Potential Excess Intravenous Antibiotic Therapy in the Setting of Gram-Negative Bacteremia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Definitions
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Combination Agent 1 | Combination Agent 2 | Patients Who Did Not Have WBCs and Temperature Resolve | No Potential Excess Intravenous Therapy | Potential Excess Intravenous Therapy |
---|---|---|---|---|
Any combination | 15 | 12 | 29 | |
Fluoroquinolone combinations | 10 | 9 | 20 | |
Ciprofloxacin | Ceftazidime | 1 | ||
Clindamycin | 1 | |||
Piperacillin/ tazobactam | 1 | 2 | ||
Levofloxacin | Aztreonam | 1 | ||
Cefazolin | 1 | |||
Cefepime | 1 | |||
Cefotaxime | 1 | |||
Ceftriaxone | 1 | 2 | ||
Clindamycin | 1 | |||
Doripenem | 1 | 4 | ||
Ertapenem | 1 | 1 | ||
Gentamicin | 1 | 1 | ||
Meropenem | 1 | 1 | 1 | |
Nitrofurantoin | 1 | |||
Piperacillin/ tazobactam | 5 | 1 | 4 | |
Tigecycline | 1 | |||
Moxifloxacin | Aztreonam | 1 | ||
Doripenem | 1 | |||
Macrolide or Aminoglycoside combinations | 3 | 2 | 6 | |
Azithromycin | Ceftriaxone | 1 | 1 | 2 |
Piperacillin/ tazobactam | 1 | |||
Clindamycin | Doripenem | 1 | ||
Meropenem | 1 | |||
Gentamicin | Ceftriaxone | 1 | 1 | |
Ceftazidime | 1 | |||
Tobramycin | Piperacillin/ tazobactam | 1 | ||
Beta-lactam combinations | 2 | 1 | 3 | |
Ceftriaxone | Piperacillin/ tazobactam | 1 | ||
Meropenem | Cefotaxime | 1 | ||
Sulfamethoxazole/ trimethoprim | 1 | |||
Piperacillin/tazobactam | Cefepime | 1 | ||
Meropenem | 1 | |||
Nitrofurantoin | 1 |
References
- McCarthy, K.; Avent, M. Oral or intravenous antibiotics? Aust. Prescr. 2020, 43, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.; Sherertz, R.J.; Warren, D.K. Clinical Practice Guidelines for the Diagnosis and Management of Intravascular Catheter-Related Infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [PubMed]
- Rieger, K.L.; Bosso, J.A.; MacVane, S.H.; Temple, Z.; Wahlquist, A.; Bohm, N. Intravenous-only or Intravenous Transitioned to Oral Antimicrobials for Enterobacteriaceae-Associated Bacteremic Urinary Tract Infection. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Talan, D.A.; Klimberg, I.W.; Nicolle, L.E.; Song, J.; Kowalsky, S.F.; Church, D.A. Once Daily, Extended Release Ciprofloxacin for Complicated Urinary Tract Infections and Acute Uncomplicated Pyelonephritis. J. Urol. 2004, 171, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Talan, D.A.; Stamm, W.E.; Hooton, T.M.; Moran, G.J.; Burke, T.; Iravani, A.; Reuning-Scherer, J.; Church, D.A. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis pyelonephritis in women: A randomized trial. JAMA 2000, 283, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Conley, A.T.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Amoah, J.; Avdic, E.; Tolomeo, P.; Wise, J.; Subudhi, S.; et al. Association of 30-Day Mortality with Oral Step-Down vs. Continued Intravenous Therapy in Patients Hospitalized with Enterobacteriaceae Bacteremia. JAMA Intern. Med. 2019, 179, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Broom, J.; Broom, A.; Adams, K.; Plage, S. What prevents the intravenous to oral antibiotic switch? A qualitative study of hospital doctors’ accounts of what influences their clinical practice. J. Antimicrob. Chemother. 2016, 71, 2295–2299. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.G.; Yoo, E.D.; Faust, A.C.; Smith, T.; Goodman, E.L.; Mortensen, E.M.; Richardson, S.; Alvarez, C.A. Impact of total body weight on 30-day mortality in patients with gram-negative bacteremia. Expert Rev. Anti Infect. Ther. 2017, 15, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W.; Yu, V.L. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: A commentary. Int. J. Antimicrob. Agents 1999, 11, 7–12. [Google Scholar] [CrossRef]
- Chow, J.W.; Shlaes, D.M. Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J. Antimicrob. Chemother. 1991, 28, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Rac, H.; Gould, A.; Bookstaver, P.; Justo, J.A.; Kohn, J.; Al-Hasan, M. Evaluation of early clinical failure criteria for gram-negative bloodstream infections. Clin. Microbiol. Infect. 2020, 26, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IV to PO Conversion: Quick reference guide for hospital pharmacists. Available online: https://www.shea-online.org/images/priority-topics/Intermountain-IV-PO-Quick-Guide.pdf (accessed on 2 August 2021).
- Antimicrobial Stewardship Strategy: Intravenous to Oral Conversion. Available online: https://www.publichealthontario.ca/-/media/documents/A/2016/asp-iv-oral-conversion.pdf (accessed on 2 August 2021).
- Sutton, J.D.; Stevens, V.W.; Chang, N.N.; Khader, K.; Timbrook, T.T.; Spivak, E.S. Oral β-Lactam Antibiotics vs. Fluoroquinolones or Trimethoprim-Sulfamethoxazole for Definitive Treatment of Enterobacterales Bacteremia from a Urine Source. JAMA Netw. Open 2020, 3, e2020166. [Google Scholar] [CrossRef] [PubMed]
- Kutob, L.F.; Justo, J.A.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections. Int. J. Antimicrob. Agents 2016, 48, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Mercuro, N.J.; Stogsdill, P.; Wungwattana, M. Retrospective analysis comparing oral stepdown therapy for enterobacteriaceae bloodstream infections: Fluoroquinolones versus β-lactams. Int. J. Antimicrob. Agents 2018, 51, 687–692. [Google Scholar] [CrossRef] [PubMed]
Characteristic | White Blood Count and Temperature Did Not Normalize (n = 84) | White Blood Count and Temperature Did Normalize (n = 239) | p-Value | No Potential Excess Intravenous Therapy (n = 75) | Potential Excess Intravenous Therapy (n = 164) | p-Value |
---|---|---|---|---|---|---|
Male sex (%) | 40.5 | 37.7 | 0.65 | 28.0 | 42.1 | 0.04 |
Race/Ethnicity (%) | ||||||
White, non-Hispanic | 77.4 | 73.6 | 66.7 | 76.8 | ||
White, Hispanic | 6.0 | 8.0 | 10.7 | 6.7 | ||
African American | 8.3 | 11.7 | 0.67 | 12.0 | 11.6 | 0.30 |
Other | 2.4 | 0.8 | 1.3 | 0.6 | ||
Not reported | 6.0 | 5.9 | 9.3 | 4.3 | ||
Age (years) | 72 (58.5, 84) | 76 (63, 85) | 0.36 | 76 (61, 86) | 75.5 (63.5, 85) | 0.96 |
Weight (kilograms) | 67 (56, 83.6) | 74.8 (63.5, 90.4) | 0.003 | 73.7 (64.3, 93.4) | 75.7 (63, 89.4) | 0.87 |
Height (inches) | 65 (63.6, 69) | 66 (63, 69) | 0.99 | 65 (63, 67.2) | 66 (63, 69) | 0.15 |
Cirrhosis (%) | 9.5 | 8.0 | 0.65 | 5.3 | 9.2 | 0.31 |
Chronic kidney disease (%) | 15.5 | 22.6 | 0.17 | 21.3 | 23.2 | 0.75 |
Cancer (%) | 41.7 | 34.7 | 0.26 | 33.3 | 35.4 | 0.76 |
Chronic obstructive pulmonary disease (%) | 21.4 | 13.4 | 0.08 | 13.3 | 13.4 | 0.99 |
Diabetes (%) | 22.6 | 33.1 | 0.07 | 40.0 | 29.9 | 0.12 |
Baseline SCr (mg/dl) | 1.5 (1.1, 2.3) | 1.3 (0.9, 2.1) | 0.02 | 1.5 (0.9, 2.4) | 1.2 (0.9, 2.0) | 0.07 |
Length of stay prior to positive blood culture (days) | 1 (1, 1) | 1 (1, 2) | 0.30 | 0 (0, 0) | 0 (0, 1) | 0.02 |
ICU residence (%) | 32.1 | 19.3 | 0.02 | 16.0 | 20.7 | 0.39 |
Vasopressor use (%) | 26.2 | 14.6 | 0.02 | 9.3 | 17.1 | 0.12 |
Pitt bacteremia score | 2 (1, 4) | 1 (1, 3) | 0.001 | 1 (1, 2) | 1 (0, 3) | 0.84 |
Infection source (%) | ||||||
Urinary tract | 57.1 | 64.9 | 81.3 | 57.3 | ||
Intra-abdominal | 11.9 | 24.3 | 12.0 | 29.9 | ||
Intravenous catheter | 10.7 | 3.4 | <0.001 | 1.3 | 4.3 | 0.006 |
Other | 10.7 | 2.9 | 2.7 | 3.1 | ||
Undocumented | 9.5 | 4.6 | 2.7 | 5.5 | ||
Pathogen (%) | ||||||
Escherichia coli | 61.9 | 69.0 | 80.0 | 64.0 | ||
Klebsiella pneumoniae | 20.2 | 17.2 | 13.3 | 18.9 | ||
Pseudomonas aeruginosa | 14.3 | 7.5 | 0.05 | 4.0 | 9.2 | 0.13 |
Enterobacter sp. | 1.2 | 5.9 | 2.7 | 7.3 | ||
Other | 2.4 | 0.4 | 0.0 | 0.6 | ||
Adequate empiric antimicrobials (%) | 89.2 | 94.5 | 0.10 | 98.7 | 92.6 | 0.07 |
Agent (%) | No Potential Excess Intravenous Therapy (n = 75) | Potential Excess Intravenous therapy (n = 164) | p-Value |
---|---|---|---|
Aminoglycosides | 2.7 | 2.4 | 1.00 |
Fluoroquinolone | 22.7 | 21.3 | 0.82 |
Piperacillin/tazobactam | 37.3 | 28.7 | 0.18 |
Cephalosporin | 30.7 | 28.7 | 0.75 |
Carbapenem | 10.7 | 19.5 | 0.09 |
Other agent | 5.3 | 7.9 | 0.47 |
Combination therapy | 16 | 17.7 | 0.75 |
Agent (Percent Susceptible %) | White Blood Count and Temperature Did Not Normalize (n = 84) | White Blood Count and Temperature Did Normalize (n = 239) | p-Value | No Potential Excess Intravenous Therapy (n = 75) | Potential Excess Intravenous Therapy (n = 164) | p-Value |
---|---|---|---|---|---|---|
Amikacin | 97.6 | 99.6 | 0.16 | 100 | 99.4 | 1.00 |
Cefepime | 95.2 | 96.7 | 0.51 | 97.3 | 96.3 | 1.00 |
Gentamicin | 91.6 | 92.5 | 0.79 | 94.7 | 91.5 | 0.44 |
Levofloxacin | 86.8 | 82.0 | 0.32 | 89.3 | 78.7 | 0.05 |
Meropenem | 97.6 | 98.7 | 0.61 | 98.7 | 98.8 | 1.00 |
Piperacillin–tazobactam | 92.8 | 94.6 | 0.55 | 96.0 | 93.9 | 0.76 |
Outcome | No Potential Excess Intravenous Therapy (n = 75) | Potential Excess Intravenous Therapy (n = 164) | p-Value |
---|---|---|---|
Days to oral antimicriobial therapy | 3 (2, 4) | 6 (4, 11) | <0.001 |
Days of excess intravenous antimicrobial therapy | 0 (0, 0) | 2 (1, 4) | <0.001 |
Length of stay after positive blood culture (days) | 5 (3, 8) | 7 (4.5, 11) | <0.001 |
Total length of stay (days) | 5 (3, 8) | 8 (5, 13) | <0.001 |
Death within hospitalization | 0 | 5.5 | 0.06 |
Death at 30 days | 2.7 | 9.8 | 0.07 |
Characteristic | Coefficient | 95% CI |
---|---|---|
Days to normalization of WBCs and temperature | −0.15 | −0.35 to 0.05 |
Pathogen: E. coli or K. Pneumoniae | −1.10 | −2.88 to 0.68 |
Pitt Bacteremia Score (baseline) | 0.51 | 0.10 to 0.92 |
Source: UTI | −1.54 | −2.82 to −0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selby, A.R.; Raza, J.; Nguyen, D.; Hall 2nd, R.G. Potential Excess Intravenous Antibiotic Therapy in the Setting of Gram-Negative Bacteremia. Pharmacy 2021, 9, 133. https://doi.org/10.3390/pharmacy9030133
Selby AR, Raza J, Nguyen D, Hall 2nd RG. Potential Excess Intravenous Antibiotic Therapy in the Setting of Gram-Negative Bacteremia. Pharmacy. 2021; 9(3):133. https://doi.org/10.3390/pharmacy9030133
Chicago/Turabian StyleSelby, Ashley R., Jaffar Raza, Duong Nguyen, and Ronald G. Hall 2nd. 2021. "Potential Excess Intravenous Antibiotic Therapy in the Setting of Gram-Negative Bacteremia" Pharmacy 9, no. 3: 133. https://doi.org/10.3390/pharmacy9030133
APA StyleSelby, A. R., Raza, J., Nguyen, D., & Hall 2nd, R. G. (2021). Potential Excess Intravenous Antibiotic Therapy in the Setting of Gram-Negative Bacteremia. Pharmacy, 9(3), 133. https://doi.org/10.3390/pharmacy9030133