Effects of Adjuvant Medications on A1C, Body Mass Index, and Insulin Requirements among Patients with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. A1C
3.1.1. A1C Mixed Repeated Measures ANOVA Analysis (2010–2012, 2015–2016, 2016–2017)
3.1.2. A1C Mixed Repeated Measures ANOVA Sensitivity Analysis (2010–2012, 2015–2016, 2016–2017)
3.1.3. Assessing Change in A1C over Time in Each Cohort Individually (2010–2012, 2015–2016, 2016–2017)
3.2. BMI
3.2.1. BMI Mixed Repeated Measures ANOVA Analysis (2010–2012, 2015–2016, 2016–2017)
3.2.2. BMI Mixed Repeated Measures ANOVA Sensitivity Analysis (2010–2012, 2015–2016, 2016–2017)
3.2.3. Assessing Change in BMI over Time in Each Cohort Individually (2010–2012, 2015–2016, 2016–2017)
3.3. TDI
3.3.1. TDI Mixed Repeated Measures ANOVA Analysis (2015–2016, 2016–2017)
3.3.2. TDI Mixed Repeated Measures ANOVA Sensitivity Analysis (2015–2016, 2016–2017)
3.3.3. Assessing Change in TDI over Time in Each Cohort Individually (2015–2016, 2016–2017)
3.4. Multivariate Linear Regressions (2015–2017)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lucier, J.; Weinstock, R.S. Diabetes Mellitus Type 1. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507713/ (accessed on 24 June 2022).
- Green, A.; Hede, S.M.; Patterson, C.C.; Wild, S.H.; Imperatore, G.; Roglic, G.; Beran, D. Type 1 diabetes in 2017: Global estimates of incident and prevalent cases in children and adults. Diabetologia 2021, 64, 2741–2750. [Google Scholar] [CrossRef]
- Sussman, M.; Benner, J.; Haller, M.J.; Rewers, M.; Griffiths, R. Estimated Lifetime Economic Burden of Type 1 Diabetes. Diabetes Technol. Ther. 2020, 22, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Tao, B.; Pietropaolo, M.; Atkinson, M.; Schatz, D.; Taylor, D. Estimating the cost of type 1 diabetes in the U.S.: A propensity score matching method. PLoS ONE 2010, 5, e11501. [Google Scholar] [CrossRef] [Green Version]
- Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; Bergenstal, R.; Smith, E.; et al. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther. 2019, 21, 66–72, Erratum in Diabetes Technol. Ther. 2019, 21, 230. [Google Scholar] [CrossRef]
- Vilarrasa, N.; San Jose, P.; Rubio, M.Á.; Lecube, A. Obesity in Patients with Type 1 Diabetes: Links, Risks and Management Challenges. Diabetes Metab. Syndr. Obes. 2021, 14, 2807–2827. [Google Scholar] [CrossRef]
- Frandsen, C.S.; Dejgaard, T.F.; Madsbad, S. Non-insulin drugs to treat hyperglycaemia in type 1 diabetes mellitus. Lancet Diabetes Endocrinol. 2016, 4, 766–780. [Google Scholar] [CrossRef]
- Wright, L.A.; Hirsch, I.B. Non-insulin treatments for type 1 diabetes: Critical appraisal of the available evidence and insight into future directions. Diabet. Med. 2019, 36, 665–678. [Google Scholar] [CrossRef]
- Frandsen, C.S.; Dejgaard, T.F.; Madsbad, S.; Holst, J.J. Non-insulin pharmacological therapies for treating type 1 diabetes. Expert Opin. Pharmacother. 2018, 19, 947–960. [Google Scholar] [CrossRef]
- Isaacs, D.; Yager, S.; Parker, M.; Wolfe, L.; Luxenburg, J.; Lekic, S. Adjunct antihyperglycemic agents in overweight and obese adults with type 1 diabetes. Ann. Pharmacother. 2019, 53, 371–384. [Google Scholar] [CrossRef]
- Garg, V. Noninsulin pharmacological management of type 1 diabetes mellitus. Indian J. Endocrinol. Metab. 2011, 15, S5–S11. [Google Scholar] [CrossRef]
- Lyons, S.K.; Hermann, J.M.; Miller, K.M.; Hofer, S.E.; Foster, N.C.; Rami-Merhar, B.M.; Aleppo, G.; Seufert, J.; DiMeglio, L.A.; Danne, T.; et al. Use of Adjuvant Pharmacotherapy in Type 1 Diabetes: International Comparison of 49,996 Individuals in the Prospective Diabetes Follow-up and T1D Exchange Registries. Diabetes Care 2017, 40, e139–e140. [Google Scholar] [CrossRef] [Green Version]
- Palanca, A.; van Nes, F.; Pardo, F.; Ampudia Blasco, F.J.; Mathieu, C. Real-world Evidence of Efficacy and Safety of SGLT2 Inhibitors as Adjunctive Therapy in Adults with Type 1 Diabetes: A European Two-Center Experience. Diabetes Care 2022, 45, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.S.; Bailey, R.; Calhoun, P.; Shah, V.N.; Lyons, S.K.; DeSalvo, D.J. Off-label use of sodium glucose co-transporter inhibitors among adults in type 1 diabetes exchange registry. Diabetes Obes. Metab. 2022, 24, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. About Adult BMI; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2017. Available online: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html#InterpretedAdults (accessed on 14 June 2022).
- Kang, H.; Lobo, J.M.; Kim, S.; Sohn, M.W. Cost-related medication non-adherence among U.S. adults with diabetes. Diabetes Res. Clin. Pract. 2018, 143, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Gravel, S.; Chiasson, J.L.; Turgeon, J.; Grangeon, A.; Michaud, V. Modulation of CYP450 Activities in Patients with Type 2 Diabetes. Clin. Pharmacol. Ther. 2019, 106, 1280–1289. [Google Scholar] [CrossRef]
- Maximos, S.; Chamoun, M.; Gravel, S.; Turgeon, J.; Michaud, V. Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues. Pharmaceutics 2017, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Monlum, M.; Rigalleau, V.; Blanco, L.; Mohammedi, K.; Blanco, P. Chronic low grade inflammation in type 2 Diabetes—Activation of the inflammasomes by circulating metabolites. Diabetes 2018, 67, 1726-P. [Google Scholar] [CrossRef]
- Darakjian, L.; Deodhar, M.; Turgeon, J.; Michaud, V. Chronic Inflammatory Status Observed in Patients with Type 2 Diabetes Induces Modulation of Cytochrome P450 Expression and Activity. Int. J. Mol. Sci. 2021, 22, 4967. [Google Scholar] [CrossRef]
- Slattery, D.; Choudhary, P. Clinical Use of Continuous Glucose Monitoring in Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2017, 19, S55–S61. [Google Scholar] [CrossRef] [Green Version]
- Atella, V.; Piano Mortari, A.; Kopinska, J.; Belotti, F.; Lapi, F.; Cricelli, C.; Fontana, L. Trends in age-related disease burden and healthcare utilization. Aging Cell 2019, 18, e12861. [Google Scholar] [CrossRef]
- Bernstein, A.B.; Hing, E.; Moss, A.J.; Allen, K.F.; Siller, A.B.; Tiggle, R.B. Health Care in America: Trends in Utilization; National Center for Health Statistics: Hyattsville, MD, USA, 2003.
- Feehan, M.; Morrison, M.A.; Tak, C.; Morisky, D.E.; DeAngelis, M.M.; Munger, M.A. Factors predicting self-reported medication low adherence in a large sample of adults in the US general population: A cross-sectional study. BMJ Open 2017, 7, e014435, Erratum in BMJ Open 2017, 7, e014435corr1. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Committee on Health Care Utilization and Adults with Disabilities. Factors That Affect Health-Care Utilization. In Health-Care Utilization as a Proxy in Disability Determination; National Academies Press (US): Washington, DC, USA, 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500097/ (accessed on 24 June 2022).
- Kutner, M.; Greenberg, E.; Jin, Y.; Paulsen, C. The Health Literacy of America’s Adults: Results from the 2003 National Assessment of Adult Literacy (NCES 2006-483); National Center for Education Statistics, U.S. Department of Education: Washington, DC, USA, 2006.
- Kirkman, M.S.; Rowan-Martin, M.T.; Levin, R.; Fonseca, V.A.; Schmittdiel, J.A.; Herman, W.H.; Aubert, R.E. Determinants of adherence to diabetes medications: Findings from a large pharmacy claims database. Diabetes Care 2015, 38, 604–609. [Google Scholar] [CrossRef] [Green Version]
- Seligman, H.K.; Jacobs, E.A.; López, A.; Tschann, J.; Fernandez, A. Food insecurity and glycemic control among low-income patients with type 2 diabetes. Diabetes Care 2012, 35, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Mottalib, A.; Kasetty, M.; Mar, J.Y.; Elseaidy, T.; Ashrafzadeh, S.; Hamdy, O. Weight Management in Patients with Type 1 Diabetes and Obesity. Curr. Diabetes Rep. 2017, 17, 92. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; St Clair, P.; Goldman, D.P.; Joyce, G. Racial and ethnic disparities in medication adherence among privately insured patients in the United States. PLoS ONE 2019, 14, e0212117. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Insulin-Only User (n = 4968) | Insulin + Adjuvant Medication Use (n = 517) | p Value | Total Cohort (N: 5485) |
---|---|---|---|---|
(Median (25th–75th interquartile range) | ||||
Age (years) | 43.0 (28.0–58.0) | 47.0 (36.0–56.0) | 0.001 | 44.0 (28.0–57.0) |
Body Mass Index, (kg/m2) | 26.7 (23.7–30.2) | 30.4 (26.6–35.2) | <0.001 | 26.9 (23.9–30.7) |
Diabetes Duration (years) | 22.9 (14.3–35.6) | 22.3 (14.3–34.0) | 0.20 | 22.9 (14.3–35.4) |
A1C (%) | 7.6 (6.9–8.5) | 7.7 (7.1–8.6) | 0.23 | 7.6 (7.0–8.5) |
Total Daily Insulin (Units) | 45.0 (33.0–61.0) | 53.0 (37.0–74.0) | <0.001 | 45.0 (33.0–62.0) |
N (%) | N (%) | |||
Sex | <0.001 | |||
Male | 2274 (46%) | 194 (38%) | 2468 (45) | |
Female | 2679 (54%) | 321 (62%) | 3000 (55) | |
Unknown | 15 (0%) | 2 (0%) | 17 (0) | |
Ethnicity | 0.78 | |||
White non-Hispanic | 4406 (89%) | 464 (90%) | 4870 (89) | |
African American/Black | 214 (4%) | 19 (4%) | 233 (4) | |
Other Minority | 311 (6%) | 32 (6%) | 343 (6) | |
Hispanic or Latino | 170 (3%) | 17 (3%) | - | 187 (3) |
Native Hawaiian/Other Pacific Islander | 3 (0%) | 0 (0) | 3 (0) | |
Asian | 46 (1%) | 4 (1%) | 50 (1) | |
American Indian/Alaskan Native | 10 (0%) | 4 (1%) | 14 (0) | |
More than one race | 82 (2%) | 7 (1%) | 89 (2) | |
Unknown | 37 (1%) | 2 (0%) | 39 (1) | |
Education Level | 0.33 | |||
Less than High School graduate | 123 (3%) | 14 (3%) | 137 (3) | |
High School graduate/diploma/GED | 560 (11%) | 49 (10%) | 609 (11) | |
Some College but no degree | 950 (19%) | 90 (17%) | 1040 (19) | |
Associate Degree | 457 (9%) | 59 (11%) | 516 (9) | |
Bachelor’s Degree | 1482 (30%) | 150 (29%) | 1632 (30) | |
Master’s Degree | 750 (15%) | 94 (18%) | 844 (15) | |
Professional Degree | 180 (4%) | 21 (4%) | 201 (4) | |
Doctorate Degree | 108 (2%) | 14 (3%) | 122 (2) | |
Unknown | 358 (7%) | 26 (5%) | 384 (7) | |
Annual Income (USD) | 0.96 | |||
Less than 25,000 | 316 (6%) | 31 (6%) | 347 (6) | |
25,000–34,999 | 236 (5%) | 25 (5%) | 261 (5) | |
35,000–49,999 | 416 (8%) | 43 (8%) | 459 (8) | |
50,000–74,999 | 651 (13%) | 73 (14%) | 724 (13) | |
75,000–99,999 | 653 (13%) | 72 (14%) | 725 (13) | |
$100,000 or more | 1396 (28%) | 163 (32%) | 1559 (28) | |
Unknown | 1300 (26%) | 110 (21%) | 1410 (26) | |
Smoking Status | 0.003 | |||
Yes | 271 (6) | 12 (2%) | 283 (5) | |
No | 4566 (92) | 497 (96%) | 5063 (92) | |
Unknown | 131 (3) | 8 (2%) | 139 (3) | |
Use of Continuous Glucose Monitor (CGM) | 0.002 | |||
Yes | 1651 (33%) | 208 (40%) | 1859 (34) | |
No | 3207 (65%) | 301 (58%) | 3508 (64) | |
Unknown | 110 (2%) | 8 (2%) | 118 (2) | |
Use on Insulin Pump | 0.23 | |||
Yes | 3217 (65%) | 349 (68%) | 1901 (35) | |
No | 1734 (35%) | 167 (32%) | 3566 (65) | |
Unknown | 17 (0%) | 1 (0%) | 18 (0) |
Medication | 2010–2012 | 2015–2016 | 2016–2017 | p Value | |
---|---|---|---|---|---|
A1C | Insulin-only (n = 3615) | 7.6 (6.9–8.4) | 7.7 (7.0–8.5) | 7.7 (7.0–8.5) | 0.001 b |
Insulin + adjuvant medication use (n = 369) | 7.7 (7.1–8.5) | 7.6 (7.1–8.4) | 7.8 (7.2–8.6) | 0.02 c | |
Metformin (n = 151) | 7.7 (7.2–8.5) | 7.7 (7.1–8.7) | 7.9 (7.4–8.7) | 0.13 | |
SGLT2 (n = 84) | 8.0 (7.4–8.9) | 7.9 (7.3–8.6) | 8.0 (7.4–8.7) | 0.37 | |
GLP1 (n = 85) | 7.6 (7.1–8.5) | 7.5 (7.0–8.2) | 7.5 (7.0–8.3) | 0.42 | |
Pramlintide (n = 59) | 7.3 (6.8–8.2) | 7.3 (6.8–8.0) | 7.5 (6.8–8.3) | 0.66 | |
Colesevelam (n = 23) | 7.8 (7.0–8.6) | 7.7 (7.2–8.4) | 7.7 (7.1–8.8) | 0.16 | |
Insulin-only (n = 2519) | 25.5 (22.7–28.8) | 26.2 (23.5–29.7) | 26.4 (23.6–30.0) | <0.001 abc | |
BMI | Insulin + adjuvant medication use (n = 250) | 29.8 (26.1–33.9) | 30.5 (26.7–35.6) | 30.5 (26.9–35.4) | 0.01 ac |
Metformin (n = 109) | 30.9 (27.2–34.1) | 31.6 (27.9–35.9) | 31.6 (28.4–35.9) | 0.01 ac | |
SGLT2 (n = 67) | 30.0 (25.9–33.5) | 30.6 (27.1–34.1) | 30.3 (27.1–33.7) | 0.48 | |
GLP1 agonist (n = 46) | 29.7 (25.6–34.8) | 30.0 (25.7–34.5) | 30.2 (25.2–33.9) | 0.25 | |
Pramlintide (n = 39) | 29.1 (26.3–36.0) | 29.6 (27.4–36.9) | 30.5 (27.5–35.8) | 0.80 | |
Colesevelam (n = 17) | 31.1 (26.6–33.2) | 30.5 (27.3–35.1) | 29.9 (26.5–36.7) | 0.84 | |
Insulin-only (n = 2689) | - | 45.0 (33.0–60.0) | 44.0 (33.0–61.0) | <0.001 | |
Insulin + adjuvant medication use (n = 287) | - | 51.0 (36.0–73.0) | 52.0 (38.0–73.0) | 0.95 | |
TDI | Metformin (n = 127) | - | 60.0 (44.0–84.0) | 59.0 (44.0–81.0) | 1.0 |
SGLT2 (n = 69) | - | 50.0 (36.0–71.5) | 50.0 (38.0–69.5) | 0.78 | |
GLP1 (n = 75) | - | 45.0 (33.0–66.0) | 47.0 (33.0–69.0) | 0.60 | |
Pramlintide (n = 32) | - | 48.5 (31.5–74.8) | 61.0 (35.8–71.0) | 1.0 | |
Colesevelam (n = 17) | - | 53.0 (32.0–72.0) | 48.0 (30.0–71.5) | 0.18 |
2015–2016 Study Period | 2016–2017 Study Period | |||||
---|---|---|---|---|---|---|
Characteristics | Unstandardized Beta Coefficient * | Standard error | Standardized Beta Coefficient | Unstandardized Beta Coefficient * | Standard error | Standardized Beta Coefficient |
Age a,c | −0.002 (−0.002–(−0.002)) | <0.001 | −0.201 | −0.002 (−0.002–(−0.002)) | <0.001 | −0.195 |
BMI-Categorized Variable b,c | 0.010 (0.003–0.016) | 0.003 | 0.046 | 0.011 (0.005–0.018) | 0.003 | 0.054 |
African American/Black a,c | 0.088 (0.061–0.114) | 0.013 | 0.106 | 0.096 (0.070–0.122) | 0.013 | 0.117 |
Race-Other minority | 0.015 (0.061–0.114) | 0.011 | 0.021 | 0.014 (−0.007–0.036) | 0.021 | 0.021 |
Female Gender | −0.005 (−0.016–0.006) | 0.005 | −0.015 | −0.007 (−0.018–0.004)) | 0.005 | −0.021 |
Education Level a,c | −0.010 (−0.014–(−0.006)) | 0.002 | −0.095 | −0.012 (−0.015–(−0.008)) | 0.002 | −0.112 |
Annual Income a,c | −0.008 (−0.012–(−0.005)) | 0.002 | −0.079 | −0.007 (−0.011–(0.004)) | 0.002 | −0.073 |
Adjuvant medication | 0.003 (−0.016–0.021) | 0.009 | 0.005 | 0.010 (−0.008–0.028) | 0.009 | 0.017 |
Insulin Pump use b | −0.015 (−0.026–(−0.003)) | 0.006 | −0.042 | −0.011 (−0.023–0.001) | 0.006 | 0.031 |
Continuous Glucose Monitor Use a,c | −0.044 (−0.057–(−0.032)) | 0.006 | −0.120 | −0.051 (−0.063–(−0.040)) | 0.006 | −0.147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Almodóvar, A.; Clevenger, J.; Nahata, M.C. Effects of Adjuvant Medications on A1C, Body Mass Index, and Insulin Requirements among Patients with Type 1 Diabetes. Pharmacy 2022, 10, 97. https://doi.org/10.3390/pharmacy10040097
Silva Almodóvar A, Clevenger J, Nahata MC. Effects of Adjuvant Medications on A1C, Body Mass Index, and Insulin Requirements among Patients with Type 1 Diabetes. Pharmacy. 2022; 10(4):97. https://doi.org/10.3390/pharmacy10040097
Chicago/Turabian StyleSilva Almodóvar, Armando, Jonathan Clevenger, and Milap C. Nahata. 2022. "Effects of Adjuvant Medications on A1C, Body Mass Index, and Insulin Requirements among Patients with Type 1 Diabetes" Pharmacy 10, no. 4: 97. https://doi.org/10.3390/pharmacy10040097
APA StyleSilva Almodóvar, A., Clevenger, J., & Nahata, M. C. (2022). Effects of Adjuvant Medications on A1C, Body Mass Index, and Insulin Requirements among Patients with Type 1 Diabetes. Pharmacy, 10(4), 97. https://doi.org/10.3390/pharmacy10040097