 *** | 0.975 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.100 | I(1) |
CELO | 13 | 0.740 | 0.007 *** | 0.654 | 0.041 ** | 0.010 *** | 0.100 | 0.024 ** | 0.100 | I(1) |
LSK | 25 | 0.118 | 0.001 *** | 0.336 | 0.001 *** | 0.010 *** | 0.100 | 0.010 *** | 0.032 ** | I(1) |
Currency | From | 1 January 2016 | 1 January 2016 | 25 March 2017 | 26 March 2019 |
---|---|---|---|---|---|
To | 26 March 2021 | 24 March 2017 | 25 March 2019 | 26 March 2021 | |
BTC | persistent | random walk | persistent | random walk | |
ETH | persistent | persistent | persistent | random walk | |
BNB | random walk | - | random walk | persistent | |
ADA | persistent | - | persistent | persistent | |
XRP | random walk | random walk | random walk | random walk | |
LTC | persistent | anti-persistent | random walk | random walk | |
THETA | random walk | - | random walk | random walk | |
LINK | random walk | - | random walk | random walk | |
BCH | random walk | - | random walk | random walk | |
XLM | random walk | anti-persistent | random walk | random walk | |
DOGE | random walk | anti-persistent | random walk | random walk | |
TRX | random walk | - | persistent | random walk | |
XMR | random walk | random walk | random walk | random walk | |
MIOTA | random walk | - | random walk | random walk | |
EOS | random walk | - | persistent | random walk | |
XTZ | random walk | - | random walk | random walk | |
XEM | persistent | random walk | persistent | random walk | |
NEO | persistent | random walk | persistent | random walk | |
DCR | persistent | random walk | random walk | persistent | |
DASH | persistent | persistent | random walk | random walk | |
ZIL | random walk | - | random walk | persistent | |
RVN | random walk | - | random walk | persistent | |
BAT | random walk | - | random walk | random walk | |
ZEC | random walk | random walk | random walk | random walk | |
ETC | random walk | random walk | random walk | random walk | |
BNT | random walk | - | random walk | persistent | |
ICX | random walk | - | random walk | random walk | |
WAVES | persistent | random walk | random walk | random walk | |
XWC | random walk | anti-persistent | persistent | anti-persistent | |
VGX | random walk | - | - | random walk | |
DGB | random walk | random walk | random walk | random walk | |
STORJ | random walk | - | random walk | random walk | |
OMG | random walk | - | random walk | random walk | |
QTUM | random walk | - | random walk | random walk | |
IOST | random walk | - | random walk | random walk | |
CELO | random walk | - | - | random walk | |
LSK | random walk | anti-persistent | persistent | random walk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexiadou, M.; Sofianos, E.; Gogas, P.; Papadimitriou, T. Cryptocurrencies and Long-Range Trends. Int. J. Financial Stud. 2023, 11, 40. https://doi.org/10.3390/ijfs11010040
Alexiadou M, Sofianos E, Gogas P, Papadimitriou T. Cryptocurrencies and Long-Range Trends. International Journal of Financial Studies. 2023; 11(1):40. https://doi.org/10.3390/ijfs11010040
Chicago/Turabian StyleAlexiadou, Monica, Emmanouil Sofianos, Periklis Gogas, and Theophilos Papadimitriou. 2023. "Cryptocurrencies and Long-Range Trends" International Journal of Financial Studies 11, no. 1: 40. https://doi.org/10.3390/ijfs11010040
APA StyleAlexiadou, M., Sofianos, E., Gogas, P., & Papadimitriou, T. (2023). Cryptocurrencies and Long-Range Trends. International Journal of Financial Studies, 11(1), 40. https://doi.org/10.3390/ijfs11010040