Pharmacists’ Perceptions on Safety Alerts of the Drug Utilization Review (DUR) in Electronic Health Records in a Tertiary Healthcare Hospital
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Pharmacists’ Satisfaction with DUR
4.2. The Impact of DUR on Medication Safety
4.3. DUR Usability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipton, H.L.; Bird, J.A. Drug Utilization Review in Ambulatory Settings: State of the Science and Directions for Outcomes Research. Med. Care 1993, 31, 1069–1082. Available online: http://www.jstor.org/stable/3765770 (accessed on 26 September 2022). [CrossRef] [PubMed]
- NHS Digital. Prescriptions Dispensed in the Community—Statistics for England, 2007–2017. 2018. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/prescriptions-dispensed-in-the-community/prescriptionsdispensed-in-the-community-england---2007---2017 (accessed on 5 October 2022).
- Institute for Safe Medication Practices. Heed this Warning! Don’t Miss Important Computer Alerts; ISMP Medication Safety Alert: Plymouth Meeting, PA, USA, 2007; Volume 12. [Google Scholar]
- Forni, A.; Chu, H.; Fanikos, J. Technology Utilization to Prevent Medication Errors. Med. Care 2009, 5, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.W.; Eisert, S.; Witter, J.; Lyons, P.; Jones, M.A.; Gabow, P.; Bainbridge, M. The effect of automated alerts on provider ordering behavior in an outpatient setting. PLoS Med. 2005, 2, 0864–0870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.X.; Adhikari, N.K.J.; McDonald, H.; Rosas-Arellano, M.P.; Devereaux, P.J.; Beyene, J.; Patel, N.; Featherstone, E. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. J. Am. Med. Assoc. 2005, 293, 1223–1238. [Google Scholar] [CrossRef]
- Kushniruk, A.W.; Bates, D.W.; Bainbridge, M.; Househ, M.S.; Borycki, E.M. National efforts to improve health information system safety in Canada, the United States of America and England. Int. J. Med. Inform. 2013, 82, e149–e160. Available online: https://linkinghub.elsevier.com/retrieve/pii/S138650561200247X (accessed on 6 October 2022). [CrossRef]
- Magrabi, F.; Aarts, J.; Nohr, C.; Baker, M.; Harrison, S.; Pelayo, S.; Talmon, J.; Sittig, D.F.C.E. A comparative review of patient safety initiatives for national health information technology. Int. J. Med. Inform. 2013, 82, 139–148. [Google Scholar] [CrossRef]
- McKibbon, K.A.; Lokker, C.; Handler, S.M.; Dolovich, L.R.; Holbrook, A.M.; O’Reilly, D.; Tamblyn, R.; Hemens, B.J.; Basu, R.; Troyan, S.R.P. The effectiveness of integrated health information technologies across the phases of medication management: A systematic review of randomized controlled trials. J. Am. Med. Inform. Assoc. 2012, 19, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Ojeleye, O.; Avery, A.; Gupta, V.; Boyd, M. The evidence for the effectiveness of safety alerts in electronic patient medication record systems at the point of pharmacy order entry: A systematic review. BMC Med. Inform. Decis. Mak. 2013, 13, 69. Available online: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-13-69 (accessed on 26 September 2022). [CrossRef] [Green Version]
- Grimsmo, A. Elektronisk resept—Uten bivirkninger? Tidsskr Laegeforening 2006, 126, 1740–1743. [Google Scholar]
- Monane, M.; Matthias, D.M.; Nagle, B.A.; Kelly, M.A. Improving Prescribing Patterns for the Elderly Through an Online Drug Utilization Review Intervention. JAMA 1998, 280, 1249. Available online: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.280.14.1249 (accessed on 5 October 2022). [CrossRef] [Green Version]
- De Young, J.L.; VanderKooi, M.E.; Barletta, J.F. Effect of bar-code-assisted medication administration on medication error rates in an adult medical intensive care unit. Am. J. Heal. Pharm. 2009, 66, 1110–1115. Available online: https://academic.oup.com/ajhp/article/66/12/1110/5130207 (accessed on 6 October 2022). [CrossRef]
- Poon, E.G.; Cina, J.L.; Churchill, W.; Patel, N.; Featherstone, E.; Rothschild, J.M.; Keohane, C.A.; Whittemore, A.D.; Bates, D.W.G.T. Medication dispensing errors and potential adverse drug events before and after implementing bar code technology in the pharmacy. Ann. Intern. Med. 2006, 145, 426–434. [Google Scholar] [CrossRef]
- Tamblyn, R. Improving Patient Safety through Computerized Drug Management: The Devil Is in the Details. Healthc. Pap. 2004, 5, 52–68. Available online: http://www.longwoods.com/content/16866 (accessed on 8 October 2022). [CrossRef]
- Saverno, K.R.; Hines, L.E.; Warholak, T.L.; Grizzle, A.J.; Babits, L.; Clark, C.; Weissman, J.S.; Davis, R.B. The ability of pharmacy clinical decision-support software to alert users about clinically important drug-drug interactions. J. Am. Med. Inform. Assoc. 2011, 18, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Hazlet, T.K.; Lee, T.A.; Hansten, P.D.; Horn, J.R. Performance of Community Pharmacy Drug Interaction Software. J. Am. Pharm. Assoc. 2001, 41, 200–204. Available online: https://linkinghub.elsevier.com/retrieve/pii/S108658021631230X (accessed on 8 October 2022). [CrossRef]
- Jankel, C.A.; Martin, B.C. Evaluation of six computerized drug interaction screening programs. Am. J. Heal. Pharm. 1992, 49, 1430–1435. Available online: https://academic.oup.com/ajhp/article/49/6/1430/5183473 (accessed on 13 October 2022). [CrossRef]
- Sweidan, M.; Reeve, J.F.; Brien, J.E.; Jayasuriya, P.; Martin, J.H.; Vernon, G.M. Quality of drug interaction alerts in prescribing and dispensing software. Med. J. Aust. 2009, 191, 358–359. Available online: https://onlinelibrary.wiley.com/doi/abs/10.5694/j.1326-5377.2009.tb02830.x (accessed on 21 October 2022). [CrossRef]
- Jung, S.Y.; Hwang, H.; Lee, K.; Lee, H.-Y.; Kim, E.; Kim, M.; Lee, S.; Je, N.K. Barriers and Facilitators to Implementation of Medication Decision Support Systems in Electronic Medical Records: Mixed Methods Approach Based on Structural Equation Modeling and Qualitative Analysis. JMIR Med. Inform. 2020, 8, e18758. Available online: https://medinform.jmir.org/2020/7/e18758 (accessed on 2 November 2022). [CrossRef]
- Chui, M. Evaluation of Online Prospective DUR Programs in Community Pharmacy Practice. J. Manag. Care Pharm. 2000, 6, 27–32. Available online: http://www.jmcp.org/doi/10.18553/jmcp.2000.6.1.27 (accessed on 2 November 2022). [CrossRef]
- Weingart, S.N.; Toth, M.; Sands, D.Z.; Aronson, M.D.; Davis, R.B.; Phillips, R.S. Physicians’ Decisions to Override Computerized Drug Alerts in Primary Care. Arch. Intern. Med. 2003, 163, 2625. Available online: http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinte.163.21.2625 (accessed on 2 November 2022). [CrossRef]
- Mille, F.; Schwartz, C.; Brion, F.; Fontan, J.-E.; Bourdon, O.; Degoulet, P.; Dolovich, L.R.; Holbrook, A.M. Analysis of overridden alerts in a drug-drug interaction detection system. Int. J. Qual. Heal. Care 2008, 20, 400–405. Available online: https://academic.oup.com/intqhc/article-lookup/doi/10.1093/intqhc/mzn038 (accessed on 6 November 2022). [CrossRef] [PubMed] [Green Version]
- Fernando, B.; Savelyich, B.S.P.; Avery, A.J.; Sheikh, A.; Bainbridge, M.; Horsfield, P.; Cantrill, J.A. Prescribing safety features of general practice computer systems: Evaluation using simulated test cases. Br. Med. J. 2004, 328, 1171–1172. Available online: https://www.bmj.com/lookup/doi/10.1136/bmj.328.7449.1171 (accessed on 12 November 2022). [CrossRef] [PubMed] [Green Version]
- Schedlbauer, A.; Prasad, V.; Mulvaney, C.; Phansalkar, S.; Stanton, W.; Bates, D.W.; Hansten, P.D.; Horn, J.R. What Evidence Supports the Use of Computerized Alerts and Prompts to Improve Clinicians’ Prescribing Behavior? J. Am. Med. Inform. Assoc. 2009, 16, 531–538. Available online: https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2910 (accessed on 12 November 2022). [CrossRef] [PubMed] [Green Version]
- Morris, C.J.; Savelyich, B.S.P.; Avery, A.J.; Cantrill, J.A.; Sheikh, A. Patient safety features of clinical computer systems: Questionnaire survey of GP views. Qual. Saf. Heal. Care. 2005, 14, 164–168. [Google Scholar] [CrossRef]
- Topaz, M.; Seger, D.L.; Slight, S.P.; Goss, F.; Lai, K.; Wickner, P.G.; Patel, N.; Featherstone, E. Rising drug allergy alert overrides in electronic health records: An observational retrospective study of a decade of experience. J. Am. Med. Inform. Assoc. 2016, 23, 601–608. Available online: https://academic.oup.com/jamia/article/23/3/601/2908995 (accessed on 17 November 2022). [CrossRef] [PubMed] [Green Version]
- Van Der Sijs, H.; Aarts, J.; Vulto, A.; Berg, M. Overriding of drug safety alerts in computerized physician order entry. J. Am. Med. Inform. Assoc. 2006, 13, 138–147. [Google Scholar] [CrossRef]
- Glassman, P.A.; Simon, B.; Belperio, P.; Lanto, A. Improving Recognition of Drug Interactions. Med. Care 2002, 40, 1161–1171. Available online: http://www.jstor.org/stable/3767937 (accessed on 17 November 2022). [CrossRef]
- Hsieh, T.C.; Kuperman, G.J.; Jaggi, T.; Hojnowski-Diaz, P.; Fiskio, J.; Williams, D.H.; Weissman, J.S.; Davis, R.B. Characteristics and Consequences of Drug Allergy Alert Overrides in a Computerized Physician Order Entry System. J. Am. Med. Inform. Assoc. 2004, 11, 482–491. Available online: https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M1556 (accessed on 6 January 2023). [CrossRef] [Green Version]
- Lee, S.M.; Lee, S.O.; Kim, D.S. Physicians’ and pharmacists’ perceptions on real-time drug utilization review system: A nationwide survey. Int. J. Qual. Heal. Care 2017, 29, 634–641. [Google Scholar] [CrossRef]
- Ancker, J.S.; Edwards, A.; Nosal, S.; Hauser, D.; Mauer, E.; Kaushal, R. Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Med. Inform. Decis. Mak. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.K.; Tamblyn, R. Reasons for physician non-adherence to electronic drug alerts. Stud. Health Technol. Inform. 2004, 107 Pt 2, 1101–1105. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15360983 (accessed on 6 January 2023).
- Feldstein, A.; Simon, S.R.; Schneider, J.; Krall, M.; Laferriere, D.; Smith, D.H.; Slight, S.P.; Goss, F. How to Design Computerized Alerts to Ensure Safe Prescribing Practices. Jt. Comm. J. Qual. Saf. 2004, 30, 602–613. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1549374104300717 (accessed on 11 January 2023). [CrossRef]
- Armstrong, E.P.; Denemark, C.R. How Pharmacists Respond to On-Line Real-Time OUR Alerts. J. Am. Pharm. Assoc. 1998, 38, 149–154. Available online: https://linkinghub.elsevier.com/retrieve/pii/S108658021630314X (accessed on 6 April 2023). [CrossRef]
- Kidder, D.; Bae, J. Evaluation results from prospective drug utilization review: Medicaid demonstrations. Health Care Financ. Rev. 1999, 20, 107–118. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1055801541 (accessed on 7 April 2023).
- Kim, D.-S.; Jeon, H.-L.; Lee, S.; Je, N.K. Physicians’ and pharmacists’ acceptance of online, real-time “drug combinations to avoid” messages. Int. J. Clin. Pharmacol. Ther. 2015, 53, 712–727. Available online: http://www.dustri.com/article_response_page.html?artId=13486&doi=10.5414/CP202375&L=0 (accessed on 11 May 2023). [CrossRef]
- Isaac, T.; Weissman, J.S.; Davis, R.B.; Massagli, M.; Cyrulik, A.; Sands, D.Z.; Edwards, A.; Nosal, S. Overrides of Medication Alerts in Ambulatory Care. Arch. Intern. Med. 2009, 169, 305. Available online: http://archinte.jamanetwork.com/article.aspx?doi=10.1001/archinternmed.2008.551 (accessed on 11 May 2023). [CrossRef] [Green Version]
- Paterno, M.D.; Maviglia, S.M.; Gorman, P.N.; Seger, D.L.; Yoshida, E.; Seger, A.C.; Armstrong, E.P. Tiering Drug-Drug Interaction Alerts by Severity Increases Compliance Rates. J. Am. Med. Inform. Assoc. 2009, 16, 40–46. Available online: https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2808 (accessed on 20 May 2023). [CrossRef] [Green Version]
Variables | Female N (%) | Male N (%) | Total N (%) | p Value |
---|---|---|---|---|
Experience and satisfaction toward DUR alerts. | 0.028 | |||
Any experience. | 63 (79.75) | 27 (100.00) | 90 (84.91) | |
Did not use the DUR system. | 2 (2.53) | 0 (0.00) | 2 (1.89) | |
Despite utilizing the DUR system, I have not experienced any experience with alerts. | 14 (17.72) | 0 (0.00) | 14 (13.21) | |
On a scale of 0–100, you are satisfied with DUR alerts by score. | 0.024 | |||
Less than 60%. | 45 (56.96) | 19 (70.37) | 64 (60.38) | |
60% or more. | 34 (43.04) | 8 (29.62) | 42 (39.62) | |
Frequency of DUR alerts. | 0.035 | |||
High. | 66 (83.54) | 27 (100.00) | 93 (87.74) | |
Low. | 13 (16.46) | 0 (0.00) | 13 (12.26) | |
DUR alerts can help identify rare adverse drug reactions. | 0.002 | |||
Agree. | 36 (45.57) | 7 (25.93) | 43 (40.57) | |
Disagree. | 30 (37.97) | 20 (74.07) | 50 (47.17) | |
I do not know. | 13 (16.46) | 0 (0.00) | 13 (12.26) |
Variables | Female N (%) | Male N (%) | Total N (%) | p Value |
---|---|---|---|---|
Response. | 0.0299 | |||
Not sure. | 24 (30.38) | 2 (7.41) | 26 (24.53) | |
Prescriptions are altered based on notifications. | 18 (22.78) | 11 (40.74) | 29 (27.36) | |
Alerts are not followed. | 37 (46.84) | 14 (51.85) | 51 (48.11) |
Variables | Female N (%) | Male N (%) | Total N (%) | p Value |
---|---|---|---|---|
Need to expand the coverage of the DUR system. | 0.002 | |||
Agree. | 61 (77.22) | 9 (33.33) | 70 (66.04) | |
Disagree. | 14 (17.72) | 14 (51.85) | 28 (26.42) | |
I do not know. | 4 (5.06) | 4 (14.81) | 8 (7.55) | |
Further information regarding overlapping prescriptions is needed. | 0.001 | |||
Agree. | 65 (82.28) | 17 (62.96) | 82 (77.36) | |
Disagree. | 4 (5.06) | 10 (37.04) | 14 (13.21) | |
I do not know. | 10 (12.66) | 0 (0.00) | 10 (9.43) | |
Back-ups for a breakdown of the server are needed. | 0.001 | |||
Agree. | 53 (67.09) | 27 (100.00) | 80 (75.47) | |
Disagree. | 8 (10.13) | 0 (0) | 8 (7.55) | |
I do not know. | 18 (22.78) | 0 (0) | 18 (16.98) | |
Information about possible reactions that may arise from drug co-administration is needed. | 0.032 | |||
Agree. | 68 (86.08) | 27(100) | 87 (82.08) | |
Disagree. | 5 (6.33) | 0 (0.00) | 2 (1.89) | |
I do not know. | 6 (7.59) | 0 (0.00) | 17 (16.04) | |
DUR should share information about patients who need ongoing medicine for chronic diseases. | 0.0068 | |||
Agree. | 60 (75.95) | 27(100.00) | 87 (82.08) | |
Disagree. | 2 (2.53) | 0 (0.00) | 2 (1.89) | |
I do not know. | 17 (21.52) | 0 (0.00) | 17 (16.04) |
Variable | Univariable Model | Multivariable Model | ||||
---|---|---|---|---|---|---|
Unadjusted OR | 95% CI | p Value | Adjusted OR | 95% CI | p Value | |
Sex (Female). | 0.429 | 0.169–1.088 | 0.07 | 0.008 | <0.001–0.357 | 0.012 |
Age (>30). | 3.186 | 1.002–10.126 | 0.049 | 19.881 | 0.009–>999.9 | l0.44 |
Practice period as a pharmacist (>6 years). | 5.062 | 1.106–23.178 | 0.037 | 230.52 | 0.007–>999.9 | 0.308 |
Any experience with DUR alerts and satisfaction. | 1.489 | 0.384–5.776 | 0.565 | 2.147 | 0.014–340.07 | 0.767 |
More than 60 satisfaction rates of the DUR alerts. | 0.482 | 0.190–1.221 | 0.124 | 1.025 | 0.153–6.86 | 0.979 |
Can DUR alerts prevent medication errors? | 2.143 | 0.440–10.442 | 0.346 | 108.946 | 1.653–>999.9 | 0.028 |
The alerts for co-administrations showed both severe and mild symptoms. | 0.784 | 0.179–3.443 | 0.747 | 38.425 | 0.315–>999.9 | 0.136 |
Many important alerts are being overlooked. | 1.432 | 0.279–7.335 | 0.667 | <0.001 | <0.001–0.189 | 0.010 |
DUR alerts help find rare drug reactions. | 1.226 | 0.484–3.107 | 0.668 | >999.999 | 6.103–>999.9 | 0.013 |
The DUR alerts may contradict standard clinical guidelines. | 0.523 | 0.192–1.420 | 0.203 | 1.195 | 0.035–41.100 | 0.922 |
The DUR alert pop-ups are difficult to understand. | 0.590 | 0.243–1.438 | 0.246 | >999.9 | 7.153–>999.9 | 0.008 |
Frequent ingredient duplication. | 0.469 | 0.161–1.368 | 0.166 | 0.018 | <0.001–0.81 | 0.038 |
Frequent therapeutic duplication. | 0.460 | 0.163–1.295 | 0.141 | 1.460 | 0.054–39.64 | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, N.; Alanazi, A. Pharmacists’ Perceptions on Safety Alerts of the Drug Utilization Review (DUR) in Electronic Health Records in a Tertiary Healthcare Hospital. Pharmacy 2023, 11, 119. https://doi.org/10.3390/pharmacy11040119
Alshehri N, Alanazi A. Pharmacists’ Perceptions on Safety Alerts of the Drug Utilization Review (DUR) in Electronic Health Records in a Tertiary Healthcare Hospital. Pharmacy. 2023; 11(4):119. https://doi.org/10.3390/pharmacy11040119
Chicago/Turabian StyleAlshehri, Nouf, and Abdullah Alanazi. 2023. "Pharmacists’ Perceptions on Safety Alerts of the Drug Utilization Review (DUR) in Electronic Health Records in a Tertiary Healthcare Hospital" Pharmacy 11, no. 4: 119. https://doi.org/10.3390/pharmacy11040119
APA StyleAlshehri, N., & Alanazi, A. (2023). Pharmacists’ Perceptions on Safety Alerts of the Drug Utilization Review (DUR) in Electronic Health Records in a Tertiary Healthcare Hospital. Pharmacy, 11(4), 119. https://doi.org/10.3390/pharmacy11040119