High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane
Abstract
:1. Introduction
1.1. Overview of Smart and Multifunctional Materials in the Aerospace Industry
1.2. Technological Impact of the Multifunctional Systems
- (a)
- Overcoming the criticalities that arise during the operational life of the aircraft linked to the deterioration of the structure with worsening of the general mechanical properties,
- (b)
- Minimizing the effects due to unusual load conditions,
- (c)
- Reducing the effects of fatigue, compensate for harsh local conditions,
- (d)
- Reducing vibration levels,
- (e)
- effective shielding from electromagnetic interference with protection against lightning damage,
- (f)
- Ensuring good resistance in the event of high temperatures and fire.
1.3. Objectives and Novelty of the Research Work
2. Materials and Methods
3. Results and Discussion
3.1. Fire Behavior of the Investigated Formulations
3.2. Thermal Behavior of the Investigated Formulations
3.3. Dynamic Mechanical Behavior of the Investigated Formulations
3.4. Morphological Characterization of Carbon Nanofibers and Nanofilled Epoxy Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vertuccio, L.; Guadagno, L.; Spinelli, G.; Russo, S.; Iannuzzo, G. Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures. Compos. B Eng. 2017, 129, 1–10. [Google Scholar] [CrossRef]
- Soutis, C. 1—Introduction: Engineering requirements for aerospace composite materials. In Polymer Composites in the Aerospace Industry; Irving, P.E., Soutis, C., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 1–18. ISBN 9780857095237. [Google Scholar]
- Joshi, M.; Chatterjee, U. 8—Polymer nanocomposite: An advanced material for aerospace applications. In Advanced Composite Materials for Aerospace Engineering; Rana, S., Fangueiro, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 241–264. ISBN 9780081009390. [Google Scholar]
- Sardiwal, S.K.; Sami, M.A.; Anoop, B.V.S.; Susmita, G.; Vooturi, L.; Uddin, S.A. Advanced Composite Materials in Typical Aerospace Applications. Glob. J. Res. Eng. D Chem. Eng. 2014, 14, 1–7. [Google Scholar]
- Das, M.; Sahu, S.; Parhi, D.R. A Review of Application of Composite Materials for Aerospace Structures and its Damage Detection Using Artificial Intelligence Techniques (18 October 2020). In Proceedings of the International Conference on Artificial Intelligence in Manufacturing & Renewable Energy (ICAIMRE), Bhubaneswar, Odisha, India, 25–26 October 2019; Available online: https://ssrn.com/abstract=3714181 (accessed on 18 October 2020). [CrossRef]
- Tasca, A.L.; Cipolla, V.; Abu Salem, K.; Puccini, M. Innovative Box-Wing Aircraft: Emissions and Climate Change. Sustainability 2021, 13, 3282. [Google Scholar] [CrossRef]
- Chua, M.H.; Smyth, B.M.; Murphy, A.; Butterfield, J. Understanding Aerospace Composite Components’ Supply Chain Carbon Emissions. In Proceedings of the Irish Manufacturing Conference, IMC32, Belfast, UK, 3–4 September 2015; Available online: http://www.qub.ac.uk/sites/imc32/ (accessed on 15 February 2017).
- Zhu, L.; Li, N.; Childs, P.R.N. Light-weighting in aerospace component and system design. Propuls. Power Res. 2018, 7, 103–119. [Google Scholar] [CrossRef]
- Marino, M.; Sabatini, R. Advanced Lightweight Aircraft Design Configurations for Green Operations. In Proceedings of the Practical Responses to Climate Change 2014 (PRCC 2014), Engineers Australia, Barton, UK, 25–27 November 2014; pp. 1–9. Available online: https://researchrepository.rmit.edu.au/discovery/delivery/61RMIT_INST:RMITU/12247769960001341 (accessed on 22 April 2015).
- Ortega Alba, S.; Manana, M. Energy Research in Airports: A Review. Energies 2016, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Costa, C.M.; Lanceros-Mendez, S. Chapter Fourteen—Functional, lightweight materials: Outlook, future trends, and challenges. In Woodhead Publishing in Materials, Advanced Lightweight Multifunctional Materials; Costa, P., Costa, C.M., Lanceros-Mendez, S., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 503–507. ISBN 9780128185018. [Google Scholar] [CrossRef]
- Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Zarrelli, M.; Russo, S.; Iannuzzo, G. Smart coatings of epoxy based CNTs designed to meet practical expectations in aeronautics. Compos. B Eng. 2018, 147, 42–46. [Google Scholar] [CrossRef]
- Lendlein, A.; Trask, R.S. Multifunctional materials: Concepts, function-structure relationships, knowledge-based design, translational materials research. Multifunct. Mater. 2018, 1, 010201. [Google Scholar] [CrossRef]
- Oliwa, R.; Heneczkowski, M.; Oleksy, M.; Galina, H. Epoxy composites of reduced flammability. Compos. B Eng. 2016, 95, 1–8. [Google Scholar] [CrossRef]
- Gagné, M.; Therriau, D. Lightning strike protection of composites. Prog. Aerosp. Sci. 2014, 64, 1–16. [Google Scholar] [CrossRef]
- Raimondo, M.; Guadagno, L.; Vertuccio, L.; Naddeo, C.; Barra, G.; Spinelli, G.; Lamberti, P.; Tucci, V.; Lafdi, K. Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique. Compos. B Eng. 2018, 143, 148–160. [Google Scholar] [CrossRef]
- Raimondo, M.; Naddeo, C.; Vertuccio, L.; Lafdi, K.; Sorrentino, A.; Guadagno, L. Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles. Polymers 2019, 11, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemour, B.; Bradan, O.; Hassan, M.R. A Review of Using Conductive Composite Materials in Solving Lightening Strike and Ice Accumulation Problems in Aviation. J. Aerosp. Technol. Manag. 2019, 11, e1919. [Google Scholar] [CrossRef]
- Raimondo, M.; Guadagno, L.; Speranza, V.; Bonnaud, L.; Dubois, P.; Lafdi, K. Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Compos. B Eng. 2018, 140, 44–56. [Google Scholar] [CrossRef]
- Raimondo, M.; Russo, S.; Guadagno, L.; Longo, P.; Chirico, S.; Mariconda, A.; Bonnaud, L.; Murariu, O.; Dubois, P. Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Adv. 2015, 5, 10974–10986. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; He, C.; Russell, T.P.; Wang, D. Epoxy-polyhedral oligomeric silsesquioxanes (POSS) nanocomposite vitrimers with high strength, toughness, and efficient relaxation. Giant 2020, 4, 100035. [Google Scholar] [CrossRef]
- Harrison, P.G. Silicate cages: Precursors to new materials. J. Organomet. Chem. 1997, 542, 141–183. [Google Scholar] [CrossRef]
- Shi, M.; Ao, Y.; Yu, L.; Sheng, L.; Li, S.; Peng, J.; Chen, H.; Huang, W.; Li, J.; Zhai, M. Epoxy-POSS/silicone rubber nanocomposites with excellent thermal stability and radiation resistance. Chin. Chem. Lett. 2022; in press. [Google Scholar] [CrossRef]
- Bram, A.I.; Gouzman, I.; Bolker, A.; Atar, N.; Eliaz, N.; Verker, R. Influence of POSS Type on the Space Environment Durability of Epoxy-POSS Nanocomposites. Nanomaterials 2022, 12, 257. [Google Scholar] [CrossRef]
- Zhi, M.; Liu, Q.; Chen, H.; Chen, X.; Feng, S.; He, Y. Thermal Stability and Flame Retardancy Properties of Epoxy Resin Modified with Functionalized Graphene Oxide Containing Phosphorus and Silicon Elements. ACS Omega 2019, 4, 10975–10984. [Google Scholar] [CrossRef] [Green Version]
- Kannan, R.Y.; Salacinski, H.J.; Butler, P.E.; Seifalian, A.M. Polyhedral oligomeric silsesquioxane nanocomposites: The next generation material for biomedical applications. Acc. Chem. Res. 2005, 38, 879–884. [Google Scholar] [CrossRef]
- Tanaka, K.; Chujo, Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 2012, 22, 1733–1746. [Google Scholar] [CrossRef]
- Zhang, W.; Camino, G.; Yang, R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog. Polym. Sci. 2017, 67, 77–125. [Google Scholar] [CrossRef]
- Chua, M.H.; Zhou, H.; Xu, J. Chapter 15—Polymer-POSS hybrid materials as fire retardants. In Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites; Thomas, S., Somasekharan, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 305–332. ISBN 9780128213476. [Google Scholar]
- Nobile, M.R.; Raimondo, M.; Lafdi, K.; Fierro, A.; Rosolia, S.; Guadagno, L. Relationships between nanofiller morphology and viscoelastic properties in CNF/epoxy resins. Polym. Compos. 2015, 36, 1152–1160. [Google Scholar] [CrossRef]
- Guadagno, L.; Raimondo, M.; Vittoria, V.; Vertuccio, L.; Lafdi, K.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins. Nanotechnology 2013, 24, 305704. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, M.; Naddeo, C.; Catauro, M.; Guadagno, L. Thermo-mechanical properties and electrical mapping of nanoscale domains of carbon-based structural resins. J. Therm. Anal. Calorim. 2022; in press. [Google Scholar] [CrossRef]
- Benzarti, K.; Colin, X. 12—Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. In Woodhead Publishing Series in Civil and Structural Engineering, Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Bai, J., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 361–439. ISBN 9780857094186. [Google Scholar] [CrossRef]
- Wang, J.; Xue, L.; Zhao, B.; Lin, G.; Jin, X.; Liu, D.; Zhu, H.; Yang, J.; Shang, K. Flame Retardancy, Fire Behavior, and Flame Retardant Mechanism of Intumescent Flame Retardant EPDM Containing Ammonium Polyphosphate/Pentaerythrotol and Expandable Graphite. Materials 2019, 12, 4035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannov, A.G.; Nazarenko, O.B.; Maksimovskii, E.A.; Popov, M.V.; Berdyugina, I.S. Thermal Behavior and Flammability of Epoxy Composites Based on Multi-Walled Carbon Nanotubes and Expanded Graphite: A Comparative Study. Appl. Sci. 2020, 10, 6928. [Google Scholar] [CrossRef]
- Mishra, K.; Pandey, G.; Singh, R.P. Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polym. Test. 2017, 62, 210–218. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Russo, S.; Lafdi, K.; Tucci, V.; Spinelli, G.; Lamberti, P. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology 2017, 28, 094001. [Google Scholar] [CrossRef]
- Guadagno, L.; Naddeo, C.; Raimondo, M.; Barra, G.; Vertuccio, L.; Sorrentino, A.; Binder, W.H.; Kadlec, M. Development of self-healing multifunctional materials. Compos. B Eng. 2017, 128, 30–38. [Google Scholar] [CrossRef]
- Polydoropoulou, P.V.; Katsiropoulos, C.V.; Pantelakis, S.G.; Raimondo, M.; Guadagno, L. A critical assessment of multifunctional polymers with regard to their potential use in structural applications. Compos. B Eng. 2019, 157, 150–162. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Badertscher, M. Structure Determination of Organic Compounds Tables of Spectral Data Fourth, revised and enlarged ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Cheng, J.; Li, J.; Zhang, J.Y. Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4′-diaminodiphenyl sulfone. Express Polym. Lett. 2009, 3, 501–509. [Google Scholar] [CrossRef]
Sample | LOI (%O2) (% ± 1) | PHRR (kW/m2) | tig (% ± 2) (s) |
---|---|---|---|
EM | 27 | 540 ± 81 | 40 |
EM + 5%G | 33 | 327 ± 49 | 42 |
EM + 5%G + 0.5%CNF | 29 | 506 ± 82 | 54 |
Sample | Curing Temperature (°C) | CD (%) |
---|---|---|
EM | 125 °C 1 h + 200 °C 3 h | 92.7 |
EM + 5%G | 125 °C 1 h + 200 °C 3 h | 90.8 |
EM + 0.5%CNF | 125 °C 1 h + 200 °C 3 h | 100 |
EM + 5%G + 0.5%CNF | 125 °C 1 h + 200 °C 3 h | 90.0 |
Sample | Air Flow | Nitrogen Flow | ||||
---|---|---|---|---|---|---|
Td5% | Td10% | Residue at 900 °C | Td5% | Td10% | Residue at 900 °C | |
EM | 343 | 373 | 0 | 354 | 375 | 11 |
EM + 5%G | 350 | 376 | 2 | 363 | 377 | 16 |
EM + 0.5%CNF | 368 | 377 | ~2 | 357 | 373 | 24 |
EM + 5%G + 0.5%CNF | 375 | 385 | 4 | 369 | 381 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guadagno, L.; Pantelakis, S.; Strohmayer, A.; Raimondo, M. High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane. Aerospace 2022, 9, 222. https://doi.org/10.3390/aerospace9040222
Guadagno L, Pantelakis S, Strohmayer A, Raimondo M. High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane. Aerospace. 2022; 9(4):222. https://doi.org/10.3390/aerospace9040222
Chicago/Turabian StyleGuadagno, Liberata, Spiros Pantelakis, Andreas Strohmayer, and Marialuigia Raimondo. 2022. "High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane" Aerospace 9, no. 4: 222. https://doi.org/10.3390/aerospace9040222
APA StyleGuadagno, L., Pantelakis, S., Strohmayer, A., & Raimondo, M. (2022). High-Performance Properties of an Aerospace Epoxy Resin Loaded with Carbon Nanofibers and Glycidyl Polyhedral Oligomeric Silsesquioxane. Aerospace, 9(4), 222. https://doi.org/10.3390/aerospace9040222