Variation of Osculating Orbit Elements Using Low-Thrust Photonic Laser Propulsion in the Two-Body Problem
Abstract
:1. Introduction
2. Photonic Laser Propulsion
3. Equations of Motion
4. Variation of Osculating Orbit Elements and Perturbation Theory
4.1. Osculating Orbit Elements and Normalized Gauss Equations
4.2. Review of Perturbation Theory
5. Influence of Planar PLP Thrust
5.1. Zeroth-Order Approximation
5.1.1. Semi-Major Axis
5.1.2. Eccentricity
5.1.3. Longitude of the Ascending Node and Argument of Periapsis
5.1.4. Mean Motion
5.2. First-Order Approximation and Bounds of Elements under Small Thrust
5.2.1. Semi-Major Axis
5.2.2. Eccentricity
5.2.3. Argument of Periapsis
5.2.4. Mean Motion
6. Influence of Out-of-Plane PLP Thrust
6.1. Zeroth-Order Approximation
6.1.1. Semi-Major Axis, Eccentricity, and Mean Motion
6.1.2. Inclination
6.1.3. Longitude of Ascending Node and Argument of Periapsis
6.2. First-Order Approximation
6.2.1. Inclination
6.2.2. Longitude of Ascending Node
6.2.3. Argument of Periapsis
7. Numerical Simulations
7.1. Verification of Bounds with a Planar PLP Thrust
7.2. Influence of a Small Planar PLP Thrust
7.3. Influence of a Small Out-of-Plane PLP Thrust
7.4. Practical Applications
7.5. Formation Control by C-W Equations
8. Conclusions
Funding
Conflicts of Interest
Appendix A. Approximation of 1/r
References
- Tsander, F.K. From a Scientific Heritage, NASA Technical Translation TTF-541; NASA: Washington, DC, USA, 1967. [Google Scholar]
- Forward, R.L. Solar photon thrustor. J. Spacecr. Rocket. 1990, 27, 411–416. [Google Scholar] [CrossRef]
- Gulevich, A.V.; Ivanov, E.A.; Kukharchuk, O.F.; Poupko, V.Y.; Zrodnikov, A.V. Application of nuclear photon engines for deep-space exploration. AIP Conf. Proc. 2001, 552, 957–962. [Google Scholar] [CrossRef]
- Wickman, J.H. Technology Assessment of Photon Propulsion: How Close Are We? In Proceedings of the AIAA/SAE/ASME Conference, Boston, MA, USA, 11–13 July 1981. AIAA Paper 81-1532. [Google Scholar]
- Zhang, Q.; Lubin, P.M.; Hughes, G.B.; Melis, C.; Walsh, K.J. Orbital simulations of laser-propelled spacecraft. In Nanophotonics and Macrophotonics for Space Environments IX; Taylor, E.W., Cardimona, D.A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9616, pp. 61–72. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.R.; Pryor, W.R.; McKay, C.P.; McKenna, P.M. Laser Elevator: Momentum Transfer Using an Optical Resonator. J. Spacecr. Rocket. 2002, 39, 258–266. [Google Scholar] [CrossRef]
- Bae, Y. Photonic Laser Propulsion: Proof-of-Concept Demonstration. J. Spacecr. Rocket. 2008, 45, 153–155. [Google Scholar] [CrossRef]
- Jessica, F. Stephen Hawking, Mark Zuckerberg, Yuri Milner Launch $ 100M Space Project Called Breakthrough Starshot. 2016. Available online: https://www.natureworldnews.com/articles/20799/20160414/stephen-hawking-mark-zuckerberg-and-russian-millionaire-yuri-milner-launch-100m-space-project-called-breakthrough-starshot.htm (accessed on 14 April 2016).
- Hsiao, F.Y.; Wang, T.H.; Lee, C.C.; Yang, P.C.; Wei, H.C.; Tsai, P.Y. Trajectory of spacecraft with photonic laser propulsion in the two-body problem. Acta Astronaut. 2013, 84, 215–226. [Google Scholar] [CrossRef]
- NASA. Deep Space 1 (1998-061ADS1). 2008. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1998-061A (accessed on 14 April 2016).
- ESA. ESA and ANU Make Space Propulsion Breakthrough. 2006. Available online: http://www.spaceref.com/news/viewpr.html?pid=18706 (accessed on 11 January 2006).
- Hsiao, F.Y. Trajectory Evolution Under Laser Photonic Propulsion in The Two-Body Problem. In Advances in the Astronautical Sciences; Univelt, Inc.: Escondido, CA, USA, 2013; Volume 148, pp. 13–377. [Google Scholar]
- Danby, J.M.A. Fundamentals of Celestial Mechanics, 2nd ed.; Willmann-Bell: New York, NY, USA, 1992. [Google Scholar]
- Batrakov, Y.; Efroimsky, M.; Shefer, V. Nonosculating, Osculating, and Superosculating Orbits in Celestial Mechanics. 2007. Available online: https://www.researchgate.net/publication/273966361_Nonosculating_osculating_and_superosculating_orbits_in_celestial_mechanics (accessed on 11 July 2007).
- Efroimsky, M.; Goldreich, P. Gauge Symmetry of the N-body Problem in the Hamilton-Jacobi Approach. J. Math. Phys. 2003, 44, 5958. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, F.-Y. Variation of Osculating Orbit Elements Using Low-Thrust Photonic Laser Propulsion in the Two-Body Problem. Aerospace 2022, 9, 75. https://doi.org/10.3390/aerospace9020075
Hsiao F-Y. Variation of Osculating Orbit Elements Using Low-Thrust Photonic Laser Propulsion in the Two-Body Problem. Aerospace. 2022; 9(2):75. https://doi.org/10.3390/aerospace9020075
Chicago/Turabian StyleHsiao, Fu-Yuen. 2022. "Variation of Osculating Orbit Elements Using Low-Thrust Photonic Laser Propulsion in the Two-Body Problem" Aerospace 9, no. 2: 75. https://doi.org/10.3390/aerospace9020075
APA StyleHsiao, F. -Y. (2022). Variation of Osculating Orbit Elements Using Low-Thrust Photonic Laser Propulsion in the Two-Body Problem. Aerospace, 9(2), 75. https://doi.org/10.3390/aerospace9020075