Do PCSK9 Inhibitors Impair Memory? A Dual Approach Combining Real-World Data and Genetic Evidence
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Pharmacovigilance Analysis
2.3. MR Analysis
3. Results
3.1. Descriptive Analysis of the FAERS
3.2. Pharmacovigilance Analysis of the FAERS
3.3. MR Analysis for PCSK9 Inhibitors on Memory Loss
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCSK9 | Proprotein convertase subtilisin–kexin type 9 |
AEs | Adverse events |
LDL-C | Low-density lipoprotein cholesterol |
FAERS | U.S. Food and Drug Administration Adverse Event Reporting System |
MR | Mendelian randomization |
RCTs | randomized controlled trials |
ROR | Reporting odds ratio |
PRR | Proportional reporting ratio |
IC | Information component |
IC025 | Lower limit of the 95% CI of the IC |
MHRA | Medicines and Healthcare Products Regulatory Agency |
EBGM | Empirical Bayesian geometric mean |
EBGM05 | Lower limit of the 95% CI of the EBGM |
MedDRA | Medical Dictionary for Regulatory Activities |
ATC | Anatomical Therapeutic Chemical |
NCBI | National Center for Biotechnology Information |
SNPs | Single nucleotide polymorphisms |
IVs | Instrumental variables |
GLGC | Global Lipids Genetics Consortium |
CHD | Coronary heart disease |
LD | Linkage disequilibrium |
IVW | Inverse-variance weighted |
HLT | High-level terms |
PT | Preferred terms |
Q1 | First quarter |
Q2 | Second quarter |
Q3 | Third quarter |
CNS | central nervous system |
BBB | Blood–brain barrier |
References
- Barale, C.; Melchionda, E.; Morotti, A.; Russo, I. PCSK9 Biology and Its Role in Atherothrombosis. Int. J. Mol. Sci. 2021, 22, 5880. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 382, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Fernandez, C.H.; Goldstein, L.B.; Levey, A.I.; Taylor, B.A.; Bittner, V. An assessment by the Statin Cognitive Safety Task Force: 2014 update. J. Clin. Lipidol. 2014, 8, S5–S16. [Google Scholar] [CrossRef]
- Strom, B.L.; Schinnar, R.; Karlawish, J.; Hennessy, S.; Teal, V.; Bilker, W.B. Statin Therapy and Risk of Acute Memory Impairment. JAMA Intern. Med. 2015, 175, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Rizzo, M.; Nikolic, D.; Howard, G.; Howard, V.; Mikhailidis, D. Intensive LDL-cholesterol lowering therapy and neurocognitive function. Pharmacol. Ther. 2017, 170, 181–191. [Google Scholar] [CrossRef]
- Borelli, C.M.; Grennan, D.; Muth, C.C. Causes of Memory Loss in Elderly Persons. JAMA 2020, 323, 486. [Google Scholar] [CrossRef]
- Koren, M.J.; Sabatine, M.S.; Giugliano, R.P.; Langslet, G.; Wiviott, S.D.; Ruzza, A.; Ma, Y.H.; Hamer, A.W.; Wasserman, S.M.; Raal, F.J. Long-Term Efficacy and Safety of Evolocumab in Patients With Hypercholesterolemia. J. Am. Coll. Cardiol. 2019, 74, 2132–2146. [Google Scholar] [CrossRef]
- McCullough, P.A.; Ballantyne, C.M.; Sanganalmath, S.K.; Langslet, G.; Baum, S.J.; Shah, P.K.; Koren, A.; Mandel, J.; Davidson, M.H. Efficacy and Safety of Alirocumab in High-Risk Patients With Clinical Atherosclerotic Cardiovascular Disease and/or Heterozygous Familial Hypercholesterolemia (from 5 Placebo-Controlled ODYSSEY Trials). Am. J. Cardiol. 2018, 121, 940–948. [Google Scholar] [CrossRef]
- Balakrishna, A.M.; Kaushik, S.; Palanivelu, S.T.; Monther, N.; Ponamgi, S.P.; Alla, V.M.; Patil, S.M. Safety and Efficacy of Achieving Very Low LDL Cholesterol Concentrations with PCSK9 Inhibitors. J. Clin. Med. 2025, 14, 4562. [Google Scholar] [CrossRef] [PubMed]
- Krauss, A. Why all randomised controlled trials produce biased results. Ann. Med. 2018, 50, 312–322. [Google Scholar] [CrossRef]
- Shi, X.Z.; Qiao, Y.; Yang, Y.L.; Wang, N.N.; Zhang, Y.; Shi, S.X.; Shen, G.B.; Jia, X.C. Mining of adverse event signals associated with inclisiran: A post-marketing analysis based on FAERS. Expert Opin. Drug Saf. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Chen, Z.H.; Wang, X.; Teng, Z.W.; Huang, J.; Mo, J.Z.; Qu, C.R.; Wu, Y.H.; Liu, Z.X.; Liu, F.K.; Xia, K. A comprehensive assessment of the association between common drugs and psychiatric disorders using Mendelian randomization and real-world pharmacovigilance database. Ebiomedicine 2024, 107, 105314. [Google Scholar] [CrossRef]
- Nie, H.; Zhao, W.P.; Wang, Q.Q.; Zhou, W.M. Lipid-lowering and antihypertensive drugs on aortic disease risk: Insights from Mendelian randomization analysis and real-world pharmacovigilance data. Eur. Heart J.-Cardiovasc. Pharmacother. 2025, 11, 116–135. [Google Scholar] [CrossRef]
- van Puijenbroek, E.P.; Bate, A.; Leufkens, H.G.M.; Lindquist, M.; Orre, R.; Egberts, A.C.G. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol. Drug Saf. 2002, 11, 3–10. [Google Scholar] [CrossRef]
- Evans, S.J.W.; Waller, P.C.; Davis, S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol. Drug Saf. 2001, 10, 483–486. [Google Scholar] [CrossRef]
- Sakaeda, T.; Tamon, A.; Kadoyama, K.; Okuno, Y. Data Mining of the Public Version of the FDA Adverse Event Reporting System. Int. J. Med. Sci. 2013, 10, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.E.; Clarke, S.L.; Wu, K.H.H.; Kanoni, S.; Zajac, G.J.M.; Ramdas, S.; Surakka, I.; Ntalla, I.; Vedantam, S.; Winkler, T.W.; et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 2021, 600, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef]
- Carter, A.R.; Sanderson, E.; Hammerton, G.; Richmond, R.C.; Smith, G.D.; Heron, J.; Taylor, A.E.; Davies, N.M.; Howe, L.D. Mendelian randomisation for mediation analysis: Current methods and challenges for implementation. Eur. J. Epidemiol. 2021, 36, 465–478. [Google Scholar] [CrossRef]
- Lee, S.; Lee, W. A Review of Mendelian Randomization: Assumptions, Methods, and Application to Obesity-Related Diseases. J. Obes. Metab. Syndr. 2025, 34, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Mitchell, B.D. A Guide to Understanding Mendelian Randomization Studies. Arthritis Care Res. 2024, 76, 1451–1460. [Google Scholar] [CrossRef]
- Deng, Z.F.; Liu, J.; Gong, H.J.; Cai, X.A.; Xiao, H.; Gao, W.Q. Psychiatric disorders associated with PCSK9 inhibitors: A real-world, pharmacovigilance study. CNS Neurosci. Ther. 2024, 30, e14522. [Google Scholar] [CrossRef]
- Feng, Z.; Li, X.Y.; Tong, W.K.; He, Q.F.; Zhu, X.; Xiang, X.Q.; Tang, Z.J. Real-world safety of PCSK9 inhibitors: A pharmacovigilance study based on spontaneous reports in FAERS. Front. Pharmacol. 2022, 13, 894685. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.M.; Bai, J.M.; Zhou, J.C.; Zou, Y.; Yu, M.M. Adverse event profiles of PCSK9 inhibitors alirocumab and evolocumab: Data mining of the FDA adverse event reporting system. Br. J. Clin. Pharmacol. 2022, 88, 5317–5325. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Finan, C.; Gordillo-Marañón, M.; Asselbergs, F.W.; Freitag, D.F.; Patel, R.S.; Tyl, B.; Chopade, S.; Faraway, R.; Zwierzyna, M.; et al. Genetic drug target validation using Mendelian randomisation. Nat. Commun. 2020, 11, 3255. [Google Scholar] [CrossRef]
- Bell, A.S.; Rosoff, D.B.; Mavromatis, L.A.; Jung, J.; Wagner, J.; Lohoff, F.W. Comparing the Relationships of Genetically Proxied PCSK9 Inhibition With Mood Disorders, Cognition, and Dementia Between Men and Women: A Drug-Target Mendelian Randomization Study. J. Am. Heart Assoc. 2022, 11, e026122. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Bell, A.S.; Jung, J.; Wagner, J.; Mavromatis, L.A.; Lohoff, F.W. Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function. J. Am. Coll. Cardiol. 2022, 80, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Seijas-Amigo, J.; Mauriz-Montero, M.J.; Suarez-Artime, P.; Gayoso-Rey, M.; Estany-Gestal, A.; Casas-Martínez, A.; González-Freire, L.; Rodriguez-Vazquez, A.; Pérez-Rodriguez, N.; Villaverde-Piñeiro, L.; et al. Cognitive Function with PCSK9 Inhibitors: A 24-Month Follow-Up Observational Prospective Study in the Real World-MEMOGAL Study. Am. J. Cardiovasc. Drug 2023, 23, 583–593. [Google Scholar] [CrossRef]
- Gronich, N. Central Nervous System Medications: Pharmacokinetic and Pharmacodynamic Considerations for Older Adults. Drugs Aging 2024, 41, 507–519. [Google Scholar] [CrossRef]
- Sportiello, L.; Capuano, A. Sex and gender differences and pharmacovigilance: A knot still to be untied. Front. Pharmacol. 2024, 15, 1397291. [Google Scholar] [CrossRef]
- Mosteoru, S.; Gaita, D.; Banach, M. An update on PCSK9 inhibitors- pharmacokinetics, drug interactions, and toxicity. Expert Opin. Drug Met. 2020, 16, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Deng, H.; Luo, Y.; Zhong, S.; Huang, M.; Tomlinson, B. Advances in statin adverse reactions and the potential mechanisms: A review. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef]
- Cesaro, A.; Bianconi, V.; Gragnano, F.; Moscarella, E.; Fimiani, F.; Monda, E.; Scudiero, O.; Limongelli, G.; Pirro, M.; Calabrò, P. Beyond cholesterol metabolism: The pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Genetics, mutations, expression, and perspective for long-term inhibition. Biofactors 2020, 46, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Kazibwe, R.; Rikhi, R.; Mirzai, S.; Ashburn, N.P.; Schaich, C.L.; Shapiro, M. Do Statins Affect Cognitive Health? A Narrative Review and Critical Analysis of the Evidence. Curr. Atheroscler. Rep. 2024, 27, 2. [Google Scholar] [CrossRef] [PubMed]
Characteristics | PCSK9 Inhibitors (n = 388) |
---|---|
Memory Loss, [N = 389(%)] | |
Memory impairment | 307 (78.92%) |
Amnesia | 79 (20.31%) |
Transient global amnesia | 2 (0.51%) |
Amnestic disorder | 1(0.26%) |
PCSK9 inhibitors, [n (%)] | |
Alirocumab | 51 (13.14%) |
Evolocumab | 260 (67.01%) |
Inclisiran | 77 (19.85%) |
Gender, [n (%)] | |
Male | 105 (27.06%) |
Female | 265 (68.30%) |
Missing | 18 (4.64%) |
Age (years), [n (%)] | |
18–64 | 51 (13.14%) |
≥65 | 198 (51.03%) |
Missing | 139 (35.83%) |
Median (IQR) | 72.00 (67.75–77.00) |
Reported person, [n (%)] | |
Consumer | 319 (82.22%) |
Health professional | 42 (10.82%) |
Physician | 20 (5.15%) |
Pharmacist | 7 (1.81%) |
Reported countries, [n (%)] | |
United States | 349 (89.95%) |
Other country | 39 (10.05%) |
Reported year, [n (%)] | |
2022 | 26 (6.70%) |
2023 | 29 (7.47%) |
2024 | 40 (10.31%) |
2025 Q1 | 10 (25.77%) |
Serious outcomes, [n (%)] | |
Hospitalization | 51 (28.81%) |
Disability | 10 (5.65%) |
Life-threatening | 3 (1.69%) |
Other serious outcomes | 113 (63.84%) |
AEs | N | ROR (95% CI) | MHRA | EBGM05 | IC025 | |
---|---|---|---|---|---|---|
PRR | χ2 | |||||
Memory loss | 389 | 0.79 (0.72, 0.88) | 0.79 | 20.64 | 0.73 | −2.00 |
Memory impairment | 307 | 0.85 (0.76, 0.96) | 0.85 | 7.63 | 0.78 | −1.89 |
Amnesia | 79 | 0.63 (0.51, 0.79) | 0.63 | 16.97 | 0.53 | −2.33 |
AEs | N | ROR (95% CI) | MHRA | EBGM05 | IC025 | |
---|---|---|---|---|---|---|
PRR | χ2 | |||||
Memory loss | 389 | 0.59 (0.53, 0.66) | 0.59 | 95.33 | 0.59 | −2.30 |
Memory impairment | 307 | 0.72 (0.64, 0.82) | 0.72 | 27.45 | 0.69 | −2.05 |
Amnesia | 79 | 0.35 (0.28, 0.44) | 0.35 | 88.99 | 0.33 | −3.00 |
Exposure | Outcome | MR Methods | SNPs | OR (95% CI) | p |
---|---|---|---|---|---|
PCSK9 inhibitors | CHD | IVW | 56 | 0.52 (0.47, 0.58) | <0.001 |
MR-Egger | 56 | 0.52 (0.43, 0.63) | <0.001 | ||
Weighted median | 56 | 0.55 (0.47, 0.65) | <0.001 | ||
Simple mode | 56 | 0.43 (0.33, 0.57) | <0.001 | ||
Weighted mode | 56 | 0.56 (0.47, 0.67) | <0.001 |
Exposure | Outcome | MR Methods | SNPs | OR (95% CI) | p |
---|---|---|---|---|---|
PCSK9 inhibitors | Memory loss | IVW | 81 | 0.98 (0.78, 1.23) | 0.837 |
MR-Egger | 81 | 0.94 (0.69, 1.29) | 0.718 | ||
Weighted median | 81 | 0.95 (0.71, 1.27) | 0.734 | ||
Simple mode | 81 | 1.30 (0.68, 2.49) | 0.430 | ||
Weighted mode | 81 | 1.01 (0.79, 1.29) | 0.953 | ||
Memory impairment | IVW | 83 | 1.20 (0.96, 1.49) | 0.116 | |
MR-Egger | 83 | 0.89 (0.64, 1.25) | 0.514 | ||
Weighted median | 83 | 1.05 (0.77, 1.43) | 0.748 | ||
Simple mode | 83 | 1.28 (0.69, 2.37) | 0.435 | ||
Weighted mode | 83 | 1.11 (0.82, 1.50) | 0.488 | ||
Amnesia | IVW | 75 | 1.75 (0.74, 4.14) | 0.204 | |
MR-Egger | 75 | 3.07 (0.85, 11.12) | 0.092 | ||
Weighted median | 75 | 2.51 (0.61, 10.35) | 0.203 | ||
Simple mode | 75 | 2.17 (0.18, 26.97) | 0.548 | ||
Weighted mode | 75 | 2.17 (0.65, 7.28) | 0.212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wang, S.; Yang, Y.; Xia, X.; Fan, J.; Wang, J.; Wang, N.; Jia, X. Do PCSK9 Inhibitors Impair Memory? A Dual Approach Combining Real-World Data and Genetic Evidence. Pharmacy 2025, 13, 125. https://doi.org/10.3390/pharmacy13050125
Shi X, Wang S, Yang Y, Xia X, Fan J, Wang J, Wang N, Jia X. Do PCSK9 Inhibitors Impair Memory? A Dual Approach Combining Real-World Data and Genetic Evidence. Pharmacy. 2025; 13(5):125. https://doi.org/10.3390/pharmacy13050125
Chicago/Turabian StyleShi, Xuezhong, Shijia Wang, Yongli Yang, Xudong Xia, Jingwen Fan, Jingjing Wang, Nana Wang, and Xiaocan Jia. 2025. "Do PCSK9 Inhibitors Impair Memory? A Dual Approach Combining Real-World Data and Genetic Evidence" Pharmacy 13, no. 5: 125. https://doi.org/10.3390/pharmacy13050125
APA StyleShi, X., Wang, S., Yang, Y., Xia, X., Fan, J., Wang, J., Wang, N., & Jia, X. (2025). Do PCSK9 Inhibitors Impair Memory? A Dual Approach Combining Real-World Data and Genetic Evidence. Pharmacy, 13(5), 125. https://doi.org/10.3390/pharmacy13050125