Numerical Simulation of Aircraft Icing under Local Thermal Protection State
Abstract
:1. Introduction
2. Numerical Simulation Method
2.1. Governing Equations
2.2. Solution Method
2.3. Calculation of Convective Heat Transfer Coefficient
3. Method Validation
4. Numerical Simulation of Icing under Local Thermal Protection State
4.1. Protection Range Is s/c = ±0.2
4.2. Protection Range Is s/c = ±0.12
4.3. Protection Range Is s/c = ±0.1
4.4. Protection Range Is s/c = ±0.05
4.5. Protection Range Is s/c =±0.02
4.6. Aerodynamic Characteristic Analysis
5. Conclusions
- (1)
- When the local thermal protection power is high, there is no ice formation in the protection area, but ice ridges may be formed outside the icing protection area. When the local thermal protection power is low, the ice amount in the protection area will decrease, but the icing will still occur. With the expansion of the protection range, the position of the ice ridge will gradually move backward;
- (2)
- When the combination of protection range and protection power is inappropriate, there is less ice at the leading edge of the airfoil, but many ice ridges will be accumulated outside the protection area;
- (3)
- The formation of ice ridges can lead to negative pressure areas and vortices on the airfoil surface, resulting in the deterioration of aerodynamic characteristics, which is more dangerous than icing;
- (4)
- In the design of thermal anti-icing systems, it is necessary to select reasonable heating power and protection range; otherwise, more dangerous ice ridges may be formed, which will fail to achieve protection effect and increase the risk of aircraft.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pourbagian, M.; Habashi, W.G. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode. Int. J. Heat Fluid Flow 2015, 54, 167–182. [Google Scholar] [CrossRef]
- Dong, W.; Zhu, J.; Zheng, M.; Chen, Y. Thermal analysis and testing of nonrotating cone with hot-air anti-icing system. J. Propuls. Power 2015, 31, 896–903. [Google Scholar] [CrossRef]
- Pourbagian, M.; Talgorn, B.; Habashi, W.G.; Kokkolaras, M.; Le Digabel, S. Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems. Optim. Eng. 2015, 16, 663–693. [Google Scholar] [CrossRef]
- Lynch, F.T.; Khodadoust, A. Effects of ice accretions on aircraft aerodynamics. Prog. Aerosp. Sci. 2001, 37, 669–767. [Google Scholar] [CrossRef]
- Farzad, M.; Fortin, G.; Dolatabadi, A. Quantitative analysis of rivulet/ice formation on a heated airfoil by Color-Coded Point Projection method. Cold Reg. Sci. Technol. 2021, 188, 103298. [Google Scholar] [CrossRef]
- Al-Khalil, K.M.; Keith, T.G., Jr.; De Witt, K.J. Development of an improved model for runback water on aircraft surfaces. J. Aircr. 1994, 31, 271–278. [Google Scholar] [CrossRef]
- Morency, F.; Tezok, F.; Paraschivoiu, I. Anti-icing system simulation using CANICE. J. Aircr. 1999, 36, 999–1006. [Google Scholar] [CrossRef]
- Morency, F.; Tezok, F.; Paraschivoiu, I. Heat and mass transfer in the case of anti-icing system simulation. J. Aircr. 2000, 37, 245–252. [Google Scholar] [CrossRef]
- Silva, G.; Silvares, O.; Zerbini, E. Airfoil anti-ice system modeling and simulation. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Silva, G.; Silvares, O.; Zerbini, E. Numerical simulation of airfoil thermal anti-ice operation, part 1: Mathematical modelling. J. Aircr. 2007, 44, 627–633. [Google Scholar] [CrossRef]
- Miller, D.; Addy, H.; Ide, R. A study of large droplet ice accretions in the NASA-Lewis IRT at near-freezing conditions. In Proceedings of the 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 15–18 January 1996. [Google Scholar]
- Lee, S.; Dunn, T.; Gurbacki, H.; Bragg, M.; Loth, E. An experimental and computational investigation of spanwise-step-ice shapes on airfoil aerodynamics. In Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 12–15 January 1998. [Google Scholar]
- Lee, S.; Bragg, M. Effects of simulated-spanwise-ice shapes on airfoils-Experimental investigation. In Proceedings of the 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 11–14 January 1999. [Google Scholar]
- Lee, S.; Bragg, M. Experimental investigation of simulated large-droplet ice shapes on airfoil aerodynamics. J. Aircr. 1999, 36, 844–850. [Google Scholar] [CrossRef]
- Lee, S.; Bragg, M. The effect of ridge-ice location and the role of airfoil geometry. In Proceedings of the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar]
- Broeren, A.; Whalen, E.; Busch, G.; Bragg, M. Aerodynamic simulation of runback ice accretion. J. Aircr. 2010, 47, 924–939. [Google Scholar] [CrossRef] [Green Version]
- Bragg, M.; Broeren, A.; Addy, H.; Potapczuk, M.; Guffond, D.; Montreuil, E. Airfoil ice-accretion aerodynamic simulation. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007. [Google Scholar]
- Broeren, A.; Bragg, M.; Addy, H. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
- Uranai, S.; Fukudome, K.; Mamori, H.; Fukushima, N.; Yamamoto, M. Numerical Simulation of the Anti-Icing Performance of Electric Heaters for Icing on the NACA 0012 Airfoil. Aerospace 2020, 7, 123. [Google Scholar] [CrossRef]
- Fukudome, K.; Tomita, Y.; Uranai, S.; Mamori, H.; Yamamoto, M. Evaluation of Anti-Icing Performance for an NACA0012 Airfoil with an Asymmetric Heating Surface. Aerospace 2021, 8, 294. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C. Numerical simulation of three-dimensional rotor icing in hovering flight. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 545–555. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, C.; Guo, T. Multi-Zone ice accretion and roughness models for aircraft icing numerical simulation. Adv. Appl. Math. Mech. 2016, 8, 737–756. [Google Scholar] [CrossRef]
- Bourgault, Y.; Beaugendre, H.; Habashi, W. Development of a shallow-water icing model in FENSAP-ICE. J. Aircr. 2000, 37, 640–646. [Google Scholar] [CrossRef]
- Karev, A.; Farzaneh, M.; Lozowski, E. Character and stability of a wind-driven supercooled water film on an icing surface—II. Transition and turbulent heat transfer. Int. J. Therm. Sci. 2003, 42, 499–511. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, C.; Zhao, H.; Liu, S. A New Ice Accretion Model for Aircraft Icing Based on Phase-Field Method. Appl. Sci. 2021, 11, 5693. [Google Scholar] [CrossRef]
- Huang, J.R.; Keith, T.G., Jr.; De Witt, K.J. Efficient Finite Element Method for Aircraft De-Icing Problems. J. Aircr. 1993, 30, 695–704. [Google Scholar] [CrossRef]
- Myers, T.G. Extension to the Messinger model for aircraft icing. AIAA J. 2001, 39, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Min, J.; Wu, X. Model for aircraft icing with consideration of property-variable rime ice. Int. J. Heat Mass Transf. 2016, 97, 185–190. [Google Scholar] [CrossRef]
- Shin, J.; Bond, T.H. Experimental and Computational Ice Shapes and Resulting Drag Increase for a NACA 0012 Airfoil; NASA Technical Manual 105743; NASA Office of the Chief Information Officer: Hampton, VA, USA, 1992.
- Fortin, G.; Laforte, J.L.; Ilinca, A. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. Int. J. Therm. Sci. 2006, 45, 595–606. [Google Scholar] [CrossRef]
- Fortin, G.; Ilinca, A.; Laforte, J.L.; Brandi, V. New roughness computation method and geometric accretion model for airfoil icing. J. Aircr. 2004, 41, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Palacios, J. Airfoil-performance-degradation prediction based on nondimensional icing parameters. AIAA J. 2013, 51, 2570–2581. [Google Scholar] [CrossRef]
- Wright, W.B. User’s Manual for LEWICE Version 3.2; NASA Technical Manual 214255; NASA Office of the Chief Information Officer: Hampton, VA, USA, 2008.
- Ruff, G.A.; Berkowitz, B.M. Users Manual for The NASA Lewis Ice Accretion Prediction Code(LEWICE); NASA Technical Manual 185129; NASA Office of the Chief Information Officer: Hampton, VA, USA, 1990.
Case | Ma | Angle of attack ° | Pressure Pa | Temperature K | MVD μm | LWC g·m−3 | Icing Time s |
---|---|---|---|---|---|---|---|
1 | 0.197 | 4.0 | 101,300 | 244.80 | 20.0 | 1.0 | 360 |
2 | 0.197 | 4.0 | 101,300 | 263.14 | 20.0 | 1.0 | 360 |
3 | 0.197 | 4.0 | 101,300 | 267.02 | 20.0 | 1.0 | 360 |
4 | 0.197 | 4.0 | 101,300 | 268.69 | 20.0 | 1.0 | 360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhao, H.; Liu, S. Numerical Simulation of Aircraft Icing under Local Thermal Protection State. Aerospace 2022, 9, 84. https://doi.org/10.3390/aerospace9020084
Wang Z, Zhao H, Liu S. Numerical Simulation of Aircraft Icing under Local Thermal Protection State. Aerospace. 2022; 9(2):84. https://doi.org/10.3390/aerospace9020084
Chicago/Turabian StyleWang, Zhengzhi, Huanyu Zhao, and Senyun Liu. 2022. "Numerical Simulation of Aircraft Icing under Local Thermal Protection State" Aerospace 9, no. 2: 84. https://doi.org/10.3390/aerospace9020084
APA StyleWang, Z., Zhao, H., & Liu, S. (2022). Numerical Simulation of Aircraft Icing under Local Thermal Protection State. Aerospace, 9(2), 84. https://doi.org/10.3390/aerospace9020084